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1. Introduction

Evaluating Feynman integrals is an essential and often challenging step in computing higher-
order perturbative corrections in Quantum Field Theories. In part due to the pioneering work of
Landau, Bjorken and Nakanishi [1–4], the study of the analytic structure of Feynman integrals as
dictated by their singularities, has played a central role in devising methods for their evaluation
both analytically and numerically. In recent years, the study of Landau singularities and the Landau
equations has experienced a revival of interest, leading to new and more efficient ways to compute
and characterise solutions [5–11].

One promising direction of exploration is the geometric description of Feynman integrals in
parameter space, i.e. in Feynman or Lee-Pomeransky representation [12]. In this representation,
each monomial of the Symanzik polynomials, U and F , characterising a Feynman graph with 𝑁
edges is mapped to an 𝑁-dimensional vector whose entries are the exponents of the parameters
in that monomial. Regarding each of these vectors as a point in an 𝑁-dimensional space, a
Newton polytope can be obtained by taking the convex hull of all these points. The normal
vectors to the faces of the polytope are then precisely the weight vectors characterising the endpoint
divergences of the integral, which appear when some set of parameters vanish or become large.
This geometric description facilitates the formulation of efficient algorithms to determine Landau
singularities [5, 6, 8–11], the study of the infrared singularity structure of Feynman integrals
in dimensional regularisation [13], the numerical computation Feynman integrals using sector
decomposition [14–28], or tropical Monte Carlo integration [24, 25], and the asymptotic expansion
of Feynman integrals by the method of regions (MoR) directly in parameter space as implemented
in various computer packages [23, 29–31].

However, not all singularities, or solutions of the Landau equations, appear as endpoint di-
vergences in parameter space. Indeed, the necessary conditions for a singularity to occur are
summarised by the Landau equations, which can be written in parameter space as [1, 4],

F = 0 (1)

𝛼𝑘

𝜕F
𝜕𝛼𝑘

= 0 for each 𝑘 ∈ {1, . . . , 𝑁}, (2)

where F is the second Symanzik polynomial. Examining these equations, we can see that solutions,
known as pinch solutions, can occur when both F and 𝜕F/𝜕𝛼𝑖 vanish away from the integration
boundary. Although this situation has been considered since the early days, its consequences for
evaluating Feynman integrals using sector decomposition and applying the MoR in parameter space
have not yet been fully explored.

Parameter space pinch solutions of the Landau equations occur when monomials of opposite
sign in the F polynomial cancel each other in such a way that F and its derivatives 𝜕F/𝜕𝛼𝑖 vanish.
The Newton polytope is completely insensitive to the coefficients of the monomials (including their
sign), so such singularities can not be identified from the polytope alone. Solutions can arise in
special kinematic limits, such as intermediate particle thresholds or forward limits, giving rise to
hidden regions, e.g. potential and Glauber regions, respectively, when using the MoR to expand
integrals about such limits. Here we discuss cases where such solutions are present even with
general kinematics (i.e. not in threshold or forward limit).
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In some cases, hidden regions can be found algorithmically by selecting a variable appearing
in a positive monomial, 𝛼𝑖 , and a variable appearing in a negative monomial, 𝛼 𝑗 , then making
iterated linear changes of variables chosen to eliminate negative monomials in F . This procedure
was proposed and implemented in the Asy2 package in Ref. [29]. It has also been applied instead to
the Gröbner basis of the F polynomial and its first order derivatives in Ref. [30], which introduced
the ASPIRE package. We explore cases where iterated linear changes of variables do not eliminate
all negative monomials in F and fail to expose hidden regions which appear even at leading power
in the expansion.

These proceedings provide a short overview of the main results of the work presented in
Ref. [32], where the structure of pinch solutions of the Landau equations for general kinematics is
analysed in the case of 2 → 2 massless scattering. It is observed that such solutions prevent the
direct numerical evaluation of certain integrals, starting at three loops, and that they are associated
with hidden regions that can not be resolved by iterated linear changes of variables. In Section 2 we
briefly describe how integrals that may contain cancellation structures can be found systematically.
In Section 3 we discuss how pinch singularities can prevent the numerical evaluation of Feynman
integrals and give a non-trivial example of how re-parameterising and dissecting such integrals can
circumvent this problem. We demonstrate, in Section 4, how hidden regions can be found both in
momentum and parameter space. Finally, we present our conclusions in Section 5.

2. Identifying Integrals with Pinch Singularities

For a parameter space pinch solution to be present in a Feynman integral, we require that
both F and 𝜕F/𝜕𝛼𝑖 vanish for some 𝛼𝑖 ≠ 0. To identify integrals for which this is possible, we
begin by defining the polynomials F+ and F− as the positive and negative monomials of F at a
given kinematic point, respectively, such that F = F+ + F−. At a pinch singularity, some terms of
F+ cancel against terms of F−, both in F and (some of) its first-order partial derivatives. When
searching for this cancellation with general kinematics (i.e. independently of the specific values
chosen for the independent set of Mandelstam invariants), as we do here, we can search for the pinch
solutions invariant-by-invariant, considering only terms in F proportional to a single Mandelstam
invariant. Let us denote the terms in F that are proportional to the invariant 𝑠𝑖 𝑗 by F (𝑠𝑖 𝑗 ) . We can
then formulae a search algorithm as follows:

1. Compute F (𝑠𝑖 𝑗 )
+ and F (𝑠𝑖 𝑗 )

− . If either vanishes, exit the algorithm outputting that there are
no pinch solution. Otherwise, go to Step 2.

2. Compute 𝜕F (𝑠𝑖 𝑗 )
+ /𝜕𝛼𝑖 and 𝜕F (𝑠𝑖 𝑗 )

− /𝜕𝛼𝑖 for all the 𝛼𝑖 that F (𝑠𝑖 𝑗 ) depends on. If none
of these derivatives vanish, exit the algorithm outputting that there are pinch singularities
(which may or may not be within the integration domain). Otherwise, go to Step 3.

3. Identify the 𝑖 for which 𝜕F (𝑠𝑖 𝑗 )
+ /𝜕𝛼𝑖 = 0 or 𝜕F (𝑠𝑖 𝑗 )

− /𝜕𝛼𝑖 = 0, replace F (𝑠𝑖 𝑗 ) by F (𝑠𝑖 𝑗 ) |𝛼𝑖=0,
and return to Step 1.

For further discussion and justification of this algorithm, we refer the reader to Ref. [32].
Running the algorithm on all one- and two-loop massless 2 → 2 graphs containing only three-

and four-point vertices we find no integrals with pinch solutions. Starting from three loops we
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(a) 𝐺••

𝑝1 𝑝3

𝑝2 𝑝4

(b) 𝐺•𝑠

𝑝1 𝑝3

𝑝2 𝑝4

(c) 𝐺𝑡𝑡

𝑝1 𝑝3

𝑝2 𝑝4

(d) 𝐺𝑠𝑡

Figure 1: Massless four-point three-loop graphs with a possible pinch Landau singularity in parameter
space. Diagrams related by crossing are also identified as possibly containing pinch Landau singularities in
parameter space.

identify 10 graphs for which a pinch solution is possible, a selection is shown in Figure 1. We
note that, remarkably, these graphs have been studied in the early literature in the context of Regge
cuts [33], the high-energy limit [34] and elastic scattering [35, 36]. In Ref. [32], we also report
the four-loop graphs potentially containing pinch Landau singularities and find that for wide-angle
scattering they all contain the aforementioned three-loop diagrams as subgraphs.

3. Evaluating Integrals with a Pinched Contour

In the Minkowski regime, Feynman integrals can have poles for real non-zero values of the
parameters 𝛼𝑖 . Such poles appear due to the vanishing of the F polynomial within the domain
of integration of the Feynman parameters. In typical cases, such singularities can be avoided
by analytic continuation, or, in parameter space, by deforming the contour of integration of the
𝛼𝑘-parameters into the complex plane by introducing a small imaginary part 𝛼𝑘 → 𝛼𝑘 − 𝑖𝜀𝑘 (𝜶)
According to the Feynman prescription, the deformation should be chosen such that F develops
a negative imaginary part when the real part vanishes. Under such a change of variables, the F
polynomial transforms as

F (𝜶; 𝒔) → F (𝜶; 𝒔) − 𝑖
∑︁
𝑘

𝜀𝑘 (𝜶)
𝜕F (𝜶; 𝒔)
𝜕𝛼𝑘

+ O(𝜀2) . (3)

In the case of a pinch singularity, both F and 𝜕F/𝜕𝛼𝑘 vanish at the same point, pinching the
contour and forcing it to vanish exactly where the deformation would be needed. This prevents the
direct numerical evaluation of the integral in parameter space.
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An example Feynman integral containing a pinch singularity is given by 𝐺••, shown in Fig-
ure 1a. In momentum space, the integral can be written as,

I𝐺•• (𝒔) =
∫ ( 3∏

𝑖=1

𝑑𝐷𝑘𝑖

𝑖𝜋𝐷/2

) ( 3∏
𝑖=1

1
𝑘2
𝑖
(𝑘𝑖 − 𝑝𝑖)2

)
1

(𝑘1 + 𝑘2 − 𝑘3)2(𝑝4 − 𝑘1 − 𝑘2 + 𝑘3)2 ,

=Γ(2 + 3𝜖)
∫

𝑑𝛼0 . . . 𝑑𝛼7 𝛿(1 − 𝛼0 · · · − 𝛼7)
(
U(𝜶)

)4𝜖 (
F (𝜶; 𝒔)

)−2−3𝜖
, (4)

the Symanzik polynomials read,

U(𝜶) = (𝛼0 + 𝛼1) (𝛼2 + 𝛼3) (𝛼4 + 𝛼5) + (𝛼0 + 𝛼1) (𝛼2 + 𝛼3) (𝛼6 + 𝛼7)
+ (𝛼0 + 𝛼1) (𝛼4 + 𝛼5) (𝛼6 + 𝛼7) + (𝛼2 + 𝛼3) (𝛼4 + 𝛼5) (𝛼6 + 𝛼7),

F (𝜶; 𝒔) = (−𝑠12) (𝛼1𝛼4 − 𝛼0𝛼5) (𝛼3𝛼6 − 𝛼2𝛼7) + (−𝑠13) (𝛼1𝛼2 − 𝛼0𝛼3) (𝛼5𝛼6 − 𝛼4𝛼7) ,
(5)

where 𝑠12 ≡ (𝑝1 + 𝑝2)2, 𝑠13 ≡ (𝑝1 − 𝑝3)2, and 𝑠14 ≡ (𝑝1 − 𝑝4)2. The momentum conservation
relation 𝑠12 + 𝑠13 + 𝑠23 = 0 has been used to eliminate 𝑠23, leading to monomials of different sign
multiplying the remaining invariants 𝑠12 and 𝑠13. The structure of the F polynomial is such that
there is no analytic continuation prescription of the form 𝑠𝑖 𝑗 → 𝑠𝑖 𝑗 ± 𝑖𝜀 which ensures that F
obtains a negative imaginary part for all values of the Feynman parameters 𝛼𝑖 ⩾ 0.

Possible pinch singularities in F of eq. (5), are associated with the vanishing of subsets of the
following polynomials,

𝑣1 = 𝛼1𝛼4 − 𝛼0𝛼5 , 𝑣2 = 𝛼3𝛼6 − 𝛼2𝛼7 ,

𝑣3 = 𝛼1𝛼2 − 𝛼0𝛼3 , 𝑣4 = 𝛼5𝛼6 − 𝛼4𝛼7 .
(6)

The Landau equations can be satisfied with all 𝛼𝑖 > 0 for generic 𝑠12, 𝑠13 if and only if 𝑣1 = 𝑣2 =

𝑣3 = 𝑣4 = 0, i.e. on the hypersurface defined by,

𝛼2 =
𝛼0𝛼3
𝛼1

, 𝛼4 =
𝛼0𝛼5
𝛼1

, 𝛼6 =
𝛼0𝛼7
𝛼1

. (7)

These relations define a pinch surface.
We find that it is not possible to eliminate the negative monomials of F by iterated linear

changes of variables, and indeed Asy2 reports that this step (called “preresolution”) fails for this
integral. Instead, we can first perform a blowup that decreases the degree of the polynomial defining
the variety of F , using the following change of variables,

𝛼0 = 𝑦0 · 𝛼1, 𝛼2 = 𝑦2 · 𝛼3, 𝛼4 = 𝑦4 · 𝛼5, 𝛼6 = 𝑦6 · 𝛼7, (8)

the second Symanzik polynomial then becomes,

F (𝒙; 𝒔) = (−𝑠12) (𝑦4 − 𝑦0) (𝑦6 − 𝑦2)𝛼1𝛼3𝛼5𝛼7 + (−𝑠13) (𝑦2 − 𝑦0) (𝑦6 − 𝑦4)𝛼1𝛼3𝛼5𝛼7. (9)

Next, we dissect the integral by imposing a strict hierarchy 𝑦𝑖 ≥ 𝑦 𝑗 ≥ 𝑦𝑘 ≥ 𝑦𝑙 between the
even-numbered parameters. Considering all possible hierarchies will split the integral into 4! = 24
new integrals. Finally, we re-map the boundaries of integration of each of the dissected integrals to
[0,∞] by changing variables according to

𝑦𝑖 = 𝑧𝑖 + 𝑧 𝑗 + 𝑧𝑘 + 𝑧𝑙, 𝑦 𝑗 = 𝑧 𝑗 + 𝑧𝑘 + 𝑧𝑙, 𝑦𝑘 = 𝑧𝑘 + 𝑧𝑙, 𝑦𝑙 = 𝑧𝑙 . (10)
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We obtain the following 24 polynomials,

F1(𝜶; 𝒔) = 𝛼1𝛼3𝛼5𝛼7 [−𝑠12(𝛼0 + 𝛼2) (𝛼2 + 𝛼4) − 𝑠13(𝛼0𝛼4)] , (11)
F2(𝜶; 𝒔) = 𝛼1𝛼3𝛼5𝛼7 [−𝑠12(𝛼2) (𝛼0 + 𝛼2 + 𝛼6) + 𝑠13(𝛼0𝛼6)] , (12)
F3(𝜶; 𝒔) = 𝛼1𝛼3𝛼5𝛼7 [−𝑠12(𝛼0𝛼2) − 𝑠13(𝛼0 + 𝛼4) (𝛼2 + 𝛼4)] , (13)
F4(𝜶; 𝒔) = 𝛼1𝛼3𝛼5𝛼7 [𝑠12(𝛼0𝛼6) − 𝑠13(𝛼4) (𝛼0 + 𝛼4 + 𝛼6)] , (14)
F5(𝜶; 𝒔) = 𝛼1𝛼3𝛼5𝛼7 [𝑠12(𝛼6) (𝛼0 + 𝛼2 + 𝛼6) + 𝑠13(𝛼0 + 𝛼6) (𝛼2 + 𝛼6)] , (15)
F6(𝜶; 𝒔) = 𝛼1𝛼3𝛼5𝛼7 [𝑠12(𝛼0 + 𝛼6) (𝛼4 + 𝛼6) + 𝑠13(𝛼6) (𝛼0 + 𝛼4 + 𝛼6)] , (16)

with each of the remaining 18 integrals equal to one of the above up to a relabelling of the Feynman
parameters. The new F polynomials have only monomials of definite sign multiplying each of the
invariants 𝑠12 and 𝑠13 and are therefore free from pinch singularities within the integration domain.

The dissected integrals can now be numerically evaluated using sector decomposition with a
contour deformation. Alternatively, it is possible to dramatically improve the numerical precision
using the techniques described in Ref. [37]. Summing over the sectors, the full numeric result is
given by,

I𝐺•• = 4 (I1 + I2 + I3 + I4 + I5 + I6)
= 𝜖−4 [8.340040392028 − 52.3598775598347𝐼] + O(𝜖−3), (17)

this agrees, within the numerical integration error, with the analytic result obtained in Ref. [38].
Dissecting the integral, or the associated Newton polytope, has mapped the pinch surface which

was originally within the domain of integration to the boundary of integration. With the singularity
now at the boundary, it can be resolved using the method of sector decomposition, enabling the
numerical evaluation of the integral.

4. Uncovering Hidden Regions

Landau singularities and the associated pinch surfaces are known to dictate the properties of
asymptotic expansions of Feynman integrals. In this section, we study the implication of pinch
Landau singularities in parameter space from the perspective of the MoR. We observe that they are
associated with hidden regions which appear both in wide-angle scattering and the forward limit.

4.1 On-shell expansion for wide-angle scattering

Let us examine the presence of hidden regions in the on-shell expansion of wide-angle scatter-
ing. This limit is defined by considering an off-shell Green’s function with 𝑀 external legs, out of
which 𝐾0 are strictly on-shell, while 𝐾𝜆 are expanded about the on-shell limit, i.e.

𝑝2
𝑖
= 0 𝑖 = 1, . . . , 𝐾0

𝑝2
𝑖
∼ 𝜆𝑄2 𝑖 = 𝐾0 + 1, . . . , 𝐾,

𝑞2
𝑖
∼ 𝑄2 𝑖 = 𝐾 + 1, . . . , 𝑀

𝑝𝑖1 · 𝑝𝑖2 ∼ 𝑄2 ∀ 𝑖1 ≠ 𝑖2 ,

(18)

with 𝜆 → 0. Here, we consider only diagrams containing massless propagators. The wide-angle
condition is incorporated in 𝑝𝑖1 · 𝑝𝑖2 ∼ 𝑄2, implying that the angle between the three-momenta 𝒑𝑖1
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and 𝒑𝑖2 is O(1) for any 𝑖1 and 𝑖2. Given any massless scattering graph with the kinematics of (18),
the complete list of facet regions can be described by the hard-collinear-soft picture in Figure 2a,
as proposed in Ref. [7] and proved in Ref. [39].

Following the work of Ref. [36], let us consider graph 𝐺•• in the limit,

𝑝2
𝑖 = 𝜆𝑄

2, 𝑝𝑖 · 𝑣𝑖 ∼ 𝜆𝑄, 𝑝𝑖 · 𝑣𝑖 ∼ 𝑄, 𝑝𝑖 · 𝑣𝑖⊥ ∼
√
𝜆𝑄. (19)

Introducing a fourth, fully constrained, loop momentum, 𝑘4, and considering the mode with all 𝑘𝑖
collinear to 𝑝𝑖 , we can parameterise the loop momenta as,

𝑘
𝜇

𝑖
= 𝑄

(
𝜉𝑖𝑣

𝜇

𝑖
+ 𝜆𝜅𝑖𝑣𝜇𝑖 +

√
𝜆𝜏𝑖𝑢

𝜇

𝑖
+
√
𝜆𝜈𝑖𝑛

𝜇

𝑖

)
, 𝑖 = 1, 2, 3, 4. (20)

Changing integration variables from the individual components of 𝑘𝑖 to
∏3

𝑖=1 (d𝜅𝑖d𝜏𝑖d𝜈𝑖) d𝜅4d𝜏4,
the scaling of the integration measure is 𝜆6−3𝜖 𝜆3/2. This suggests the presence of a leading region
(the Landshoff scattering region) with degree of divergence,

𝜇[𝐺••,Landshoff] = 6 − 3𝜖 + 3
2
− 8 = −1

2
− 3𝜖 . (21)

𝒗R (𝑥0, 𝑥1, . . . , 𝑥7;𝜆) degree of divergence
(−2,−1,−2,−1,−2,−1,−2,−1; 1) −6𝜖
(−1,−2,−1,−2,−1,−2,−1,−2; 1) −6𝜖
(−1,−1,−1, 0,−1, 0,−1, 0; 1) 1 − 3𝜖
(−1,−1, 0,−1, 0,−1, 0,−1; 1) 1 − 3𝜖
(−1,−1, 0, 0, 0, 0, 0, 0; 1) −𝜖
(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 1: Regions obtained by directly applying the MoR to the on-shell expansion of graph 𝐺•• with
𝑝2

1 ∼ 𝜆𝑄2 and 𝑝2
𝑖
= 0 (𝑖 = 2, 3, 4).

We can now check for the presence of the Landshoff region in parameter space. Using the
geometric formulation of the MoR we can directly derive the facet regions from the Synamzik
polynomials of 𝐺•• given Eq. (5). For brevity, we report in Table 1 the regions obtained when
considering the expansion 𝑝2

𝑖
∼ 𝜆𝑄2 and 𝑝2

𝑖
= 0(𝑖 = 2, 3, 4). We note that the Landshoff region

is not detected as a facet region of the original Newton polytope. According to this analysis, the
leading power behaviour of the facet regions of the integral in the small 𝜆 limit is O(𝜆0).

Alternatively, we can dissect the polytope using the procedure described in Section. 3. We
obtain a set of 24 new integrals, I1, . . . ,I24. These integrals have F polynomials similar to
Eq. (11), but with additional terms proportional to (−𝑝2

1) multiplied by non-negative polynomials
of the parameters. Each of the new integrals has a same-sign regime for some choice of the value of
𝑝2

1, 𝑠 and 𝑡 (although not the same choice for all integrals). We, therefore, expect that each integral
separately can be analytically continued from a same-sign regime to the region of interest, and the
application of the MoR should now identify all scaleful regions, i.e. there are no hidden regions in
the new integrals. In Table 2 we show the regions obtained by analysing the first integral dissection
I1. We observe that the Landshoff region is present in all 24 integral dissections and that it is the
leading-power region in the small-𝜆 limit, with the degree of divergence 𝜇 = −1/2−3𝜖 , as expected

7
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𝒗R (𝑦0, 𝑥1, 𝑦2, 𝑥3, 𝑦4, 𝑥5, 𝑦6, 𝑥7;𝜆) 𝒗R (𝑥0, 𝑥1, . . . , 𝑥7;𝜆) degree of
divergence

(1/2,−1, 1/2,−1, 1/2,−1, 0,−1; 1) (−2,−2,−2,−2,−2,−2,−2,−2; 2) −1/2 − 3𝜖
(0,−1, 1,−1, 1,−1, 0,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 1) −3𝜖
(1,−1, 1,−1, 0,−1, 0,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 1) −3𝜖
(−1,−1,−1,−1,−1,−1,−1,−1; 1) (−2,−1,−2,−1,−2,−1,−2,−1; 1) −6𝜖
(1,−2, 1,−2, 1,−2, 1,−2; 1) (−1,−2,−1,−2,−1,−2,−1,−2; 1) −6𝜖
(0,−1, 0, 0, 0, 0, 0, 0; 1) (−1,−1, 0, 0, 0, 0, 0, 0; 1) −𝜖
(0, 0, 0, 0, 0, 0, 0, 0; 1) (0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 2: On-shell expansion of 𝐺••, with 𝑝2
1 ∼ 𝜆𝑄2 and 𝑝2

𝑖
= 0 (𝑖 = 2, 3, 4), first integral dissection I1.

𝐻

𝑆

𝐽1

𝐽2

𝐽𝐾

𝑞𝐾+1 𝑞𝑀

𝑝1

𝑝2

𝑝𝐾

(a) Momentum configuration of a generic facet region

𝑝1 𝑝3

𝑝2 𝑝4

𝐽1 𝐽3

𝐽2 𝐽4

𝐻1

𝐻2

𝑆

(b) Momentum configuration of the hidden region

Figure 2: The general configuration of facet and hidden regions in the on-shell expansion of 2 → 2 wide-
angle scattering. The graph 𝐺 is the union of the hard subgraph 𝐻, the jet subgraphs 𝐽1, . . . , 𝐽4, and the soft
subgraph 𝑆. For the hidden region, in contrast to the facet regions, the hard subgraph has multiple connected
components 𝐻1, 𝐻2, . . . , and all four jets are attached to each of these components.

from the momentum space analysis. In Ref. [32], we show by direct numerical evaluation that the
Landshoff region reproduces the correct behaviour of the full integral in the small 𝜆 limit.

In Figure 2a we show the possible momentum configurations obeyed by generic facet regions
of integrals in the on-shell expansion, as described in Refs. [7, 39], and in Figure 2b we show the
momentum configuration of the Landshoff region. We observe that, unlike generic facet regions,
the hard subgraph of the hidden region has multiple connected components.

4.2 Regge-limit expansion for 2 → 2 scattering

Let us now turn our attention to the Regge-limit expansion for 2 → 2 scattering, where every
external momentum is strictly massless and on shell, with 𝑝3 (nearly) collinear to 𝑝1 and 𝑝4 nearly
collinear to 𝑝2, namely,

𝑝2
𝑖 = 0 (𝑖 = 1, 2, 3, 4), −𝑡

𝑠
∼ −𝑡

−𝑢 ∼ 𝜆, (22)

where 𝑠 ≡ 𝑠12 ≡ (𝑝1 + 𝑝2)2 > 0, 𝑡 ≡ 𝑠13 ≡ (𝑝1 − 𝑝3)2 < 0, and 𝑢 ≡ 𝑠14 ≡ (𝑝1 − 𝑝4)2 < 0. In
contrast to the wide-angle scattering kinematics, eq. (18), the Regge-limit expansion is known to
feature Glauber modes that contribute to the region structure in certain graphs.
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We may repeat the momentum space analysis presented in Section 4.1 in the case of forward
scattering. However, for the three-loop integrals considered here, complete analytic results are
known when all external legs are exactly on shell [38, 40]. We therefore have the opportunity to
directly verify the results we obtain via asymptotic expansions against the known analytic results.

𝒗R (𝑥0, 𝑥1, . . . , 𝑥7;𝜆) degree of divergence
(−1,−1,−1, 0,−1,−1,−1, 0; 1) −3𝜖
(−1,−1, 0,−1,−1,−1, 0,−1; 1) −3𝜖
(−1, 0,−1,−1,−1, 0,−1,−1; 1) −3𝜖
(0,−1,−1,−1, 0,−1,−1,−1; 1) −3𝜖
(0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 3: Regions obtained by directly applying the MoR to the Regge-limit expansion of graph 𝐺••.

In the notation of ref. [38], the graph 𝐺•• is written as

𝐽𝐺•• (𝑠12, 𝑠13; 𝜖) = INT[“NPL2”, 8, 4009, 8, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0] .

Expanding the analytic result about the forward limit, with 𝑥 = −𝑠13/𝑠12, we observe that

𝐽𝐺•• (𝑥; 𝜖) ∼ 𝑥−1−3𝜖 for 𝑥 → 0 . (23)

In contrast, directly applying the MoR to 𝐺•• in the forward limit, we obtain the set of region
vectors shown in Table 3. We observe that the leading-power region behaves only as O(𝜆0) and the
leading region is missed.

𝒗R (𝑦0, 𝑥1, 𝑦2, 𝑥3, 𝑦4, 𝑥5, 𝑦6, 𝑥7;𝜆) 𝒗R (𝑥0, 𝑥1, . . . , 𝑥7;𝜆) degree of
divergence

(0,−1, 0,−1, 0,−1, 1,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 1) −1 − 3𝜖
(1,−1, 0,−1, 0,−1, 0,−1; 1) (−1,−1,−1,−1,−1,−1,−1,−1; 1) −1 − 3𝜖
(−1, 0, 0,−1,−1, 0, 0,−1; 1) (−1, 0,−1,−1,−1, 0,−1,−1; 1) −3𝜖
(0, 0, 0, 0, 0, 0, 0, 0; 1) (0, 0, 0, 0, 0, 0, 0, 0; 1) 0

Table 4: Regge-limit expansion of graph 𝐺••, fourth integral dissection I4. The region
(−1,−1,−1, 0,−1,−1,−1, 0; 1) in the original variables, is present in other integral dissections, e.g. I11.
The region (0,−1,−1,−1, 0,−1,−1,−1; 1) in the original polytope, is entirely absent after dissection.

Following the resolution procedure described in Section 3, we again obtain a set of 24 new
integrals. By the same argument as presented in Section 4.1, we reason that the new integrals
should not contain hidden regions. In Table 4, we present the regions obtained for the integral
dissection I4, we observe that indeed regions with degree of divergence 𝜇 = −1− 3𝜖 are present, as
expected from the expansion of the analytic result. Therefore, by dissecting the Newton polytope
of the original integral, we have exposed the hidden region and recovered the correct expansion
of the integral in the forward region. Using the momentum space analysis, we can show that the
interpretation of the hidden region is compatible with the exchanged loop momenta obeying the
Glauber mode scaling law 𝑘 ∼ 𝑄(𝜆, 𝜆, 𝜆1/2). We emphasise, however, that in general, the Glauber
mode does not feature only in hidden regions and can also be present in facet regions. The rich
mode and region structure of the Regge limit at three loops and beyond will be investigated in more
detail in a forthcoming publication [41].
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5. Conclusion & Outlook

Recognising the value of parametric representations of Feynman integrals and their geometrical
interpretation in treating singularities as endpoint divergences, here, we focused on the exception:
singularities which manifest themselves as pinches in parameter space, and obstruct the application
of existing strategies based on the Newton polytope. Earlier work in this direction [29, 30], in the
context of the MoR, focused on linear cancellation between pairs of Feynman parameters, while
our analysis identified more general cancellation patterns, including higher-degree polynomials
involving multiple Feynman parameters. We observed that such cancellations can occur not just in
special kinematic limits such as the threshold expansion and forward limit, but also in more general
situations where the Mandelstam invariants are less constrained (e.g. wide-angle scattering).

We have presented an algorithm which aids in identifying graphs in which a pinch in parameter
space can occur. Such pinches can hinder the Newton-polytope based sector decomposition algo-
rithms and obstruct the determination of a complete set of regions in the MoR. Next, we addressed
the numerical computation of integrals which feature a pinch in parameter space within the domain
of integration. Although the straightforward application of existing sector decomposition tools is
doomed to fail due to the presence of such pinch singularities, we showed how a procedure, based
on dissecting the Newton polytope, allows their evaluation. Finally, we addressed the determination
of the complete set of regions needed for asymptotic expansions of integrals around a limit in which
a pinch in parameter space occurs.

Acknowledgments

We would like to thank the organisers of the “Loops and Legs in Quantum Field Theory”
conference for the opportunity to present this work. We also thank Charalampos Anastasiou,
Thomas Becher, Holmfridur Hannesdottir, Andrew McLeod, Erik Panzer, Johannes Schlenk, and
George Sterman for useful discussions and Piotr Bargiela for his valuable help with the analytic
three-loop four-point results. EG and FH are supported by the STFC Consolidated Grant “Particle
Physics at the Higgs Centre”. FH is also supported by the UKRI FLF grant “Forest Formulas
for the LHC” (Mr/S03479x/1). SJ is supported by the Royal Society University Research Fellow-
ship (URF/R1/201268) and by the UK Science and Technology Facilities Council under contract
ST/T001011/1. YM is supported by the Swiss National Science Foundation through its project
funding scheme, grant number 10001706.

References

[1] L. Landau, On analytic properties of vertex parts in quantum field theory, Nuclear Physics
13 (1959), no. 1 181–192.

[2] J. D. Bjorken, Experimental tests of Quantum electrodynamics and spectral representations
of Green’s functions in perturbation theory. PhD thesis, Stanford U., 1959.

[3] N. Nakanishi, Ordinary and Anomalous Thresholds in Perturbation Theory, Progress of
Theoretical Physics 22 (07, 1959) 128–144,
[https://academic.oup.com/ptp/article-pdf/22/1/128/5427385/22-1-128.pdf].

10

http://xxx.lanl.gov/abs/https://academic.oup.com/ptp/article-pdf/22/1/128/5427385/22-1-128.pdf


P
o
S
(
L
L
2
0
2
4
)
0
3
2

Revealing Hidden Regions in Wide-Angle and Forward Scattering Stephen Jones

[4] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The analytic S-matrix.
Cambridge University Press, 2002.

[5] F. C. S. Brown, On the periods of some Feynman integrals, arXiv:0910.0114.

[6] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to
Feynman integrals, Comput. Phys. Commun. 188 (2015) 148–166, [arXiv:1403.3385].

[7] E. Gardi, F. Herzog, S. Jones, Y. Ma, and J. Schlenk, The on-shell expansion: from Landau
equations to the Newton polytope, JHEP 07 (2023) 197, [arXiv:2211.14845].

[8] C. Fevola, S. Mizera, and S. Telen, Principal Landau determinants, Comput. Phys. Commun.
303 (2024) 109278, [arXiv:2311.16219].

[9] C. Fevola, S. Mizera, and S. Telen, Landau Singularities Revisited: Computational Algebraic
Geometry for Feynman Integrals, Phys. Rev. Lett. 132 (2024), no. 10 101601,
[arXiv:2311.14669].

[10] C. Dlapa, M. Helmer, G. Papathanasiou, and F. Tellander, Symbol alphabets from the Landau
singular locus, JHEP 10 (2023) 161, [arXiv:2304.02629].

[11] M. Helmer, G. Papathanasiou, and F. Tellander, Landau Singularities from Whitney
Stratifications, arXiv:2402.14787.

[12] R. N. Lee and A. A. Pomeransky, Critical points and number of master integrals, JHEP 11
(2013) 165, [arXiv:1308.6676].

[13] N. Arkani-Hamed, A. Hillman, and S. Mizera, Feynman polytopes and the tropical geometry
of UV and IR divergences, Phys. Rev. D 105 (2022), no. 12 125013, [arXiv:2202.12296].

[14] A. Smirnov and M. Tentyukov, Feynman integral evaluation by a sector decomposition
approach (fiesta), Computer Physics Communications 180 (2009), no. 5 735–746.

[15] A. Smirnov, V. Smirnov, and M. Tentyukov, Fiesta 2: parallelizeable multiloop numerical
calculations, Computer Physics Communications 182 (2011), no. 3 790–803.

[16] A. V. Smirnov, Fiesta 3: cluster-parallelizable multiloop numerical calculations in physical
regions, Computer Physics Communications 185 (2014), no. 7 2090–2100.

[17] A. V. Smirnov, Fiesta 4: Optimized feynman integral calculations with gpu support,
Computer Physics Communications 204 (2016) 189–199.

[18] A. Smirnov, N. Shapurov, and L. Vysotsky, Fiesta5: numerical high-performance feynman
integral evaluation, Computer Physics Communications 277 (2022) 108386.

[19] T. Kaneko and T. Ueda, A geometric method of sector decomposition, Computer Physics
Communications 181 (2010), no. 8 1352–1361.

[20] J. Carter and G. Heinrich, SecDec: A general program for sector decomposition, Comput.
Phys. Commun. 182 (2011) 1566–1581, [arXiv:1011.5493].

11

http://xxx.lanl.gov/abs/0910.0114
http://xxx.lanl.gov/abs/1403.3385
http://xxx.lanl.gov/abs/2211.14845
http://xxx.lanl.gov/abs/2311.16219
http://xxx.lanl.gov/abs/2311.14669
http://xxx.lanl.gov/abs/2304.02629
http://xxx.lanl.gov/abs/2402.14787
http://xxx.lanl.gov/abs/1308.6676
http://xxx.lanl.gov/abs/2202.12296
http://xxx.lanl.gov/abs/1011.5493


P
o
S
(
L
L
2
0
2
4
)
0
3
2

Revealing Hidden Regions in Wide-Angle and Forward Scattering Stephen Jones

[21] S. Borowka, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, and T. Zirke, SecDec-3.0:
numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196
(2015) 470–491, [arXiv:1502.06595].

[22] G. Heinrich, S. P. Jones, M. Kerner, V. Magerya, A. Olsson, and J. Schlenk, Numerical
scattering amplitudes with pySecDec, Comput. Phys. Commun. 295 (2024) 108956,
[arXiv:2305.19768].

[23] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, and T. Zirke,
pySecDec: a toolbox for the numerical evaluation of multi-scale integrals, Comput. Phys.
Commun. 222 (2018) 313–326, [arXiv:1703.09692].

[24] M. Borinsky, Tropical Monte Carlo quadrature for Feynman integrals, Ann. Inst. H. Poincare
D Comb. Phys. Interact. 10 (2023), no. 4 635, [arXiv:2008.12310].

[25] M. Borinsky, H. J. Munch, and F. Tellander, Tropical Feynman integration in the Minkowski
regime, Comput. Phys. Commun. 292 (2023) 108874, [arXiv:2302.08955].

[26] X. Liu and Y.-Q. Ma, AMFlow: A Mathematica package for Feynman integrals computation
via auxiliary mass flow, Comput. Phys. Commun. 283 (2023) 108565, [arXiv:2201.11669].

[27] M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of
one-dimensional series expansions, Comput. Phys. Commun. 269 (2021) 108125,
[arXiv:2006.05510].

[28] T. Armadillo, R. Bonciani, S. Devoto, N. Rana, and A. Vicini, Evaluation of Feynman
integrals with arbitrary complex masses via series expansions, Comput. Phys. Commun. 282
(2023) 108545, [arXiv:2205.03345].

[29] B. Jantzen, A. V. Smirnov, and V. A. Smirnov, Expansion by regions: revealing potential and
glauber regions automatically, The European Physical Journal C 72 (2012), no. 9 1–14.

[30] B. Ananthanarayan, A. Pal, S. Ramanan, and R. Sarkar, Unveiling regions in multi-scale
feynman integrals using singularities and power geometry, The European Physical Journal C
79 (2019), no. 1 1–20.

[31] G. Heinrich, S. Jahn, S. Jones, M. Kerner, F. Langer, V. Magerya, A. Poldaru, J. Schlenk, and
E. Villa, Expansion by regions with pysecdec, Computer Physics Communications 273
(2022) 108267.

[32] E. Gardi, F. Herzog, S. Jones, and Y. Ma, Dissecting polytopes: Landau singularities and
asymptotic expansions in 2 → 2 scattering, arXiv:2407.13738.

[33] S. Mandelstam, Cuts in the Angular Momentum Plane. 2, Nuovo Cim. 30 (1963) 1148–1162.

[34] I. G. Halliday, High-energy behavior at fixed angle in perturbation theory, Annals Phys. 28
(1964) 320–345.

12

http://xxx.lanl.gov/abs/1502.06595
http://xxx.lanl.gov/abs/2305.19768
http://xxx.lanl.gov/abs/1703.09692
http://xxx.lanl.gov/abs/2008.12310
http://xxx.lanl.gov/abs/2302.08955
http://xxx.lanl.gov/abs/2201.11669
http://xxx.lanl.gov/abs/2006.05510
http://xxx.lanl.gov/abs/2205.03345
http://xxx.lanl.gov/abs/2407.13738


P
o
S
(
L
L
2
0
2
4
)
0
3
2

Revealing Hidden Regions in Wide-Angle and Forward Scattering Stephen Jones

[35] P. V. Landshoff, Model for elastic scattering at wide angle, Phys. Rev. D 10 (1974)
1024–1030.

[36] J. Botts and G. F. Sterman, Hard Elastic Scattering in QCD: Leading Behavior, Nucl. Phys.
B 325 (1989) 62–100.

[37] S. Jones, A. Olsson, and T. Stone, Evaluating Parametric Integrals in the Minkowski Regime
without Contour Deformation, in Loops and Legs in Quantum Field Theory, 7, 2024.
arXiv:2407.06973.

[38] P. Bargiela, F. Caola, A. von Manteuffel, and L. Tancredi, Three-loop helicity amplitudes for
diphoton production in gluon fusion, JHEP 02 (2022) 153, [arXiv:2111.13595].

[39] Y. Ma, Identifying regions in wide-angle scattering via graph-theoretical approaches,
arXiv:2312.14012.

[40] J. Henn, B. Mistlberger, V. A. Smirnov, and P. Wasser, Constructing d-log integrands and
computing master integrals for three-loop four-particle scattering, JHEP 04 (2020) 167,
[arXiv:2002.09492].

[41] E. Gardi, F. Herzog, S. Jones, and Y. Ma, Regions in the Regge limit of two to two scattering,
– in preparation.

13

http://xxx.lanl.gov/abs/2407.06973
http://xxx.lanl.gov/abs/2111.13595
http://xxx.lanl.gov/abs/2312.14012
http://xxx.lanl.gov/abs/2002.09492

	Introduction
	Identifying Integrals with Pinch Singularities
	Evaluating Integrals with a Pinched Contour
	Uncovering Hidden Regions
	On-shell expansion for wide-angle scattering
	Regge-limit expansion for 2 2 scattering 

	Conclusion & Outlook

