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1. Introduction

Massive QCD form factors constitute basic building blocks for several important processes in
particle physics, such as heavy quark production at 𝑒+𝑒− colliders and Higgs or gauge boson decay
into heavy quarks. In order to match the precision of available experimental results, these form
factors must be computed at higher orders in the corresponding perturbative expansions. The two-
loop contributions were computed up to 𝑂 (𝜀0) about two decades ago in Refs. [2–5], where 𝜀 is the
dimensional regularization parameter, which is given by 𝜀 = (4− 𝐷)/2, where 𝐷 is the dimension.
This calculation was later extended to 𝑂 (𝜀) in [6] and to 𝑂 (𝜀2) in [7]. These higher orders in 𝜀 are
needed in order to combine them with the corresponding higher loop order calculations. The first
analytic results at three loops were obtained in the planar limit in Refs. [8–10]. The high energy
behaviour of three loop form factors was studied in Refs. [11, 12], and light-fermion contributions
were computed in Refs. [13, 14]. Analytic results in terms of harmonic polylogarithms [15] for the
solvable parts of quarkonic contributions (that is, contributions from diagrams containing a closed
fermion loop) were given in [16]. More recently, numerical results for all form factors, including
singlet and anomaly contributions, were obtained in Refs. [17–19]. Later, in Ref. [1], we used
the large moments method [20–22] to obtain analytic results for the quarkonic contributions to
all non-singlet form factors. In these proceedings, we report on the progress using this method
to compute the gluonic contributions, that is, the contributions stemming from diagrams with no
internal closed fermion loops.

The large moments method derives its name from the fact that it was first applied to the
computation of the factorizable parts of massive three-loop operator matrix elements and related
problems using a large number of Mellin moments [23–28]. This method can also be applied if we
have a large number of expansion coefficients, instead of Mellin moments, for a physical quantity
depending on a single variable. We will give a brief review of this method in Section 2 and focus
on concrete challenges of the large moments method related to the form factor project in Section 3.
In Section 4 we will present the progress we have made applying this method to the gluonic case,
which is considerably more involved than the quarkonic one. In Section 5, we give the conclusions.

2. Review of the method

The three-point functions with an external massive quark-anti-quark pair coupling to a vector,
axial-vector, scalar or pseudo-scalar boson are given (in that order) by

Γ
𝜇

𝑉
= 𝛾𝜇𝐹𝑉,1 (𝑠) −

𝑖

2𝑚
𝜎𝜇𝜈𝑞𝜈𝐹𝑉,2 (𝑠) , (1)

Γ
𝜇

𝐴
= 𝛾𝜇𝛾5𝐹𝐴,1 (𝑠) −

1
2𝑚

𝑞𝜇𝛾5𝐹𝐴,2 (𝑠) , (2)

Γ𝑆 = 𝑚𝐹𝑆 (𝑠) , (3)
Γ𝑃 = 𝑖𝑚𝐹𝑃 (𝑠) ; (4)

here 𝑠 = 𝑞2/𝑚2, where 𝑞 is the momentum of the boson and 𝑚 is the heavy quark mass. The
functions 𝐹𝑉,1, 𝐹𝑉,2, 𝐹𝐴,1, 𝐹𝐴,2, 𝐹𝑆 and 𝐹𝑃 are the so called form factors, which can be extracted
from Eqs. (1-4) by applying suitable projectors. The first steps of our calculation are standard:
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We generated the Feynman diagrams using QGRAF [29], and after introducing the aforementioned
projectors, we performed the Lorentz algebra using FORM [30, 31] and the color algebra using Color
[32]. After this, we end up with expressions for the form factors in terms of linear combinations of
scalar Feynman integrals, which we reduced to master integrals using Crusher [33]. At this point,
a system of first order differential equations obeyed by the master integrals can be obtained. In many
similar perturbative calculations, the corresponding systems of differential equations can be solved
in terms of closed form solutions involving harmonic polylogarithms and their generalizations
[15, 34–41]. Unfortunately, this is not always possible, which is often the case in calculations
involving massive particles, such as the present one. If we try to decouple the system using, e.g.,
the package OreSys [42], we find out that the resulting higher order differential equations are
not first order factorizable [43], leading to complicated solutions involving elliptic or even higher
trascendental functions, as well as iterated integrals over these functions, which can be difficult to
use for numerical evaluations and phenomenological purposes. For this reason, one is forced to
adopt a different tactic. In Refs. [17–19], the authors tackled the problem by using the differential
equations satisfied by the master integrals in order to find approximate numerical solutions to the
master integrals consisting of power and power-log expansions with numerical coefficients obtained
by matching the solutions at different values of 𝑠. In Ref. [1], we used a strategy also based on
differential equations, but instead of using the differential equations obeyed by the master integrals.
Using guessing algorithms [44], we derived recursion relations and differential equations from the
sequences of rational numbers multiplying the constants appearing in the expansion at 𝑥 = 1 of the
form factors, where,

𝑠 = − (1 − 𝑥)2

𝑥
. (5)

The form factors can be written as follows

𝐹𝐼 (𝑥) =
∑︁
𝑘,𝑙

C𝑘K𝑙𝐹𝐼;𝑘,𝑙 (𝑥), (6)

where 𝐼 labels any of the possible form factors, the K𝑙’s are any of the constants in the following
list

K𝑙 ∈
{
1, 𝜁2, 𝜁3, ln(2)𝜁2, 𝜁

2
2 , ln2(2)𝜁2, Li4

(
1
2

)
, ln4(2), 𝜁2𝜁3, 𝜁5

}
, (7)

where the 𝜁𝑘 = 𝜁 (𝑘), i.e., the Riemann 𝜁 function evaluated at integer values, and the C𝑘’s are color
factors, which at three loops can take any of the following values

C𝑘 ∈
{
𝐶2

𝐴𝐶𝐹 , 𝐶𝐴𝐶
2
𝐹 , 𝐶

3
𝐹 , 𝑛𝑙𝑇𝐹𝐶

2
𝐹 , 𝑛𝑙𝑇𝐹𝐶𝐹𝐶𝐴, 𝑛

2
𝑙𝑇

2
𝐹𝐶𝐹 , 𝑛𝑙𝑛ℎ𝑇

2
𝐹𝐶𝐹 , 𝑛

2
ℎ𝑇

2
𝐹𝐶𝐹 ,

𝑛ℎ𝑇𝐹𝐶
2
𝐹 , 𝑛ℎ𝑇𝐹𝐶𝐹𝐶𝐴

}
, (8)

with

𝐶𝐴 = 𝑁𝑐, 𝐶𝐹 =
𝑁2
𝑐 − 1
2𝑁𝑐

, 𝑇𝐹 =
1
2
, (9)

where 𝑁𝑐 is the number of colors, while 𝑛𝑙 and 𝑛ℎ are the number of light and heavy quarks,
respectively. The first three color factors in (8) are the ones appearing in the gluonic case, while the
remaining ones correspond to the quarkonic case.
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The split in terms of the constants in Eq. (6), is done in such a way that the functions 𝐹𝐼;𝑘,𝑙 (𝑥)
can be expanded around 𝑥 = 1 (which corresponds to 𝑠 = 0) as follows

𝐹𝐼;𝑘,𝑙 (𝑥) =
∞∑︁
𝑖=0

𝑟
(𝑘,𝑙)
𝐼;𝑖 (0)𝑦𝑖 , (10)

where 𝑦 = 1 − 𝑥, and the 𝑟
(𝑘,𝑙)
𝐼;𝑖 (0) are rational numbers. Alternatively, we may also work with

expansions around 𝑠 = 0, in which case, we will have equations (6) and (10) with 𝑥 and 𝑦 replaced
by 𝑠, and with different sequences of rational numbers in (10). In the quarkonic case, and more
specifically, in the case of the last two color factors in (8), we were able to generate up to 8000
expansion coefficients by using the large moments method; for details we refer to Section 3. Using
this information, we follow the guess and solve strategy that has been exemplified for the first time
rigorously in particle physics in [28]. More precisely, using the 8000 coefficients, we succeeded
in guessing recursion relations as well as differential equations associated with these sequences of
rational numbers using the Sage package ore_algebra [44]. These recursions and differential
equations were solvable for all but three of the constants in (7), namely,

{1, 𝜁2, 𝜁3}. (11)

In all other cases, we solved the recursions by using the summation package Sigma [45]
containing the algorithms introduced in [46, 47] and the references therein. Finally, we performed the
infinite sum for the corresponding constants using Sigma and the package HarmonicSums [15, 34–
41]. In the case of the constants in (11), since we cannot solve the corresponding recursions, we
proceeded as follows:

1. We used the recursion relations to generate a much larger number of expansion coefficients
for the expansion at 𝑥 = 1. This allows us to evaluate this expansion with very high precision
even at values very close to 𝑥 = 0.

2. An ansatz in terms of a power-log expansion at 𝑥 = 0 was inserted in the differential equation
for each constant in (11). This allowed us to express all coefficients of the expansion at 𝑥 = 0
in terms of only a few of them (as many as the order of the differential equation).

3. The expansions at 𝑥 = 1 and 𝑥 = 0 were matched at a point close to zero, and the coefficients
left from the previous step were evaluated numerically with very high precision, making it
possible to determine all of them in terms of known constants using the PSLQ algorithm
[48, 49].

4. The same procedure was repeated for the expansions at the 2-particle and the 4-particle
thresholds, albeit in these cases we worked with the expansions at 𝑠 = 0, and the expansions
at 𝑠 = 4 and 𝑠 = 16 were given in terms of the variables

√
4 − 𝑠 and

√
16 − 𝑠, respectively.

In the case of the 2-particle threshold, we also used the PSLQ algorithm to determine the
coefficients, but new constants needed to be introduced, which were chosen among a few of
the coefficients themselves.
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We followed these steps for all of the form factors, allowing us to cover the full kinematic range in
𝑠. In Ref. [1], we even went a bit further, and after combining all the results for all the constants in
(6), we repeated what we did with the sequences of rational numbers associated to the expansions
at 𝑥 = 1, but now with the resulting sequences of rational numbers in the power-log expansions at
𝑥 = 0, and again obtained the corresponding recursions relations, several of which could be solved
and summed with Sigma, leading to new analytic results at that expansion point.

3. Challenges arising in the large moments method

In the following we present the basic idea of the large moments method [20] and elaborate
on improvements that supplement the ideas given in [1, 16, 21, 22]. Starting with a physical
expression1 �̂�(𝑥) in terms of Feynman integrals, the IBP approach utilizes integration by parts
(IBP) methods [33, 50, 51] and returns an alternative representation

�̂�(𝑥) = 𝑞1(𝑥)𝐼1(𝑥) + · · · + 𝑞𝑖 (𝑥)𝐼𝑖 (𝑥) + · · · + 𝑞𝜆(𝑥)𝐼𝜆(𝑥) (12)

in terms of so-called master integrals 𝐼𝑖 (𝑥) and rational functions 𝑞𝑖 (𝑥) ∈ K(𝑥) where K = K′(𝜀)
is a rational function field over a field K′ containing the rational numbers as subfield; here 𝑥 stands
for any variable and can take over the role of 𝑥, 𝑦 := 1 − 𝑥 or 𝑠 as introduced in (5). While the
input expression may contain millions of such integrals, the output consists of much less integrals;
for a concrete calculation of the form factor project one gets, e.g., 𝜆 = 2506 such master integrals.
In addition, one obtains a coupled system of first-order linear differential equations in terms of the
unknown master integrals. Under the assumption that the master integrals 𝐼𝑖 (𝑥) have a power series
representation (or Laurent series representation) in 𝑥, we can apply our large moments method, that
can be split into two parts:

1. Compute a large number 𝜈 of values, say 𝜈 = 8000 for the quarkonic or 𝜈 = 20000 for the
gluonic case, of each master integral, i.e., compute 𝐼𝑖 (𝑛) for 𝑛 = 0, . . . , 𝜈 s.t.

𝐼𝑖 (𝑥) =
𝜈∑︁

𝑛=0
𝐼𝑖 (𝑛)𝑥𝑛 +𝑂 (𝑥𝜈+1). (13)

2. Plug these expansions (13) into (12) and derive the first 𝜈 coefficients of the series expansion

�̂�(𝑥) =
𝜈∑︁

𝑛=0
𝑃(𝑛)𝑥𝑛 +𝑂 (𝑥𝜈+1). (14)

Remark: Since 𝐼𝑖 (𝑥) and �̂�(𝑥) depend also on the dimensional parameter 𝜀, also 𝐼𝑖 (𝑛) and 𝑃(𝑛)
depend on it. In a naive approach one may look for 𝑃(𝑛) and 𝐼𝑖 (𝑛) in K = K′(𝜀). However, in
applications from particle physics, one seeks not only for an expansion in 𝑥 but also in 𝜀. For
the three-loop case, the 𝜀-expansion of �̂�(𝑥) usually starts at 1/𝜀3 and one is interested in the
coefficients up to the constant term.

1In the moment we suppress the dependence on the dimensional parameter 𝜀.
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In step 1 uncoupling algorithms implemented in the package OreSys [42] are used to obtain
scalar linear differential equations in terms of the unknown master integrals 𝐼𝑖 of the form

𝛼0(𝑥)𝐼𝑖 (𝑥) + 𝛼1(𝑥)𝐷𝑥 𝐼𝑖 (𝑥) + · · · + 𝛼𝜌 (𝑥)𝐷𝜌
𝑥 𝐼𝑖 (𝑥) = 𝑟 (𝑥) (15)

where 𝜌 ∈ Z≥0 is relatively small, say≤ 15, the 𝛼𝑖 (𝑥) ∈ K[𝑥] are polynomials in 𝑥 and 𝑟 (𝑥) is given
in terms of other master integrals like (12); more precisely, 𝑟 (𝑥) is again of the form (12) where
one can derive the first 𝜈 coefficients of the 𝑥-expansions of the occurring master integrals either
by different methods, like symbolic summation [45, 52] or by the large moments method applied
recursively. Given these expansions, we compute (as in step 2 described in more details below) the
𝑥-expansion of 𝑟 (𝑥), i.e.,

𝑟 (𝑥) =
𝜈∑︁

𝑛=0
𝑟 (𝑛)𝑥𝑛 +𝑂 (𝑥𝜈+1).

Then by plugging in (13) into (15) and performing coefficient comparison w.r.t. 𝑥𝑛 one obtains a
linear recurrence of the form

𝛽0(𝑛)𝐼𝑖 (𝑛) + 𝛽1(𝑛)𝐼𝑖 (𝑛 + 1) + · · · + 𝛽𝑢 (𝑛)𝐼𝑖 (𝑛 + 𝑢) = 𝑟 (𝑛) (16)

with polynomials 𝛽𝑖 (𝑥) ∈ K[𝑥] and 𝑢 ∈ Z≥0. Given this representation and the first 𝑢 initial values
(coming from other methods like symbolic summation or integration [52]), one can now compute
efficiently (in linear time) the coefficients 𝐼𝑖 (0), . . . , 𝐼𝑖 (𝜈).

Remark: Note that K = K′(𝜀), i.e., the coefficients 𝛽𝑖 also depend on 𝜀. Using the algorithms
described in [20, 53] one can derive in addition the desired 𝜀-expansions of the coefficients 𝐼𝑖 (𝑛)
up to the desired order. In [1, 16, 20–22] we address various aspects of step 1 to reduce the orders
𝜌 and 𝑢 in (15) and (16), respectively, and elaborate on various tactics to extract the 𝜀-expansions
in combination with the different uncoupling algorithms from [42].

In the following we will focus on step 2 of the method and present various improvements to gain
significant speed-ups that are relevant to tackle the gluonic and quarkonic form factors. As indicated
aboe, these improvements play also a crucial role to derive the 𝑥-expansion (and 𝜀-expansion) of
𝑟 (𝑥) in step 1 efficiently.

Recently, we dealt in our gluonic form factor calculations with huge expressions of the form (12).
For a typical example we got an expression with 𝜆 = 2506 master integrals which required about
106 GB memory in Mathematica. As it turns out, the expressions 𝑞𝑖 (𝑥) itself are split into many
smaller rational functions, say 𝜇 = 1213 elements. One option would be to compute an 𝑥-expansion
for each subexpression which would result in total to around a million expansions. To reduce the
number of such expansions significantly, we first merged each 𝑞𝑖 (𝑥) to one rational function by the
divide-and-conquer strategy illustrated in Fig. 1. While the combining step in the inner recursions
work rather efficiently using Mathematica (i.e., MyCancel is replaced by Mathematica’s command
Cancel or Together), in the outermost calls the expressions get very big. An extra complication
is that the arising objects are not only rational functions in 𝑥 but also depend on the dimensional
parameter 𝜀. This makes the gcd calculations extremely costly. In the final step of such a calculation
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𝑞𝑖 (𝑥)

| |

𝑎1(𝑥)
𝑏1(𝑥)

+ · · · +
𝑎 ⌊ 𝜇

2
⌋ (𝑥)

𝑏 ⌊ 𝜇
2
⌋ (𝑥)︸                       ︷︷                       ︸+

𝑎 ⌊ 𝜇
2
⌋
+1(𝑥)

𝑏 ⌊ 𝜇
2
⌋
+1(𝑥)

+ · · · +
𝑎𝜇 (𝑥)
𝑏𝜇 (𝑥)︸                          ︷︷                          ︸

↓ ↓
... MyTogether

... Divide &
Conquer

↓ ↓
𝐴1(𝑥)
𝐵1(𝑥)

+ 𝐴2(𝑥)
𝐵2(𝑥)

| |
𝐴1(𝑥)𝐵2(𝑥) + 𝐴2(𝑥)𝐵1(𝑥)

𝐵1(𝑥)𝐵2(𝑥)
| | MyCancel

𝐴(𝑥)
𝐵(𝑥) gcd(𝐴, 𝐵) = 1

Figure 1: MyTogether

one has to deal, e.g., with the situation

𝐴′ (𝑥,𝜀)=︷                                      ︸︸                                      ︷
𝐴1(𝑥, 𝜀)𝐵2(𝑥) + 𝐴2(𝑥, 𝜀)𝐵1(𝑥, 𝜀)

𝐵1(𝑥, 𝜀)𝐵2(𝑥, 𝜀)︸               ︷︷               ︸
𝐵′ (𝑥,𝜀)

deg𝑥 (𝐴′) ≤ 1422
deg𝑥 (𝐵′) ≤ 1405.

Then the challenge is to remove common factors in 𝐴′ and 𝐵′ in reasonable time. In our setting, it
turns out that 𝐵′(𝑥, 𝜀) factors sufficiently nice. E.g, we obtain factorizations of the form

𝐵′(𝑥, 𝜀) = factor1(𝑥, 𝜀)factor2(𝑥, 𝜀) . . . factor71(𝑥, 𝜀), (17)

where the first factors are linear and the most complicated irreducible factors are of the form

48𝑥4𝜀6 − 9792𝑥3𝜀6 + 19296𝑥2𝜀6 − 19008𝑥𝜀6 + 9504𝜀6 + 1006𝑥4𝜀5 + 9264𝑥3𝜀5

− 16896𝑥2𝜀5 + 15264𝑥𝜀5 − 7632𝜀5 − 686𝑥4𝜀4 − 4136𝑥3𝜀4 + 7352𝑥2𝜀4

− 6432𝑥𝜀4 + 3216𝜀4 + 95𝑥4𝜀3 + 2416𝑥3𝜀3 − 6664𝑥2𝜀3 + 8496𝑥𝜀3

− 4248𝜀3 − 32𝑥4𝜀2 − 1270𝑥3𝜀2 + 4438𝑥2𝜀2 − 6336𝑥𝜀2 + 3168𝜀2

+ 25𝑥4𝜀 + 330𝑥3𝜀 − 1266𝑥2𝜀 + 1872𝑥𝜀 − 936𝜀 − 4𝑥4 − 32𝑥3 + 128𝑥2 − 192𝑥 + 96.

In order to detect candidates that may cancel, we evaluated 𝐴′(𝑥, 𝜀), e.g., at 𝜀 = 1234 and use the
fact that

factor(𝑥, 1234) ∤ 𝐴(𝑥, 1234) =⇒ factor(𝑥, 𝜀) ∤ 𝐴(𝑥, 𝜀).
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Thus we may exclude all factors that cancel by performing much more efficient operations in K′ [𝑥]
instead of K′ [𝑥, 𝜀]. For the remaining candidates we carry out polynomial division

𝐴(𝑥, 𝜀) = 𝑞(𝑥, 𝜀) factor(𝑥, 𝜀) + 𝑟 (𝑥, 𝜀).

If 𝑟 (𝑥, 𝜀) = 0, we remove the factor from 𝐵 and replace 𝐴 by 𝑞. If 𝑟 (𝑥, 𝜀) ≠ 0 (which never
happened), we keep the factor. Performing our divide and conquer strategy MyTogether with this
cancellation tactic MyCancel we could compress the original expression �̂�(𝑥) from 106 GB to
5.7 GB. Note: (1) Applying the Mathematica command Together or Cancel to such a reduced
expression 𝑞𝑖 (𝑥) where the numerator and denominator are already coprime, it takes around 10
hours that Mathematica observes that nothing can be canceled. In a nutshell, utilizing the specific
structure that the denominators factor nicely (see (17)) was essential to carry out the compactification
in reasonable time. (2) As elaborated in [54] there are many advanced algorithms available to
perform rational function arithmetic for general problems. But for our concrete situation the above
approach seems to be rather optimal.

Finally, we take each simplified term in (12) and compute the expansions

𝐴(𝑥)
𝐵(𝑥) 𝐼 (𝑥) =

𝜈∑︁
𝑛=0

𝑐(𝑛)𝑥𝑛 +𝑂 (𝑥𝜈+1) (18)

in parallel to get the final expansion (14). Due to step 1 we may assume that we are given the
expansion (13) in 𝑥 where the coefficients 𝐼𝑖 (𝑛) are also expanded up to a certain order in 𝜀. Thus
in order to obtain the expansion in (18), we need to compute the expansion of 𝐴(𝑥 )

𝐵(𝑥 ) in 𝑥 (and also
in 𝜀). In our three-loop case the expansion of the master integrals start at order 1/𝜀3 und thus the
𝜀-expansion of 𝐴(𝑥 )

𝐵(𝑥 ) has to be computed only up order 𝜀3 to derive the desired constant term 𝜀0

in (18). This task can be done by simple Taylor expansion using the Mathematica command Series.
Afterwards we carry out the expansion in 𝑥 to the few coefficients of the 𝜀-expansion. In short, it
remains to compute an 𝑥-expansion of expressions of the form (18) with 𝐴(𝑥), 𝐵(𝑥) ∈ K′ [𝑥] being
free of 𝜀 and where the first 𝜈 + 1 coefficients 𝐼𝑖 (𝑛) ∈ K′ in (13) (free of 𝜀) are given explicitly. As
it turns out, the standard command Series is hopeless for large values 𝜈. As a consequence we
separate the task and look first for an expansion of

1
𝐵(𝑥) =

𝜈∑︁
𝑛=0

ℎ(𝑛)𝑥𝑛 +𝑂 (𝑥𝜈+1). (19)

Here we may use the classical result (see, e.g., [55]) that the sequence ℎ(𝑛) can be computed by
a recurrence with constant coefficients that is determined by the denominator 𝐵(𝑥). However, a

8



P
o
S
(
L
L
2
0
2
4
)
0
3
1

Challenges for analytic calculations of the massive three-loop form factors A. De Freitas

typical example is

𝐵(𝑥) =

=𝐹lin (𝑥 )︷                                              ︸︸                                              ︷
(𝑥 − 2)26(𝑥 − 1)19𝑥32(𝑥 + 1)2(2𝑥 − 1)2 ×

×(𝑥2 − 22𝑥 + 22)9(𝑥2 − 15𝑥 + 15)10(𝑥2 − 6𝑥 + 6)9(𝑥2 − 5𝑥 + 5)10(𝑥2 − 2𝑥 + 2)21

(𝑥2 − 𝑥 + 1)19(𝑥2 + 𝑥 − 1)10(𝑥2 + 2𝑥 − 2)10(𝑥2 + 3𝑥 − 3)11(𝑥2 + 4𝑥 − 4)9

(2𝑥2 + 3𝑥 − 3)9(3𝑥2 − 14𝑥 + 14)12(3𝑥2 − 10𝑥 + 10) (3𝑥2 − 8𝑥 + 8)11

(3𝑥2 − 4𝑥 + 4)8(3𝑥2 − 2𝑥 + 2)9(3𝑥2 + 𝑥 − 1)8(3𝑥2 + 2𝑥 − 2)10(4𝑥2 + 3𝑥 − 3)9

(5𝑥2 − 18𝑥 + 18)10(5𝑥2 − 16𝑥 + 16)11(5𝑥2 − 2𝑥 + 2)9(5𝑥2 + 12𝑥 − 12)7

(7𝑥2 − 6𝑥 + 6)9(11𝑥2 + 2𝑥 − 2)9(27𝑥2 + 32𝑥 − 32)9(29𝑥2 − 2𝑥 + 2)8

(99𝑥2 − 238𝑥 + 238)10(𝑥4 − 8𝑥3 + 28𝑥2 − 40𝑥 + 20) (𝑥4 − 6𝑥3 + 18𝑥2 − 24𝑥 + 12)8

(𝑥4 − 4𝑥3 + 5𝑥2 − 2𝑥 + 1)9(𝑥4 + 8𝑥3 − 32𝑥2 + 48𝑥 − 24)8(3𝑥4 + 2𝑥3 − 6𝑥2 + 8𝑥 − 4)8

(5𝑥4 − 152𝑥3 + 272𝑥2 − 240𝑥 + 120)10(5𝑥4 − 29𝑥3 + 27𝑥2 + 4𝑥 − 2)9

(5𝑥4 + 16𝑥3 − 40𝑥2 + 48𝑥 − 24)12(5𝑥4 + 184𝑥3 − 352𝑥2 + 336𝑥 − 168)9

(7𝑥4 − 31𝑥3 + 25𝑥2 + 12𝑥 − 6)10(9𝑥4 − 43𝑥3 + 37𝑥2 + 12𝑥 − 6)8

(9𝑥4 − 11𝑥3 + 15𝑥2 − 8𝑥 + 4)8(9𝑥4 + 29𝑥3 − 15𝑥2 − 28𝑥 + 14)8

(9𝑥4 + 80𝑥3 − 12𝑥2 − 136𝑥 + 68)9(10𝑥4 + 9𝑥3 − 103𝑥2 + 188𝑥 − 94)9

(12𝑥4 − 85𝑥3 + 115𝑥2 − 60𝑥 + 30)10(13𝑥4 − 16𝑥3 + 40𝑥2 − 48𝑥 + 24)11

(23𝑥4 + 16𝑥3 − 40𝑥2 + 48𝑥 − 24)11(26𝑥4 − 83𝑥3 − 19𝑥2 + 204𝑥 − 102)10

(60𝑥4 − 79𝑥3 − 215𝑥2 + 588𝑥 − 294)8(𝑥6 − 6𝑥5 + 11𝑥4 − 8𝑥3 − 𝑥2 + 6𝑥 − 2)9︸                                                                                                  ︷︷                                                                                                  ︸
=𝐹nonlin (𝑥 )

with degree 1393. Consequently, the defining recurrence for ℎ(𝑛) has also degree 1393 and one has
to compute first 1393 initial values to determine the remaining values efficiently by this recurrence.
To derive these values, e.g., by a Taylor expansion is by far too slow. Thus we proceed differently
by applying first partial fraction decomposition. Since also here the internal Mathematica version
is too slow, we derived our own version by combining well known techniques in a clever way. First,
we compute polynomials 𝑠(𝑥) and 𝑡 (𝑥) such that the Bezout relation

1 = 𝑠(𝑥)𝐹nonlin(𝑥) + 𝑡 (𝑥)𝐹lin(𝑥) (20)

holds. Here the extended Euclidean algorithm seems to be the first choice. Nevertheless, it turns
out that solving the underlying linear system (related to the Sylvester matrix) is superior (by using
efficient linear system solving). Using the found relation (20) and multiplying it with 1

𝐹lin (𝑥 ) 𝐹nonlin (𝑥 )
yield the partial decomposition

1
𝐵(𝑥) =

1
𝐹lin(𝑥) 𝐹nonlin(𝑥)

=
𝑠(𝑥)
𝐹lin(𝑥)

+ 𝑡 (𝑥)
𝐹nonlin(𝑥)

.

Next, we perform the classical method (by evaluation) to derive the partial fraction decomposition
of 𝑠 (𝑛)

𝐹lin (𝑛) . For the non-linear contribution we proceed as above by computing the corresponding
Bezout relations via linear algebra. This finally leads to2

1
𝐵(𝑥) =

𝑎1(𝑥)
(𝑥 − 2)26 + 𝑝2(𝑥)

(𝑥 − 1)19 + · · · + 𝑝54(𝑥)
(𝑥6 − 6𝑥5 + 11𝑥4 − 8𝑥3 − 𝑥2 + 6𝑥 − 2)9 .

2Precisely these partial fraction decomposition techniques turned out to be useful in the summation packageSigma [45]
for simplifying sums [46] that arise as solutions in linear difference equations [47].
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In this form we finally utilize the method of recurrences with constant coefficients (with order at
most 6) to calculate the series expansions of each term in parallel and finally to get the coefficients
ℎ(𝑛) in (19). To this end, we can carry out the Cauchy products to get the expansions

𝐴(𝑥)
𝐵(𝑥) 𝐼 (𝑥) =

( 𝜈∑︁
𝑛=0

𝑝(𝑛)𝑥𝑛
) ( 𝜈∑︁

𝑛=0
ℎ(𝑛)𝑥𝑛

)
︸                             ︷︷                             ︸

Cauchy

( 𝜈∑︁
𝑛=0

𝐼 (𝑛)𝑥𝑛
)

︸                                                ︷︷                                                ︸
Cauchy

+𝑂 (𝑥𝜈+1) =
𝜈∑︁

𝑛=0
𝑐(𝑛)𝑥𝑛 +𝑂 (𝑥𝜈+1).

Also this task is challenging and further improvements can be applied as described, e.g. in [1].

4. The gluonic case

We will now discuss the progress we have made so far in the gluonic case, which requires
the calculation of a much larger number of expansion coefficients at 𝑠 = 0. We have been able to
compute enough coefficients to obtain the recursion relations asscociated to the following constants{

𝜁2𝜁3, 𝜁5, 𝜁3, ln(2)𝜁2, 𝜁
2
2 , ln2(2)𝜁2, Li4

(
1
2

)
, ln4(2)

}
, (21)

of these, only the recursions associated to 𝜁2𝜁3 and 𝜁5 turned out to be solvable. In the other
cases, a new feature appears compared with the quarkonic case: There are new singularities in the
differential equations, which forces us to also find power-log expansions at these singularities, as
well as expansions around other points. Specifically, the singularities of the differential equations
associated to the constants 𝜁2

2 , ln2(2)𝜁2, Li4
(

1
2

)
and ln4(2) are located at

𝑠 = {−4,−1, 3, 4} . (22)

In the case of the constant ln(2)𝜁2, there are also singularities at 𝑠 = −1/2 and 𝑠 = 1 in addition.
We will now take the opportunity to explain in more detail the different steps of the calculation.

4.1 High energy expansion

As in the quarkonic case, we derived differential equations for the 𝐹𝐼;𝑘,𝑙’s, not only in the
variable 𝑠, but also in the variable 𝑦 = 1− 𝑥, from which we can then obtain the corresponding high
energy expansions around 𝑥 = 0. In some cases, the indicial equation associated to the differential
equation has only integer solutions, while in other cases, also half-integer solutions are present. In
the former cases, we then have power-log expansions in the standard form

𝐹𝐼;𝑘,𝑙 (𝑥) =
2∑︁
𝑖=0

∞∑︁
𝑗=−2

𝑐𝐼;𝑘,𝑙 (𝑖, 𝑗)𝑥 𝑗 ln𝑖 (𝑥) , (23)

while in the latter cases, we must use
√
𝑥 as the expansion variable, so the expansions are given by

𝐹𝐼;𝑘,𝑙 (𝑥) =
2∑︁
𝑖=0

∞∑︁
𝑗=−2

𝑐𝐼;𝑘,𝑙 (𝑖, 𝑗) (
√
𝑥) 𝑗 ln𝑖 (𝑥). (24)
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After inserting either (23) or (24) in the differential equations in 𝑥, we obtain relations among the
coefficients 𝑐𝐼;𝑘,𝑙 (𝑖, 𝑗), leaving only a few of them undetermined. As we explained in Section 2, these
undetermined coefficients can then be obtained numerically using matching conditions, see Ref.
[1] for more details. However, we cannot match the expansion at 𝑥 = 0 directly with the expansion
at 𝑠 = 0 (𝑥 = 1), since, for example, in the case of the last four constants in (21), the singular points
𝑠 = −1 and 𝑠 = −4 correspond in 𝑥 to 𝑥 = 1

2

(
3 −

√
5
)
≈ 0.38 and 𝑥 = 3− 2

√
2 ≈ 0.17, respectively.

In principle, we could try to get expansions around those two points in 𝑥, but the corresponding
differential equations blow up due to the square roots, and become impractical. We therefore find
successive expansions at different points in 𝑠, until we reach a value of 𝑠 large enough that we
can match the corresponding expansion with the one at 𝑥 = 0. We start by finding an expansion
around the singular point 𝑠 = −1. In the case of the four constants in (21) under consideration, this
expansion will be of the form

𝐹
(−1)
𝐼;𝑘,𝑙 (𝑠) =

∞∑︁
𝑗=−3

𝑐
(−1)
𝐼;𝑘,𝑙 (0, 𝑗)𝑧

𝑗 , (25)

where 𝑧 =
√

1 + 𝑠. We see that in this case we do not get logarithms and the singularity is manifested
by the negative powers in 𝑧. As we will be doing for all expansions, we find a differential equation
in 𝑧 from the one in 𝑠,3 then use this differential equation to find relations among the 𝑐

(−1)
𝐼;𝑘,𝑙 (𝑖, 𝑗)’s

and the compute the coefficients left undetermined by these relations by matching with the previous
expansion (in this case, the one at 𝑠 = 0) using a truncated version of the expansions (in this and
other matchings, we used 5000 terms in the expansions, per power of the log, whenever logs were
present). The radius of convergence of this expansion (25) is 1, which means we need to obtain an
expansion around 𝑠 = −2, which will be of the form

𝐹
(−2)
𝐼;𝑘,𝑙 (𝑠) =

∞∑︁
𝑗=0

𝑐
(−2)
𝐼;𝑘,𝑙 (0, 𝑗)𝑧

𝑗 , (26)

with 𝑧 = 𝑠 + 2. Again, the coefficients in (26) are obtained by matching the expansions at 𝑠 = −1
and 𝑠 = −2, as we did with the expansions at 𝑠 = 0 and 𝑠 = −1. Notice the absence of logs or
negative powers of 𝑧 in (26), which is expected since 𝑠 = −2 is not a singular point. Since the
closest singularity is at 𝑠 = −1 the radius of convergence of the expansion at 𝑠 = −2 is again 1. We
then reapeat the process at 𝑠 = −3, where, again, the radius of convergence is 1 and the expansion
is similar to (26). We then match the expansion at 𝑠 = −3 with an expansion at 𝑠 = −4, which is of
the form

𝐹
(−4)
𝐼;𝑘,𝑙 (𝑠) =

1∑︁
𝑖=0

∞∑︁
𝑗=−2

𝑐
(−4)
𝐼;𝑘,𝑙 (𝑖, 𝑗)𝑧

𝑗 ln𝑖 (𝑧), (27)

where 𝑧 = 𝑠 + 4. After the point 𝑠 = −4, all expansions will be regular and similar to (26). Since
the nearest singularity is 𝑠 = −1, the radius of convergence of the expansion (27) is 3, so we can
now match with an expansion at 𝑠 = −7. The radius of convergence of this expansion will also be
3, and we can then match it with an expansion at 𝑠 = −10, which radius of convergence will be

3One of the solutions to the indicial equation of this differential equation is 1/2. Hence the square root in the change
of variables from 𝑧 to 𝑠. This usually happens (although not always) around singular points.
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ŝ

-1-2-3-4-7-10-16

Figure 2: Radii of convergence of the successive points around which expansions are matched in the
case of the last four constants in (21). The points 𝑠 = −1 and 𝑠 = −4, shown in red, are singularities of
the differential equations.

6, and can therefore be matched with an expansion at 𝑠 = −16, and so on. We see that since the
closest singularity for 𝑠 < −4 is the singularity at 𝑠 = −4, we can match expansions with radii of
convergence that increase geometrically by a factor of two. We therefore do consecutive matchings
of expansions at the following points:

𝑠 = {−196, −100, −52, −28, −16, −10, −7, −4, −3, −2, −1} , (28)

in reverse order. A few of these points, together with their corresponding convergence disks are
shown in Fig. 2. In the case of the constant ln(2)𝜁2, we also need to match at 𝑠 = −1/2 and
𝑠 = −3/2.

The point 𝑠 = −196 corresponds in 𝑥 to 𝑥 =

(
99 + 70

√
2
)−1

≈ 0.005, which is small enough to
allow us to match this expansion with the expansion at 𝑥 = 0. We did this for all cases available
and found all coefficients left unconstrained by the differential equations with a precision of around
a thousand digits. This was enough to obtain all coefficients using the PSLQ algorithm in terms
of known constants, which in the cases under consideration were limited to the set {1, 𝜋, 𝜁2}, as
expected since we are dealing at the moment with expansions associated to the weight 4 constants
in (21), and therefore, the weight of any new constants on top of them cannot be higher than 2. Odd
powers of 𝜋 only appear in the imaginary parts of the coefficients, which should cancel in the final
result for the form factors.

4.2 The 𝑠 = 4 threshold

Let us focus again on the last four constants in (21). Since the differential equations have
singularities at 𝑠 = 3 and 𝑠 = 4, we again need to match consecutive expansions until we reach the
𝑠 = 4 threshold. As we already mentioned, the radius of convergence of the expansion around 𝑠 = 0

12
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ŝ

-1 1 2 3 4

ŝ

-1 − 1
2

1
2 1 3

2 2 5
2 3 7

2 4

Figure 3: Radii of convergence of the successive points around which expansions are matched in order
to obtain the threshold expansion at 𝑠 = 4 (shown in red). The point 𝑠 = 3 (shown in blue) is singular
according to the differential equations, but the singularity disappears due to initial conditions. Left panel:
radii of convergence of the points used in the case of the last four constants in (21). Right panel: radii of
convergence of the points used in the case of ln(2)𝜁2.

is 1, so we need to match with an expansion around 𝑠 = 1. The radius of convergence of the latter
expansion is now 2, since the closer singularity is at 𝑠 = −1, so in principle we could match this
expansion directly with the one at 𝑠 = 3. However, we found better precision by matching first with
an expansion around 𝑠 = 2 before reaching 𝑠 = 3. The expansions around 𝑠 = 3 are of the form

𝐹
(3)
𝐼;𝑘,𝑙 (𝑠) =

∞∑︁
𝑗=−3

𝑐
(3)
𝐼;𝑘,𝑙 (0, 𝑗)𝑧

𝑗 , (29)

where 𝑧 =
√

3 − 𝑠. We see that the singularity is manifested in terms of negative powers of 𝑧.
However, it is interesting to notice that although the differential equations allow us to search for
such type of solutions, once we match with the expansion at 𝑠 = 2, all coefficients of the negative
powers in (29) turn out to be effectively zero, and therefore the singularity disappears.

Finally, we match the expansions at 𝑠 = 3 and 𝑠 = 4. The latter has the following form

𝐹
(4)
𝐼;𝑘,𝑙 (𝑠) =

1∑︁
𝑖=0

∞∑︁
𝑗=−3

𝑐
(4)
𝐼;𝑘,𝑙 (𝑖, 𝑗)𝑧

𝑗 ln𝑖 (𝑧), (30)

where 𝑧 =
√

4 − 𝑠. All of the expansions from 𝑠 = 1 to 𝑠 = 4 were matched using 10000 expansion
terms (per power of the log). These expansion points and their corresponding convergence disks are
depicted in left panel of Fig. 3. On the right panel, we show the corresponding convergence disks
in the case of the constant ln(2)𝜁2, where we also have a singularity at 𝑠 = 1. In this case, in order
to improve the precision of the expansion coefficients at 𝑠 = 4, we matched successive expansions
at every integer and haf-integer value of 𝑠. The corresponding radii of convergence are shown on
the right panel of Fig. 3.

We were able to determine the coefficients of the expansions at 𝑠 = 4 with a precision of around
1400 decimal places. Again, we tried to use the PSLQ algorithm to try to express the coefficients in
terms of known constants. Much like in the quarkonic case, not all coefficients could be determined
this way, but we could reduce the number of undetermined coefficients to just 5 in total in the case
of the last four constants in (21).

13
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5. Conclusions

We have made substantial progress applying the large moments method to the calculation
of massive three-loop non-singlet QCD form factors. This method allows us to find recursions
and differential equations associated to the constants appearing in the corresponding low energy
expansions. The recursion relations can then be used to obtain an even larger number of coefficients
than the ones used to derive them, which allows us to get very precise numerical evaluations within
the radius of convergence of the expansions. The differential equations can then be used to obtain
expansions at other points, which can be expressed in terms of just few of the coefficients. These
coefficients can then be computed numerical by matching the expansions at intermediate points. In
this way, we were able to find expansions around all kinematic points of interest. In the gluonic case,
this procedure turns out to be somewhat more complicated than in the quarkonic case, since the
differential equations have additional spurious singularities (they must cancel in the final physical
result), which forces us to obtain successive expansions at many intermediate points. So far we have
been able to apply this method to five of the constants appearing the expansion at 𝑠 = 0 (𝑥 = 1),
which required only 1000 coefficients in the case of the last four constants in (21), around 6000
coefficients in the case of ln(2)𝜁2, and no more than 14500 coefficients in the case of 𝜁3. The
remaining constants require a much larger number of coefficients, which are being computed at the
moment. Once we obtain them, we will be able to proceed as in the other cases.

Acknowledgment. This work has been supported in part by the Austrian Science Fund (FWF)
10.55776/P33530.
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