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Causality and differential cross sections
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The artificial separation between loop and tree-level contributions is at the origin of most of the
technical difficulties in quantum field theory at high perturbative orders. The original motivation
for the loop-tree duality (LTD), as explained in the seminal paper by Stefano Catani, was to
circumvent this separation by opening the loops to tree-level objects in such a way that both
contributions would be treated on the same footing. One of the unexpected properties of LTD
is that the integrand of scattering amplitudes becomes manifestly causal. By exploiting this
physically motivated property, we propose vacuum amplitudes in LTD as the optimal building
blocks to assemble theoretical predictions for differential cross sections at high-energy colliders.
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1. Causality in Feynman diagrams

Scattering amplitudes in the Feynman representation are constructed from Feynman propaga-
tors and interaction vertices. A Feynman propagator describes the propagation of a particle between
two interaction vertices in either directions. Therefore, abusing of a quantum mechanical notation,
a Feynman propagator can be formally written as

GF(qi) =
1

q2
i − m2

i + ı0
≡

1
√

2
(|0〉 + |1〉) , (1)

where |0〉 and |1〉 represent the two propagation states. When a Feynman diagram contains n
propagators, it actually encodes the quantum superposition of 2n states, with each state defining the
directions in which the particles propagate. The interaction vertices are defined in the spacetime, so
when a particle in a Feynman loop diagram departs from an interaction vertex and describes a closed
cycle returning to the initial point, it necessarily travels back in time and thus breaks causality.

The directions of propagation are not usually specified in theoretical calculations because the
Feynman representation provides a very compact mathematical description. However, this apparent
simplicity comes at a price. It involves unphysical cyclic configurations which inevitably lead to
unphysical singularities of the integrand. A solution is provided by the loop-tree duality (LTD) [1–
18]. In LTD, one degree of freedom of each loop momenta is integrated out by using the Cauchy
residue theorem, which is equivalent to set on shell certain internal particles. In other words, loop
scattering amplitudes are open in LTD to a sum of tree-level objects. If the energy components
of the loop momenta are integrated out, the integrand of the scattering amplitude gets support
in the Eucliean space of the loop three-momenta, which has some advantages for asymptotic
expansions [19, 20]. The most general form of an scattering amplitude in LTD in d spacetime
dimensions is

A(Λ) =

∫
`1 · · ·`Λ

A
(Λ)

D ,

∫
` j

= µ4−d
∫

dd−1` j

(2π)d−1 , (2)

whereΛ is the number of independent loop momenta, and the integrandA(Λ)D is the dual amplitude,
which is a function of the loop three-momenta and of the external momenta. The scale µ is arbitrary.

Remarkably, the dual amplitude contains only configurations that respect causality [21–28].
These configurations are equivalent to directed acyclic graph (DAG) configurations in graph the-
ory [29–31]. Another interesting interpretation sees causality as the concatenation of entangled
causal thresholds. Each causal threshold divides the scattering amplitude into two subamplitudes,
in such a way that all the particles involved are aligned in the same propagation direction. Different
causal thresholds are compatible if the shared particles are aligned in the same direction. The causal
thresholds cannot cross. In a more mathematical approach, each causal threshold is a bipartite par-
tition of the set of propagators, and the causal configurations are the result of a recursive application
of bipartite partitions [25].

The LTD representation of a scattering amplitude is then the sum of all possible causal config-
urations where internal particles propagate in specific directions. Conversely, once the directions of
propagation are known, they provide information to guide the bootstrapping of the corresponding
LTD representation. Because of Eq. (1), identifying the causal / acyclic configurations of multiloop
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Feynman diagrams marks a benchmark application to challenge quantum algorithms in particle
physics [29–31].

2. Singularities of scattering amplitudes

Scattering amplitudes at high perturbative orders in quantum field theory are the central objects
from which precise theoretical predictions for high-energy colliders are derived. They exhibit very
interesting mathematical properties, which extend the interest in their study beyond particle physics,
e.g. in gravitational physics [32]. Highly efficient and sophisticated methods and tools have been
developed for their evaluation that are presented in this conference (e.g. [33–35]).

However, scattering amplitudes are defined for a fixed number of external particles, and dif-
ferent scattering amplitudes squared with different numbers of external particles must be combined
to obtain theoretical predictions for collider observables. In theories such as Quantum Chromody-
namics, where particles can be emitted at exactly zero energy or collinear with each other, fixing
the number of external particles creates a mismatch between the mathematical description and
the physics behind it, and makes scattering amplitudes tricky, specially in the four dimensions of
the spacetime. In addition, loop configurations involve extreme quantum fluctuations at infinite
energy (or exactly zero distance), where the theory is no longer strictly valid. The most common
workaround is to evaluate loop and tree-level scattering amplitudes in arbitrary spacetime dimen-
sions, e.g. in Dimensional Regularisation (DREG), where the ambiguities from infrared (IR) and
ultraviolet (UV) configurations are translated into poles of the extra dimensions. Subtraction [36]
methods are usually employed to get rid of these singularities.

3. Vacuum amplitudes in the loop-tree duality

The artificial separation between loop and tree-level contributions is at the origin of most of
the technical difficulties encountered in theoretical calculations at high perturbative orders. To
circumvent this separation, we recently proposed [37, 38] vacuum amplitudes, i.e. scattering
amplitudes without external particles, in LTD as the optimal building blocks to assemble theoretical
predictions for differential observables at colliders. Wework in LTDbecause it provides amanifestly
causal representation.

The Feynman propagators of a vacuum amplitude are substituted in LTD by causal propagators
of the form [21]

1
λi1i2 · · ·in

=
1∑n

s=1 q(+)
is,0

, (3)

with q(+)
is,0 =

√
q2
is
+ m2

is
− ı0 the on-shell energies of the internal momenta, qis the spatial compo-

nents and mis their masses. The factor ı0 stems from the original infinitesimal complex prescription
of the Feynman propagators.

A causal propagator of the form inEq. (3) represents a causal threshold involving a set of internal
particles that divide the vacuum amplitude into two subamplitudes. And the dual amplitude is a
sum of terms consisting of products of causally compatible causal propagators. A causal propagator
would turn singular, λi1i2 · · ·in → 0, if all the particles involved were on shell. The difference with a
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conventional scattering amplitude is that, in the absence of external particles, a causal propagator
cannot generate any IR or threshold singularity because the on-shell energies of the internal particles
are, by definition, positive. Only UV singularities are allowed.

The central hypothesis of our proposal [37, 38] is that by analytically continuing the on-shell
energies of the particles that will be identified as incoming to negative values, and by considering
different residues on the causal propagators, 1/λi1i2 · · ·in , dubbed phase-space residues, all the am-
plitude interferences with different numbers of external particles contributing to a differential cross
section or a decay rate are generated at once, with the dual vacuum amplitude acting as a kernel
for all contributions. Since IR and threshold singularities are absent in the vacuum amplitude, and
since all contributions are generated from the same vacuum amplitude, collinear, soft and threshold
singularities locally match among the different phase-space residues, with the sole exception of
initial-state collinear singularities whose local cancellation is limited by kinematics. Another ad-
vantage is that the vacuum amplitude includes selfenergy insertions. Therefore, the wave-function
renormalisation of the external legs is naturally incorporated by the phase-space residues. These
contributions are essential for the local cancellation of IR singularities.

4. Differential observables from vacuum amplitudes: LTD causal unitary

The fundamental building blocks in LTD causal unitary [37, 38] for theoretical predictions of
differential observables at colliders are the phase-space residues defined as

A
(Λ,R)
D (i1 · · · inab) = Res

( xab
2
A
(Λ)

D , λi1 · · ·inab

)
− A

(Λ)

UV/C(i1 · · · inab) , (4)

where the first term on the r.h.s of Eq. (4) is the residue of the kernel vacuum amplitude A(Λ)D
in LTD at λi1 · · ·inab = 0. The number of loops of A(Λ)D is Λ = L + N − 1, where N is the total
number of external particles in leading order (LO) kinematics, and L is the maximum number of
loops that contribute at NkLO. Typically, L = 2 at next-to-next-to-leading order (NNLO). Each
residue on the kernel vacuum amplitude implements a different n-particle final state. The indices
of the initial-state particles are a and b, and their on-shell energies are analytically continued to
negative values. We defined xab = 4q(+)

a,0q(+)
b,0. The counterterm A(Λ)UV/C implements a local UV

renormalisation, and a local subtraction of initial-state collinear singularities.
Then, the differential representation of the NkLO contribution to a physical observable is

dσNkLO =
dΛ
2s

∑
(i1 · · ·inab)∈Σ

A
(Λ,R)
D (i1 · · · inab) Oi1 · · ·in ∆̃i1 · · ·in āb̄ , (5)

For a scattering process, the integration measure,

dΛ =
Λ−2∏
j=1

dΦ` j =

Λ−2∏
j=1

µ4−d dd−1` j

(2π)d−1 , (6)

is written in terms of the spatial components of Λ − 2 primitive loop momenta because two of the
loop three-momenta are fixed by the initial-state. The Dirac-delta function in the spatial components
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Figure 1: Diagrammatic interpretation of the local cancellation of final-state double-collinear singularities,
including quasicollinear configurations. Causal propagators represented by dashed lines. The blob J stands
for a multiloop subdiagram. Each phase-space residue is identified with the interference of scattering
amplitudes with different numbers of external particles, namely different numbers of loops.

of the external momenta is absent because momentum conservation in the spacial components is
self-satisfied in the vacuum amplitude. Energy conservation is imposed by the Dirac-delta function

∆̃i1 · · ·in āb̄ = 2π δ(λi1 · · ·in āb̄) , (7)

where λi1 · · ·in āb̄ =
∑n

s=1 q(+)
is,0 − q(+)

a,0 − q(+)
b,0. The bar over a and b indicates that the corresponding

on-shell energies bear a minus sign. Finally, the function Oi1 · · ·in encodes the observable under
consideration. The default choice Oi1 · · ·in = 1 gives the total cross section or decay rate after
integration.

5. Collinear, soft and threshold singularities

The kernel vacuum amplitudeA(Λ)D is free of IR and threshold singularities because the on-shell
energies are positive. However, the phase-space residues in Eq. (4) exhibit the expected singularities
because some of the on-shell energies are promoted to negative values. These singularities locally
match in the master differential representation in Eq. (5), and therefore Eq. (5) is well defined
directly in the four physical dimensions of the spacetime. Detailed proofs of the local matching of
singularities between phase-space residues have been presented in Ref. [37]. Here, we comment on
the simplest configuration of double-collinear singularities in final states.

We consider the insertion of a multiloop interaction involving three particles labelled i1, i2 and
i3, as shown in Fig. 1. The dual vacuum amplitude contains a term proportional to

A
(Λ)

D ∼
1

λi1i2 · · ·abλi3 · · ·ab
, (8)

where the dots represent other particles, acting as spectators. Here, a and b are identified with
the initial-state particles and their on-shell energies are promoted to negative values. The two
phase-space residues

A
(Λ)

D (i3 · · · ab) = Res
( xab

2
A
(Λ)

D , λi3 · · ·ab

)
∼

1
λi1i2 ī3

, (9)

A
(Λ)

D (i1i2 · · · ab) = Res
( xab

2
A
(Λ)

D , λi1i2 · · ·ab

)
∼ −

1
λi1i2 ī3

, (10)
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Figure 2: Three-loop vacuum diagrams contributing to the decay γ∗ → qq̄(g) at NLO. The gray dashed
lines represent phase-space residues, i.e. different final states.

represent, respectively, a configuration with i3 as an on-shell particle in the final state, and another
configuration with one loop less, where i1 and i2 are on-shell and final.

For massless particles and in the limit λi1i2 ī3 = q(+)
i1,0
+q(+)

i2,0
−q(+)

i3,0
→ 0, each of these phase-space

residues develops a collinear singularity, but the sum of both contributions is finite:

lim
λi1 i2 ī3

→0

(
A
(Λ)

D (i1i2 · · · ab) ∆̃i1i2 · · ·āb̄ +A
(Λ)

D (i3 · · · ab) ∆̃i3 · · ·āb̄
)
= O(λ0

i1i2 ī3
) , (11)

because of the sign change from Eq. (9) to Eq. (10). The local cancellation of this collinear singu-
larity is compatible with energy conservation: limλi1 i2 ī3

→0 ∆̃i1i2 · · ·āb̄ = ∆̃i3 · · ·āb̄. It is interesting to
note that for massive particles quasicollinear configurations in the form of large massive logarithms
also match since particle masses appear implicitly in the causal propagators through the on-shell
energies. This fact provides a seamless transition between a massive and a massless calculation,
allowing for an almost identical implementation [8].

The local cancellation of collinear singularities in the initial state is limited by the phase space.
However, LTD predicts that the functional form of the collinear singularity is the same for the loop
and tree-level phase-space residues, and hence the unintegrated contributions to the Altarelli-Parisi
splitting functions [39]. For example, the collinear splitting q → qg is described by the local
splitting function

P
(0)
qq (zV, z; ε) = P(0)qq (zV; ε) (δ(zV − z) − δ(1 − z)) , (12)

where

P
(0)
qq (z; ε) =

1 + z2

1 − z
− ε(1 − z) (13)

is the customary bare splitting function, with 1− z the longitudinal momentum fraction of the gluon
when emitted as real, and 1− zV the longitudinal momentum fraction of the same gluon in the loop
contribution. Integrating over zV, with zV ∈ [0, 1], we obtain the expected loop factor 3/2 δ(1 − z).

6. Proof of concept at NLO and NNLO

As benchmark decay rates at NLO, the decay of a heavy scalar into lighter scalars, and the
decay of a Higgs boson or an off-shell photon into a pair of massive quarks and antiquarks were
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Figure 3: Local cancellation of tripple collinear singularities at NNLO. Details are provided in Ref. [38].

implemented as a proof of concept of LTD causal unitary in Ref. [38], where classical integration
methods were used to predict the total decay rates. The good behaviour of the integrand also makes
it suitable for a quantum integrator implementation [40, 41]. We refer to Ref. [38] for a detailed
presentation of the expressions used in the numerical implementation. The vacuum diagrams that
contribute to the decay γ∗ → qq̄(g) are shown in Fig. 2. Similar vacuum diagrams describe the
other two decay processes considered. At NNLO, the decay of a heavy scalar into lighter scalars
have been analysed. The local cancellation of a tripple-collinear singularity is illustrated in Fig. 3.

7. Conclusions

We have presented a novel representation of differential observables at high-energy colliders,
where all final states contributing to a scattering or a decay process are coherently generated from a
multiloop vacuum amplitude in LTD. This representation is well defined directly in the four physical
dimensions of the spacetime. Exploiting the manifestly causal properties of vacuum amplitudes in
LTD provides a consistent theoretical framework in which certain mathematical artefacts are absent
and many technical difficulties are solved in one go. For example, our formalism deals directly with
the actual momenta of the external particles, which is more convenient for predicting differential
observables. The absence of collinear, soft and threshold singularities in the vacuum amplitude
leads to a local matching of these singularities in the sum over all phase-space residues to all
perturbative orders. Large logarithmic terms from quasicollinear configurations ofmassive particles
are matched. Furthermore, the vacuum amplitude consistently incorporates gauge invariance and
the wave function renormalisation of external particles, which is crucial for the IR local cancellation
with tree-level contributions. The methodology has successfully been tested with proof-of-concept
implementations at LO, NLO and NNLO.
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