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The heavy quarkonium system has been an ideal tool to study deep aspects of QCD [1, 2]. In
particular, it has been used to determine the fundamental physical constants such as 𝑚𝑐, 𝑚𝑏, and 𝛼𝑠

[3]. In the future, it is expected that 𝑚𝑡 will also be determined with a high precision using the cross
section for 𝑒+𝑒− → 𝑡𝑡 in the threshold region [4]. The singlet Hamiltonian within the potential
Nonrelativistic QCD (pNRQCD) effective field theory (EFT) [5] plays the principal role in these
studies. In the leading order (LO) the Hamiltonian is simply that of a non-relativisitic quantum
mechanical system with the Coulomb attractive force. Enormous efforts have been devoted to
compute the higher-order corrections to the Hamiltonian systematically. This was enabled by the
development of the EFTs such as pNRQCD and of the expansion-by-regions (EBR) technique [6].
The Hamiltonian has been known up to the next-to-next-to-next-to-leading order (N3LO) accuracy
for more than a decade [7, 8], and it took roughly a decade to calculate the N3LO Hamiltonian
after N2LO Hamiltonian was completed [9]. Certainly it is worthwhile to start calculations of
the Hamiltonian at N4LO accuracy. In addition, there is a theoretically interesting aspect of
this calculation, to confirm whether the assumption of pNRQCD EFT on a specific form of the
Hamiltonian is correct.

We report on our recent calculation of a part of the N4LO quarkonium Hamiltonian [10]. This
is done by the direct matching of the on-shell scattering amplitude between a heavy quark 𝑄 and
a heavy antiquark �̄� calculated in full QCD and that calculated in pNRQCD EFT. This matching
is carried out at the two-loop level and up to O(𝛽0) in the non-relativistic expansion [relative
O(𝛼2

𝑠𝛽
2) compared to the LO ∼ 𝛼𝑠/𝛽2 contribution], where 𝛽 denotes the velocity of 𝑄 or �̄� in the

center-of-mass (c.m.) frame.

In pNRQCD EFT, each term of the Hamiltonian, given as a quantum mechanical operator,
is assumed to take a form 𝑓 ( ®̂𝑝)𝑉 (𝑟)𝑔( ®𝑆), where 𝑓 ( ®𝑝) is regular in ®̂𝑝 = −𝑖 ®∇, 𝑉 (𝑟) includes
singularities such as 1/𝑟 or log 𝑟 , and 𝑔( ®𝑆) is regular in the quarkonium spin ®𝑆. In momentum
space, the corresponding matrix element of the operator takes the form 𝑓 ( ®𝑝, ®𝑝 + ®𝑘)�̃� (| ®𝑘 |)𝑔( ®𝑆),
where 𝑓 , 𝑔 are regular and �̃� is singular. On the other hand, the structure of the QCD 𝑄�̄� scattering
amplitude for 𝑄( ®𝑝) + �̄�(− ®𝑝) → 𝑄( ®𝑝 + ®𝑘) + �̄�(− ®𝑝 − ®𝑘) is much more complicated, even after the
expansion in 𝛽. (1) Although the amplitude is regular at 𝑢 = ®𝑘2 − 4 ®𝑝 2 = 0 in the physical sheet, it
has singularities at 𝑢 = 0 in the second and other Riemann sheets by analytical continuation. [An
example of such a structure is log(4 ®𝑝 2/®𝑘2)/(®𝑘2 − 4 ®𝑝 2).] (2) The contributions from the potential
region in the EBR method include non-elementary functions of | ®𝑝 |/| ®𝑘 | (counted as order one in the
𝛽 expansion). Thus, it seems fairly non-trivial that the Hamiltonian takes such a simple form, from
the viewpoint of the direct matching procedure. Up to now, the complete analytic expression of the
𝑄�̄� scattering amplitude in full QCD is missing at the two-loop level. Hence, we aim to calculate
its non-relativistic expansion, namely the expansion in 𝛽.

To reduce the labor of the calculation, we compute only the contributions from the non-
annihilation channel of the heavy quark and antiquark, in this first calculation. To ensure theoretical
consistency we consider the SU(𝑁𝐶) gauge theory with 𝑛ℎ heavy quark flavors (each with the same
mass 𝑚) and 𝑛𝑙 massless quark flavors. (For convenience we call this theory as QCD.) We calculate
the scattering amplitude between a heavy quark 𝑄 and a heavy antiquark �̄�′ of different flavors
(with mass 𝑚). In this case only diagrams in the non-annihilation channel contribute.

Our calculational procedure for the QCD scattering amplitude goes as follows.
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(i) We project the scattering amplitude to a spinor basis, by which the coefficients of the spinor
basis are expressed by scalar loop integrals.

(ii) We perform integration-by-parts (IBP) reduction [11] of the scalar integrals. Using the
program Kira [12] for the reduction, all the coefficients are expressed by 149 master integrals
(MIs).

(iii) We expand each MI in 𝛽. For this purpose, we use the differential equation [13] satisfied
by MIs, which is an exact equation. This is supplemented by the EBR technique, used to
determine the boundary conditions in solving the differential equation.

Let us explain more details.
(i) The scattering amplitude for 𝑄(𝑝) + �̄�′(𝑝) → 𝑄(𝑝 ′) + �̄�′(𝑝 ′) can be expressed by a linear

combination of the following types of spinor structure after loop integration:

[�̄�(𝑝 ′)𝛾𝛼1 · · · 𝛾𝛼𝑛𝑢(𝑝)] ·
[
�̄�(𝑝)𝛾𝛼𝑛 · · · 𝛾𝛼1𝑣(𝑝 ′)

]
, (1)

[�̄�(𝑝 ′)𝑝 ·𝛾 𝛾𝛼1 · · · 𝛾𝛼𝑛𝑢(𝑝)] ·
[
�̄�(𝑝)𝛾𝛼𝑛 · · · 𝛾𝛼1𝑣(𝑝 ′)

]
, (2)

[�̄�(𝑝 ′)𝛾𝛼1 · · · 𝛾𝛼𝑛𝑢(𝑝)] ·
[
�̄�(𝑝)𝛾𝛼𝑛 · · · 𝛾𝛼1 𝑝 ·𝛾 𝑣(𝑝 ′)

]
, (3)

[�̄�(𝑝 ′)𝑝 ·𝛾 𝛾𝛼1 · · · 𝛾𝛼𝑛𝑢(𝑝)] ·
[
�̄�(𝑝)𝛾𝛼𝑛 · · · 𝛾𝛼1 𝑝 ·𝛾 𝑣(𝑝 ′)

]
. (4)

The 2-loop amplitude can be expressed with a 21-dimensional basis. The coefficients of the basis
can be expressed by scalar integrals, after projecting the loop amplitudes to the spinor basis and
using the standard trace technology of the gamma matrices. Feynman integrals are regularized by
dimensional regularization, where the number of the space-time dimensions is set to 4 − 2𝜖 .

The above basis can be easily expressed by a two-component spinor basis in dimensional
regularization. We adopt a 21-dimensional basis {Λ1, . . . ,Λ21}, where the first five elements are
chosen as (apart from the initial and final state spinor wave functions)

Λ1 = I ⊗ I ,

Λ2 = 𝜎𝑎 𝜎𝑏 ⊗ 𝜎𝑎 𝜎𝑏 ,

Λ3 = 𝜎𝑎 𝜎𝑏 𝜎𝑐 𝜎𝑑 ⊗ 𝜎𝑎 𝜎𝑏 𝜎𝑐 𝜎𝑑 , (5)

Λ4 =
1
𝑚2

(
®𝜎 · ®𝑘 𝜎𝑎 ⊗ ®𝜎 · ®𝑘 𝜎𝑎

)
,

Λ5 =
1
𝑚2 (®𝜎 · ®𝑝 ′ ®𝜎 · ®𝑝 ⊗ I + I ⊗ ®𝜎 · ®𝑝 ′ ®𝜎 · ®𝑝) .

The Pauli matrices satisfy

{𝜎𝑖 , 𝜎 𝑗} = 2𝛿𝑖 𝑗I , 𝛿𝑖𝑖 = 3 − 2𝜖 , tr I = 2 . (6)

𝑚 denotes the pole mass of the heavy quarks, and the amplitude is renormalized in the on-shell
scheme.

(ii) IBP reduction is nowadays the standard procedure and we skip its explanation.
(iii) EBR is a technique to obtain the expansion of a loop integral in a small parameter (in

our case 𝛽) by decomposing the loop integral into a sum of contributions from different regions
in dimensional regularization. Each MI can be regarded as a sum of the contributions from the
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7 regions: HH, HS, HP, SS, SP, PP, and PUS, in terms of the EBR language (H: hard, S: soft,
P: potential, US: ultra-soft). We can group them into 4 regions as HH, HS+HP, SS+SP+PP and
PUS. Then, the MIs corresponding to each of the 4 regions satisfy the differential equation by
themselves. We solve the differential equation order by order in expansion in 𝛽 corresponding to
each region, where the boundary conditions for the MIs are determined by calculating the LO terms
of the 𝛽 expansions using the EBR technique. (In some cases, the boundary condition can be fixed
by demanding the MI to be regular at 𝑢 = 0 in the physical sheet.) This method is much more
economical as compared to calculating the 𝛽 expansions of the MIs or diagrams by only the EBR
technique. As a result, each MI is obtained, after combining the contributions from all the regions,
in the form

MI =
∑

𝑟∈regions

∑
𝑗

(EBR MI)𝑟 𝑗 ×
[
1 +

∑
2𝑛+𝑙≥1

𝐶
𝑟 𝑗
𝑛𝑙

(
| ®𝑝 |2
𝑚2

)𝑛 ( | ®𝑘 |
𝑚

) 𝑙]
, (7)

where (EBR MI)𝑟 𝑗 denotes the 𝑗 th MI belonging to each region 𝑟 obtained after the expansion; ®𝑝
and ®𝑝′ = ®𝑝 + ®𝑘 denote, respectively, the three-momenta of the initial and final 𝑄 in the c.m. frame.
(| ®𝑝 |2 = | ®𝑝 ′ |2 by the energy conservation.)

The calculational procedure for the scattering amplitude for the same process in pNRQCD EFT
is similar. The amplitude is projected on to the two-component spinor basis. The scalar integrals
are reduced to master integrals of the EFT using the integration-by-parts identities. After matching
the amplitude to that of QCD, we readily obtain the two-loop Hamiltonian in the 𝛽 expansion. The
Hamiltonian up to O(𝛽0) consists only of the five operators Λ1, . . . ,Λ5 of the spinor basis before
expansion in 𝜖 , where the coefficients of the other operators vanish.

We have performed the following cross checks:

(1) We reproduced the known two-loop static QCD potential 𝑉 (2 loop)
QCD [9] and two-loop 1/(𝑚𝑘)

potential 𝑉 (2 loop)
1/(𝑚𝑘 ) [14] as part of the two-loop Hamiltonian. We also reproduced the known

one-loop part of the N3LO Hamiltonian [7] at an intermediate stage of the calculation.

(2) We checked that the QCD scattering amplitude is regular at 𝑢 = 0 in the physical sheet.1
Although we imposed the regularity at 𝑢 = 0 on MIs, the regularity for the scattering
amplitude is not trivial because the coefficients of the MIs include poles at 𝑢 = 0.

(3) The two-loop Hamiltonian is regular in ®𝑝 but singular in 𝑘 = | ®𝑘 |. Each term of the Hamiltonian
takes the form 𝑓 ( ®𝑝)𝑉 (𝑘)𝑔( ®𝑆), where 𝑓 and 𝑔 are polynomials and 𝑉 (𝑘) is proportional to
𝑘𝑎+𝑏𝜖 with 𝑎 ∈ {−2,−1, 0}, 𝑏 ∈ {−4,−2, 0}, before expansion in 𝜖 . This form is expected as
originating from the hard (H) and soft (S) contributions according to the EBR technique and
is consistent with the concept of the EFT construction. This means that all the singularities
at 𝑢 = 0 in the second and other Riemann sheets cancel between the scattering amplitudes
of QCD and pNRQCD EFT. Additionally, the functions of 𝑝/𝑘 (P contributions) also cancel
out.

Does this confirm correctness of the assumption of pNRQCD EFT for the form of the Hamil-
tonian up to two loops? — Not quite, since we used the EBR technique to determine the boundary

1The regularity of the amplitude at 𝑢 = 0 in the physical sheet follows from the flavor conservation of QCD.
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conditions for many of the MIs. There is always a logical possibility that we missed contributions
from any regions which are not covered by our current knowledge of the EBR technique.

To compensate for this shortcoming, we evaluated the coefficients of the expansion in 𝜖 of each
QCD master integral by numerical integrations (in part using FIESTA [15]) in the non-relativistic
region. We compared them with the expansion of the master integral in 𝛽 and 𝜖 obtained analytically
and checked consistency. Furthermore, some of the 𝜖 expansions of the master integrals are known
analytically [16, 17]. We expanded the analytical expressions in 𝛽 and found agreement with our
results. Consequently, up to the accuracy of the numerical tests, we confirm that the form of the
Hamiltonian is very likely to be correct up to two loops.

Let us present our final result. We expand the coefficients of Λ1, . . . ,Λ5 in 𝜖 while we ignore
any O(𝜖) contributions in Λ𝑖 . (Namely, we simply take the limit 𝜖 → 0 for Λ𝑖 .) The Hamiltonian
is given in the form

𝐻 =
16𝜋2𝐶𝐹

𝑘2

4∑
𝑖=1

3∑
𝑗=1

∑
𝑛,ℓ≥0

(
𝛼𝑠 (𝑘)

4𝜋

) 𝑗

𝐶{𝑖, 𝑗 ,𝑛,2ℓ }

(
𝑘

𝑚

)𝑛 (𝑝2)ℓ + (𝑝′2)ℓ
2𝑚2ℓ 𝑂𝑖 , (8)

where

𝑘 =
��®𝑘 �� , 𝑝2 = | ®𝑝 |2 , 𝑝′2 = | ®𝑝′ |2 , ®𝑝′ = ®𝑝 + ®𝑘 . (9)

We absorb log(𝜇/𝑘) terms originating from the running of 𝛼𝑠 by expressing the Hamiltonian
by 𝛼𝑠 (𝑘), the strong coupling constant in the MS scheme of the theory with 𝑛𝑙 flavors only,2, 3
renormalized at 𝜇 = 𝑘 . The spinor basis in three dimensions is defined as

𝑂1 = I ⊗ I , 𝑂2 = ®𝑆2 , 𝑂3 =
𝑖

𝑘2
®𝑆 ·

(
®𝑝 × ®𝑘

)
, 𝑂4 = 𝜎𝑎 ⊗ 𝜎𝑎 − 3

𝑘2

(
®𝑘 · ®𝜎

)
⊗

(
®𝑘 · ®𝜎

)
,

(10)

with

®𝑆 =
®𝜎
2
⊗ I + I ⊗ ®𝜎

2
. (11)

The Wilson coefficients are separated into finite and divergent parts as

𝐶{𝑖, 𝑗 ,𝑛,2ℓ } = 𝐶fin
{𝑖, 𝑗 ,𝑛,2ℓ } + 𝐶div

{𝑖, 𝑗 ,𝑛,2ℓ } . (12)

2-loop non-zero finite Wilson coefficients are given by

𝐶fin
{1,3,0,0} = 𝑉

(2 loop)
QCD (𝑘) [𝐶𝐹𝛼𝑠 (𝑘)3/(4𝜋𝑘2)]−1

= −
100𝑛2

𝑙

81
+ 𝑛𝑙

((
28𝜁 (3)

3
+ 899

81

)
𝐶𝐴 +

(
55
6

− 8𝜁 (3)
)
𝐶𝐹

)
+

(
−22𝜁 (3)

3
− 4343

162
− 4𝜋2 + 𝜋4

4

)
𝐶2

𝐴 , (13)

2In expressing the Hamiltonian, it is customary to rewrite the coupling constant of the full theory 𝛼
(𝑛ℎ+𝑛𝑙 )
𝑠 (𝜇) by

that of the theory with 𝑛𝑙 flavors only 𝛼𝑠 (𝜇) ≡ 𝛼
(𝑛𝑙 )
𝑠 (𝜇). We include the O(𝜖) term in this decoupling relation [18, 19],

which simplifies the result slightly since the one-loop Hamiltonian includes the 1/𝜖 pole.
3We do not include the O(𝜖) correction to the running formula

𝛼𝑠 (𝑘) = 𝛼𝑠 (𝜇) −
𝛼𝑠 (𝜇)2

4𝜋

(
11
3
𝐶𝐴 − 2

3
𝑛𝑙

)
log

(
𝑘2

𝜇2

)
+ · · · .
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𝐶fin
{1,3,1,0} = 𝑉

(2 loop)
1/(𝑚𝑘 ) (𝑘) [𝐶𝐹𝛼𝑠 (𝑘)3/(4𝜋𝑚𝑘)]−1

=

(
−32

3
𝜋2𝐶𝐴𝐶𝐹 − 16

3
𝜋2𝐶2

𝐴

)
log

(
𝜇2

𝑘2

)
+ 𝑛𝑙

(
49𝜋2𝐶𝐴

18
− 4𝜋2𝐶𝐹

9

)
+

(
130𝜋2

9
− 32

3
𝜋2 log(2)

)
𝐶𝐴𝐶𝐹 +

(
−101𝜋2

9
− 16

3
𝜋2 log(2)

)
𝐶2

𝐴 , (14)

𝐶fin
{1,3,2,0} = log2

(
𝑘2

𝑚2

) (
−11𝐶𝐴𝐶𝐹

9
+ 13𝐶𝐴𝑛𝑙

9
−

193𝐶2
𝐴

18
− 2𝐶𝐹𝑛𝑙

9

)
+ log

(
𝑘2

𝑚2

) (
−2𝜋2𝐶2

𝐹 +
(
146
9

+ 13𝜋2

9

)
𝐶𝐴𝐶𝐹 − 17𝐶𝐴𝑛ℎ

18
+ 637𝐶𝐴𝑛𝑙

54

+
(
−304

9
− 14𝜋2

9

)
𝐶2

𝐴 − 340𝐶𝐹𝑛𝑙
27

)
+ log

(
𝑚2

𝜇2

) ((
416
9

− 13𝜋2

9

)
𝐶𝐴𝐶𝐹 + 40𝐶𝐴𝑛𝑙

9
− 80𝐶𝐹𝑛𝑙

9
− 4𝜋2𝐶2

𝐹

+
(
−208

9
− 16𝜋2

9

)
𝐶2

𝐴

)
+ log(2)

(
22𝜋2𝐶𝐴𝐶𝐹 − 9𝜋2𝐶2

𝐴 − 6𝜋2𝐶2
𝐹

)
+

(
103𝜁 (3)

2
− 407

6
+ 13𝜋2

24
+ 3𝜋4

16

)
𝐶2

𝐴

+
(
−77𝜁 (3) + 2369

9
− 713𝜋2

54

)
𝐶𝐴𝐶𝐹 +

(
33𝜁 (3) − 946

9
+ 6023𝜋2

108

)
𝐶2
𝐹 + 8𝑛ℎ𝑛𝑙

27

+
(
1387
108

− 41𝜋2

36

)
𝐶𝐴𝑛ℎ +

(
173𝜋2

54
− 346

9

)
𝐶𝐹𝑛ℎ +

(
28𝜋2

27
− 173

27

)
𝐶𝐴𝑛𝑙

+
(
424
27

− 8𝜋2

27

)
𝐶𝐹𝑛𝑙 , (15)

𝐶fin
{1,3,0,2} = log

(
𝑘2

𝜇2

) ((
416
9

+ 32𝜋2

9

)
𝐶2

𝐴 − 80𝐶𝐴𝑛𝑙
9

)
+

(
28𝜁 (3)

3
+ 1571

81
− 4𝜋2

27

)
𝐶𝐴𝑛𝑙

+
(
55
6

− 8𝜁 (3)
)
𝐶𝐹𝑛𝑙 −

100𝑛2
𝑙

81
+

(
−38𝜁 (3)

3
− 7919

162
+ 266𝜋2

27
− 𝜋4

4

)
𝐶2

𝐴 , (16)

𝐶fin
{2,3,2,0} = log2

(
𝑘2

𝑚2

) (
38𝐶2

𝐴

9
− 5𝐶𝐴𝑛𝑙

9

)
+ log

(
𝑚2

𝜇2

) (
8
3
𝜋2𝐶𝐴𝐶𝐹 + 4

3
𝜋2𝐶2

𝐹

)
+ log

(
𝑘2

𝑚2

) (
−46𝐶𝐴𝐶𝐹

9
− 82𝐶𝐴𝑛𝑙

27
+

(
256
27

− 4𝜋2

9

)
𝐶2

𝐴 + 16𝐶𝐹𝑛𝑙
9

)
+ log(2)

(
12𝜋2𝐶2

𝐹 − 238
9

𝜋2𝐶𝐴𝐶𝐹 + 71
9
𝜋2𝐶2

𝐴

)
+

(
16𝜋2

27
− 538

81

)
𝐶𝐴𝑛ℎ

+
(
596
27

− 16𝜋2

9

)
𝐶𝐹𝑛ℎ +

100𝑛2
𝑙

243
+

(
−18𝜁 (3) − 10

3
− 239𝜋2

9

)
𝐶2
𝐹

+
(
−295𝜁 (3)

18
+ 11651

486
− 127𝜋2

27
− 𝜋4

12

)
𝐶2

𝐴 +
(
−13𝜁 (3)

3
− 70

27
+ 170𝜋2

9

)
𝐶𝐴𝐶𝐹

+
(
−28𝜁 (3)

9
− 503

243
− 10𝜋2

27

)
𝐶𝐴𝑛𝑙 +

(
8𝜁 (3)

3
− 637

54

)
𝐶𝐹𝑛𝑙 , (17)
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𝐶fin
{3,3,2,0} = log

(
𝑘2

𝑚2

) (
56𝐶𝐴𝐶𝐹

3
− 70𝐶𝐴𝑛𝑙

9
+

262𝐶2
𝐴

9
− 8𝐶𝐹𝑛𝑙

3

)
+ log2

(
𝑘2

𝑚2

) (
14𝐶2

𝐴

3
− 2𝐶𝐴𝑛𝑙

3

)
+ log(2)

(
8
3
𝜋2𝐶𝐴𝐶𝐹 + 8

3
𝜋2𝐶2

𝐴 − 16𝜋2𝐶2
𝐹

)
+

(
3𝜁 (3) + 5999

108
− 4𝜋2

9
− 3𝜋4

8

)
𝐶2

𝐴 +
(
10𝜋2

9
− 298

27

)
𝐶𝐴𝑛ℎ +

(
476
9

− 16𝜋2

3

)
𝐶𝐹𝑛ℎ

+
50𝑛2

𝑙

27
+

(
−14𝜁 (3) − 827

54
− 4𝜋2

9

)
𝐶𝐴𝑛𝑙 +

(
−4𝜁 (3) + 590

9
+ 8𝜋2

3

)
𝐶𝐴𝐶𝐹

+
(
12𝜁 (3) − 1055

36

)
𝐶𝐹𝑛𝑙 +

(
24𝜁 (3) − 62 + 40𝜋2

3

)
𝐶2
𝐹 , (18)

𝐶fin
{4,3,2,0} = log

(
𝑘2

𝑚2

) (
17𝐶𝐴𝐶𝐹

9
− 35𝐶𝐴𝑛𝑙

54
+

149𝐶2
𝐴

54
− 2𝐶𝐹𝑛𝑙

9

)
+ log2

(
𝑘2

𝑚2

) (
17𝐶2

𝐴

36
− 𝐶𝐴𝑛𝑙

18

)
+ log(2)

(
2
9
𝜋2𝐶𝐴𝐶𝐹 + 2

9
𝜋2𝐶2

𝐴 − 4
3
𝜋2𝐶2

𝐹

)
+

(
− 𝜁 (3)

18
+ 12299

1944
+ 𝜋2

18
− 𝜋4

48

)
𝐶2

𝐴 +
(
5𝜋2

54
− 149

162

)
𝐶𝐴𝑛ℎ +

(
119
27

− 4𝜋2

9

)
𝐶𝐹𝑛ℎ

+
25𝑛2

𝑙

243
+

(
−7𝜁 (3)

9
− 1367

972
− 𝜋2

27

)
𝐶𝐴𝑛𝑙 +

(
− 𝜁 (3)

3
+ 331

54
+ 2𝜋2

9

)
𝐶𝐴𝐶𝐹

+
(
2𝜁 (3)

3
− 445

216

)
𝐶𝐹𝑛𝑙 +

(
2𝜁 (3) − 29

6
+ 10𝜋2

9

)
𝐶2
𝐹 . (19)

2-loop non-zero divergent Wilson coefficients are given by

𝐶div
{1,3,1,0} = −

8𝜋2𝐶2
𝐴

3𝜖
− 16𝜋2𝐶𝐴𝐶𝐹

3𝜖
, (20)

𝐶div
{1,3,2,0} = log

(
𝑘2

𝜇2

) (
−88𝐶𝐴𝐶𝐹

9𝜖
− 8𝐶𝐴𝑛𝑙

9𝜖
+

44𝐶2
𝐴

9𝜖
+ 16𝐶𝐹𝑛𝑙

9𝜖

)
+

(
44
9𝜖2 + 13𝜋2

18𝜖
− 208

9𝜖

)
𝐶𝐴𝐶𝐹 +

(
− 22

9𝜖2 + 8𝜋2

9𝜖
+ 104

9𝜖

)
𝐶2

𝐴 +
2𝜋2𝐶2

𝐹

𝜖

+
(

4
9𝜖2 − 20

9𝜖

)
𝐶𝐴𝑛𝑙 +

(
40
9𝜖

− 8
9𝜖2

)
𝐶𝐹𝑛𝑙 , (21)

𝐶div
{1,3,0,2} = log

(
𝑘2

𝜇2

) (
16𝐶𝐴𝑛𝑙

9𝜖
−

88𝐶2
𝐴

9𝜖

)
+

(
44
9𝜖2 − 16𝜋2

9𝜖
− 208

9𝜖

)
𝐶2

𝐴

+
(
40
9𝜖

− 8
9𝜖2

)
𝐶𝐴𝑛𝑙 , (22)

𝐶div
{2,3,2,0} = −4𝜋2𝐶𝐴𝐶𝐹

3𝜖
−

2𝜋2𝐶2
𝐹

3𝜖
. (23)

The color factors are given by 𝐶𝐹 = (𝑁2
𝐶 − 1)/(2𝑁𝐶) and 𝐶𝐴 = 𝑁𝐶 for the SU(𝑁𝐶) gauge group.

In summary we computed the quarkonium Hamiltonian at the two-loop level in the non-
annihilation channel. The obtained Hamiltonian has an expected form as resulting from integrating
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the H and S modes. The developed calculational procedure, combining the differential equation
and EBR technique, is useful to compute the 𝛽 expansion of the scattering amplitude.

For a consistent calculation of physical observables at N4LO accuracy using the Hamiltonian,
it is sometimes required to include higher-order terms of 𝛽 and 𝜖 at the tree and one-loop levels
than those given in the literature. We provide them in the Appendix.
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A. Tree-level and one-loop Hamiltonians

We present the tree-level and one-loop Hamiltonians before expanding in 𝜖 , up to O(𝛽2) and
O(𝛽) [O(𝛽4) and O(𝛼𝑠𝛽

3) relative to the LO], respectively. The Hamiltonian is given in the form

𝐻 =
𝐶𝐹 �̄�−2𝜖

𝑘2

6∑
𝑖=1

3∑
𝑗=1

∑
𝑛,ℓ≥0

(
𝑔2
𝑅 �̄�2𝜖

) 𝑗
𝑊{𝑖, 𝑗 ,𝑛,2ℓ }

(
𝑘

𝑚

)𝑛 (𝑝2)ℓ + (𝑝′2)ℓ
2𝑚2ℓ Λ𝑖 . (24)

𝑔𝑅 =
√

4𝜋𝛼 (𝑛ℎ+𝑛𝑙 )
𝑠 (𝜇) denotes the renormalized gauge coupling constant in the MS scheme of the

full theory (with 𝑛ℎ heavy quark flavors and 𝑛𝑙 massless quark flavors); �̄�2 = 𝜇2 𝑒𝛾𝐸/(4𝜋). The
spinor basis is defined in eq. (5) and in addition one more spinor structure is necessary at the tree
level O(𝛽2):

Λ6 =
1
𝑚4 (®𝜎 · ®𝑝′ ®𝜎 · ®𝑝 ⊗ ®𝜎 · ®𝑝′ ®𝜎 · ®𝑝) .

We list only those Wilson coefficients which are non-zero.
At tree level and up to O(𝛽4) relative to LO, they are given by

𝑊{1,1,0,0} = −1, 𝑊{1,1,0,2} =
1
2
, 𝑊{1,1,0,4} = − 7

16
, 𝑊{4,1,0,0} = −1

4
,

𝑊{4,1,0,2} =
1
4
, 𝑊{5,1,0,0} = −3

4
, 𝑊{5,1,0,2} =

3
4
, 𝑊{6,1,0,0} = − 1

16
. (25)

At one loop and up to O(𝛼𝑠𝛽
3) relative to LO, the Wilson coefficients are given by

𝑊{1,2,0,0} = 𝑚−2𝜖 · 2
3
(𝜖 − 1)𝑛ℎ 𝑖𝐼𝐻 − �̄�−2𝜖 · 2 𝛿1𝑍𝑔

+𝑘−2𝜖
(
− (𝜖 − 1)(8𝜖 − 11)𝐶𝐴

2𝜖 − 3
− 2(𝜖 − 1)𝑛𝑙

2𝜖 − 3

)
𝑖𝐼𝑎𝑆 , (26)

𝑊{1,2,1,0} = 𝑘−2𝜖
(
(𝜖 − 1)𝐶𝐴 − 1

2
(2𝜖 − 1)𝐶𝐹

)
𝑖𝐼𝑏𝑆 , (27)

𝑊{1,2,2,0} = 𝑚−2𝜖
(
−
(𝜖 − 1)

(
96𝜖3 − 100𝜖2 + 12𝜖 − 29

)
𝐶𝐴

24(2𝜖 − 1) (2𝜖 + 1)

+
(𝜖 − 1)

(
96𝜖4 + 44𝜖3 − 96𝜖2 + 37𝜖 + 6

)
𝐶𝐹

6(2𝜖 − 1)(2𝜖 + 1)(2𝜖 + 3) − 2
15

𝜖 (𝜖 − 1)𝑛ℎ
)
𝑖𝐼𝐻

+𝑘−2𝜖
(

1
24

(
−48𝜖2 + 104𝜖 − 61

)
𝐶𝐴 + 1

3
(𝜖 − 1) (8𝜖 − 7)𝐶𝐹

)
𝑖𝐼𝑎𝑆 , (28)
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𝑊{1,2,0,2} = 𝑚−2𝜖

(
2(𝜖 − 1)

(
2𝜖2 − 1

)
𝐶𝐴

2𝜖 − 1
− 4(𝜖 − 1)𝜖 (2𝜖 + 1)𝐶𝐹

2𝜖 − 1
+ 1

3
(1 − 𝜖)𝑛ℎ

)
𝑖𝐼𝐻

+�̄�−2𝜖 𝛿1𝑍𝑔 + 𝑘−2𝜖

(
(𝜖 − 1)𝑛𝑙
2𝜖 − 3

−
(
40𝜖2 − 95𝜖 + 51

)
𝐶𝐴

6(2𝜖 − 3)

)
𝑖𝐼𝑎𝑆 , (29)

𝑊{1,2,1,2} = 𝑘−2𝜖
(
1
2
(𝜖 − 2)𝐶𝐴 + 1

4
(−𝜖 − 1)𝐶𝐹

)
𝑖𝐼𝑏𝑆 , (30)

𝑊{1,2,3,0} = 𝑘−2𝜖
(
1
8

(
2𝜖2 − 6𝜖 + 5

)
𝐶𝐴 + 1

16

(
−6𝜖2 + 15𝜖 − 14

)
𝐶𝐹

)
𝑖𝐼𝑏𝑆 , (31)

𝑊{2,2,2,0} = 𝑚−2𝜖
(
1
8
(1 − 𝜖)𝐶𝐴 + (𝜖 − 1)𝜖𝐶𝐹

2(2𝜖 + 1)

)
𝑖𝐼𝐻 − 𝑘−2𝜖 · 1

8
𝐶𝐴𝑖𝐼

𝑎
𝑆 , (32)

𝑊{2,2,3,0} = −𝑘−2𝜖 · 𝜖𝐶𝐹

16(𝜖 − 1) 𝑖𝐼
𝑏
𝑆 , (33)

𝑊{4,2,0,0} = 𝑚−2𝜖

(
−
(𝜖 − 1)

(
2𝜖2 − 1

)
𝐶𝐴

2(2𝜖 − 1) + (𝜖 − 1)𝜖 (2𝜖 + 1)𝐶𝐹

2𝜖 − 1
+ 1

6
(𝜖 − 1)𝑛ℎ

)
𝑖𝐼𝐻

−�̄�−2𝜖 𝛿1𝑍𝑔

2
+ 𝑘−2𝜖

(
− (𝜖 − 1)(4𝜖 − 5)𝐶𝐴

4(2𝜖 − 3) − (𝜖 − 1)𝑛𝑙
2(2𝜖 − 3)

)
𝑖𝐼𝑎𝑆 , (34)

𝑊{4,2,1,0} = 𝑘−2𝜖

(
𝜖𝐶𝐴

8
−

(
2𝜖2 − 7𝜖 + 4

)
𝐶𝐹

16(𝜖 − 1)

)
𝑖𝐼𝑏𝑆 , (35)

𝑊{5,2,0,0} = 𝑚−2𝜖

(
−
(𝜖 − 1)

(
2𝜖2 − 1

)
𝐶𝐴

2𝜖 − 1
+ 2(𝜖 − 1)𝜖 (2𝜖 + 1)𝐶𝐹

2𝜖 − 1
+ 1

2
(𝜖 − 1)𝑛ℎ

)
𝑖𝐼𝐻

−�̄�−2𝜖 3𝛿1𝑍𝑔

2
+ 𝑘−2𝜖

(
−

(
24𝜖2 − 49𝜖 + 21

)
𝐶𝐴

4(2𝜖 − 3) − 3(𝜖 − 1)𝑛𝑙
2(2𝜖 − 3)

)
𝑖𝐼𝑎𝑆 , (36)

𝑊{5,2,1,0} = 𝑘−2𝜖
(
1
4
(3𝜖 − 2)𝐶𝐴 + 1

4
(4 − 3𝜖)𝐶𝐹

)
𝑖𝐼𝑏𝑆 . (37)

The EBR master integrals of the hard and soft regions are given by

𝑖𝐼𝐻 = (4𝜋) 𝜖 −2Γ(𝜖 − 1) , 𝑖𝐼𝑎𝑆 = − 24𝜖 −5𝜋𝜖 − 1
2

sin(𝜋𝜖)Γ
(

3
2 − 𝜖

) , 𝑖𝐼𝑏𝑆 =
16𝜖 −1𝜋𝜖

cos(𝜋𝜖)Γ(1 − 𝜖) , (38)

(after factoring out the dimensionful parameters). The one-loop counter term for the gauge coupling
constant reads

𝛿1𝑍𝑔 =
2 (𝑛ℎ + 𝑛𝑙) − 11𝐶𝐴

96𝜋2𝜖
. (39)

It is straightforward to expand the above Wilson coefficients in 𝜖 .
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