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1. Introduction

It was noticed some time ago that 𝜁4 cancelled in the QCD Adler function up to 𝑂 (𝛼3
𝑠)[1]

and 𝑂 (𝛼4
𝑠) [2, 3]. Further empirical support for even-𝜁 cancellation was provided for instance in

Refs. [4–6]. The phenomenon was explained at 3 loops [7] and 4 loops [8, 9], in terms of the
dependence of Feynman integrals on certain combinations of 𝜁-functions, such that even 𝜁s (which
may be expressed as powers of 𝜋2) only appeared in a well-defined way in conjunction with odd 𝜁s.
However, it was remarked in Refs. [10], [11] that the 𝜁4-dependence in the scalar quark and scalar
gluonium correlators respectively did not cancel at 𝑂 (𝛼4

𝑠), at least in standard minimal subtraction.
On the other hand, in a parallel development, a so-called “𝐶-scheme" was introduced[12], in which
it was observed that additional RG functions were free of even 𝜁s up to certain orders[13]. Soon
afterwards it was proposed that the "no-𝜋" property holds to all orders in the scheme termed the �̂�
scheme[14–16].

Meanwhile work on momentum subtraction (MOM) schemes has also demonstrated evidence
for the no-𝜋 property[17–21]. All the developments so far mentioned have been for single-coupling
theories except in the case of the supersymmetric Wess-Zumino model, for which the no-𝜋 property
was proved up to five loops for a general tensor coupling[22].

In this talk we present a proposal (described in more detail in Ref. [23]) which extends the
earlier ideas described here to the multicoupling case and also has the potential to set the various
schemes mentioned above in a unified context. We suggest that for any (multi-coupling) theory there
are at least two, and possibly several, renormalisation schemes in which even 𝜁s are absent. These
can all be specified by redefinition of the couplings. Some of these schemes have simple physical
definitions. One of them is a minimal scheme where we absorb even-𝜁-dependent finite parts of
divergent 𝑛-point functions; another is a variant of "MOM", i.e. it is specified by absorbing all finite
parts of 𝑛-point functions in some well-defined way. It is easiest to demonstrate these suggestions for
the supersymmetric Wess-Zumino model where the 𝛽 function is defined by the two-point function,
but we believe that the idea has a wider application. The immediate consequence of this choice of
model is that the interactions amongst a multiplet of 𝑁 superfields Φ𝑖 , 𝑖 = 1, . . . 𝑁 , are defined by
the superpotential

𝑊 (Φ) = 𝑔𝑖 𝑗𝑘Φ𝑖Φ 𝑗Φ𝑘 + c.c., (1)

leading to three-point interactions; so we shall make this simplifying assumption in the rest of the
talk.

2. Basic ideas

We start by describing the basic features of the subtraction procedure in order to establish no-
tation. We define counterterms recursively by the standard 𝑅-operation. We define the counterterm
𝐹 by

𝐹 =
∑︁

𝐹 (𝐺), 𝐹 (𝐺) = −𝑅(𝐺). (2)

Here the sum is over all the relevant graphs 𝐺 (in this case the two-point graphs with three-point
vertices which contribute to the anomalous dimension), and 𝑅 denotes subtractions of diagrams with
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counterterm insertions corresponding to divergent subgraphs. To give a simple two-loop example,
for the single two-loop graph 𝐺2 contributing to the anomalous dimension we have

𝑅(𝐺2) = −
𝐹1,1

𝜖
, (3)

where 𝐹1,1 is the one-loop simple pole contribution to 𝐹 (shortly to be defined in general). We
are using here a somewhat schematic notation in which the diagram stands both for the Feynman
integral and the associated product of couplings. We write 𝑑 = 4 − 𝜖 so that divergences appear as
poles in 𝜖 , and denote the usual dimensional regularisation mass parameter by 𝜇. We include finite
parts in the definition of 𝐹 in Eq. (2); though standard minimal subtraction involves subtraction only
of the pole term. We write the bare coupling 𝑔𝐵 (assuming now the use of minimal subtraction) as

𝑔𝐵 = 𝜇
1
2 𝜖

(
𝑔 + 1

𝜖

{
𝐹1,1 + 𝐹2,1 + 𝐹

𝜁3
3,1𝜁3 + 𝐹

𝜁4
4,1𝜁4

}
+ 1
𝜖2

{
𝐹2,2 + 𝐹

𝜁3
4,2𝜁3

})
+ . . . (4)

Here, 𝐹𝜁𝑛
𝐿,𝑚

denotes the 𝐿-loop, order 𝜖−𝑚 𝜁𝑛-dependent contribution to 𝐹, while 𝐹𝐿,𝑚 similarly
denotes the 𝐿-loop, order 𝜖−𝑚 non-𝜁-dependent contribution to 𝐹. We have

𝜇
𝑑

𝑑𝜇
𝑔𝐵 = 0, (5)

and the 𝛽-function is defined by

𝛽(𝑔) = 𝜇
𝑑

𝑑𝜇
𝑔 = −𝜖𝑔 + 𝛽(𝑔) (6)

which entails
𝛽
𝜁𝑛
𝐿

= 𝐿𝐹
𝜁𝑛
𝐿,1, 𝛽𝐿 = 𝐿𝐹𝐿,1, (7)

where 𝛽
𝜁𝑛
𝐿

, 𝛽𝐿 are the 𝜁𝑛-dependent and purely rational 𝐿-loop contributions, respectively, to 𝛽(𝑔).
We also have from Eq. (5)

𝐹
𝜁3
4,2 =

1
4

(
𝛽
𝜁3
3 · 𝐹1,1 + 𝛽1 · 𝐹𝜁3

3,1

)
=

1
4

(
3𝐹𝜁3

3,1 · 𝐹1,1 + 𝐹1,1 · 𝐹𝜁3
3,1

)
, (8)

where
𝑓 · ≡ 𝑓

𝜕

𝜕𝑔
or 𝑓 · ≡ 𝑓 𝑖 𝑗𝑘

𝜕

𝜕𝑔𝑖 𝑗𝑘
(9)

depending on whether we have a single coupling 𝑔 or a tensor coupling 𝑔𝑖 𝑗𝑘 . In minimal subtraction
the first appearance of 𝜁4 is at four loops, so we now want to find a renormalisation scheme where
𝛽
𝜁4
4 = 0. A change of scheme corresponds to a coupling redefinition 𝑔 → 𝑔′(𝑔) which leads to a

variation 𝛽(𝑔) → 𝛽′(𝑔′) given by

𝛽′(𝑔′) = 𝜇
𝑑

𝑑𝜇
𝑔′ = (𝛽(𝑔))𝑘𝑙𝑚 𝜕

𝜕𝑔𝑘𝑙𝑚
𝑔′(𝑔) = 𝛽(𝑔) · 𝑔′(𝑔). (10)

An infinitesimal variation 𝑔′ = 𝑔 + 𝛿𝑔 then gives 𝛽′ = 𝛽 + 𝛿𝛽 with

𝛿𝛽 = [𝛽, 𝛿𝑔] + . . . (11)

with the commutator defined by
[𝑋,𝑌 ] = 𝑋 · 𝑌 − 𝑌 · 𝑋. (12)
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3. Properties of Feynman diagrams

In this Section we give a brief introduction to the properties of Feynman diagrams with regard
to even 𝜁-functions which lead to the existence of schemes in which these even 𝜁s are absent. It
turns out that the even-𝜁 terms in (at least a large class of) Feynman diagrams are not independent; in
fact they only occur in certain combinations with the odd 𝜁-functions. For an illustration, consider
the simple generic loop

𝑝𝜇

𝑎

𝑏
(13)

(where 𝑎, 𝑏 are the powers of the propagators and 𝑝𝜇 is the incoming momentum) for which we
have the well-known result

1
(𝑝2)𝑎+𝑏− 𝑑

2
𝐿 (𝑎, 𝑏), where 𝐿 (𝑎, 𝑏) = (4𝜋) 𝜖

2
Γ( 𝑑2 − 𝑎)Γ( 𝑑2 − 𝑏)Γ(𝑎 + 𝑏 − 𝑑

2 )
Γ(𝑎)Γ(𝑏)Γ(𝑑 − 𝑎 − 𝑏) . (14)

A large class of Feynman integrals may be written as a product of 𝐿 (𝑎, 𝑏) for various 𝑎, 𝑏. For
logarithmically divergent integrals the arguments 𝑎, 𝑏 are of the form 𝑎 = 1+𝛼𝜖 , 𝑏 = 1+ 𝛽𝜖 . There
is an expansion

𝐿 (1 + 𝛼𝜖, 1 + 𝛽𝜖) = 2
𝜖 (2𝛼 + 2𝛽 + 1) exp

{ 𝜖
2

[
ln 4𝜋 − 𝛾 − 𝜖

4
𝜁2

]}
× exp


∞∑︁
𝑗=1

(𝛼 + 𝛽 + 1) 𝑗 𝜖
𝑗

𝑗
+

∞∑︁
𝑗=3

ℎ 𝑗 (𝛼, 𝛽)𝜁 𝑗
𝜖 𝑗

𝑗

 (15)

where

ℎ 𝑗 (𝛼, 𝛽) = (𝛼 + 1
2 )

𝑗 + (𝛽 + 1
2 )

𝑗 + (−𝛼 − 𝛽 − 1
2 )

𝑗 − (−𝛼) 𝑗 − (−𝛽) 𝑗 − (𝛼 + 𝛽 + 1) 𝑗 . (16)

It is easy to check that
ℎ4 =

3
4
ℎ3 +

1
64

, (17)

irrespective of 𝛼, 𝛽; and there are similar expressions for ℎ 𝑗 for higher even values of 𝑗 . We would
like to use this to derive a relation between 𝐹

𝜁4
𝐿,𝑚

and 𝐹
𝜁3
𝐿,𝑚+1 which we will be able to exploit in

Eqs. (7), (8); but these quantities may include 𝜁-dependent counterterms which do not obey this
relation between ℎ4 and ℎ3. Accordingly, we define 𝐺

𝜁𝑛
𝐿,𝑚

to be the value of 𝐹𝜁𝑛
𝐿,𝑚

after omitting
𝜁𝑛-dependent counterterms. Then we do have

𝐺
𝜁4
𝐿,𝑚

=
3
4
𝐺

𝜁3
𝐿,𝑚+1 (𝑚 ≥ 0). (18)

We further obtain

𝐺
𝜁6
𝐿,𝑚

=
5
4

(
𝐺

𝜁5
𝐿,𝑚+1 −

1
3
𝐺

𝜁4
𝐿,𝑚+2

)
,

𝐺
𝜁8
𝐿,𝑚

=
7
4

(
𝐺

𝜁7
𝐿,𝑚+1 −

1
2
𝐺

𝜁6
𝐿,𝑚+2 +

1
24

𝐺
𝜁4
𝐿,𝑚+4

)
. (19)

Relations like this can be extended to higher even 𝜁 and higher loops (in fact for almost1 all known
“𝑝-integrals” - two-point integrals with a single momentum dependence). Consequently, the 𝐺𝜁𝑘

𝐿,𝑚

for even 𝑘 may be recursively written in terms of the 𝐺𝜁𝑘
𝐿,𝑚

for lower odd values of 𝑘 .
1See the Conclusions for a clarification of this caveat.
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4. Scheme redefinitions

In this Section we shall show how relations such as those in Eqs. (18) and (19) may be exploited
to define scheme redefinitions making a transformation from MS to a scheme in which even 𝜁s are
absent.

We have from Eq. (18) combined with the definition of the 𝐺𝜁𝑛
𝑙,𝑚

,

𝐺
𝜁3
3,1 = 𝐹

𝜁3
3,1, 𝐺

𝜁4
3,0 =𝐹

𝜁4
3,0, 𝐺

𝜁4
4,1 = 𝐹

𝜁4
4,1,

𝐺
𝜁3
4,2 =𝐹

𝜁3
4,2 − 𝐹

𝜁3
3,1 · 𝐹1,1. (20)

Combining this with Eq. (8), we obtain

𝐺
𝜁3
4,2 =

1
4
[𝐹1,1, 𝐹

𝜁3
3,1] =

1
4
[𝛽1, 𝐺

𝜁3
3,1] . (21)

Using

𝐺
𝜁4
4,1 =

3
4
𝐺

𝜁3
4,2,

𝐺
𝜁4
3,0 =

3
4
𝐺

𝜁3
3,1. (22)

we then find that
𝛽
𝜁4
4 = 4𝐹𝜁4

4,1 = 4𝐺𝜁4
4,1 = [𝛽1, 𝐺

𝜁4
3,0] = [𝛽1, 𝐹

𝜁4
3,0] . (23)

In the light of Eq. (11), this may be removed by a coupling redefinition with

𝛿𝑔 = −𝐹𝜁4
3,0𝜁4 (24)

i.e. removing the 𝜁4-dependent finite part of 𝐹. This idea may clearly be extended to higher orders;
using the further relations in Eq. (19), our proposal is that all even 𝜁 may be removed by

𝛿𝑔 = −
( [
𝐹
𝜁4
3,0 + 𝐹

𝜁4
4,0

]
𝜁4 +

[
𝐹
𝜁6
4,0 + 𝐹

𝜁6
5,0

]
𝜁6 +

[
𝐹
𝜁8
5,0 + 𝐹

𝜁8
6,0

]
𝜁8

)
+ . . . (25)

This is a scheme where we subtract all even-𝜁-dependent finite parts in 𝐹- we call it MOM′. We
have shown cancellation of even 𝜁s in the MOM′ scheme up to a loop order beyond their first
appearance for 𝜁4 (i.e. 5 loops) and 𝜁6 (i.e. 6 loops). We have also examined the MOM scheme in
which we subtract all finite parts. As we have mentioned, there is a considerable literature devoted
to this scheme, though largely in the single-coupling case. We have shown (at least up to five loops
for 𝜁4) that even 𝜁s also cancel in MOM for a general multi-coupling theory; it seems likely that
MOM shares the no-𝜋 property with MOM′ at higher orders as well.

5. Example: the Wess-Zumino model

The supersymmetric Wess-Zumino model is naturally written in terms of superfields Φ with a
cubic superpotential given by Eq. (1). As we have suggested already, the Wess-Zumino model is a
useful test-bed since the 𝛽-function is determined by the anomalous dimensions. Schematically,

𝛽 = S3 𝛾 (26)
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where S3 denotes the sum over the three terms where 𝛾 is attached to each external line. Likewise
we consider variations 𝛿𝑔 given by

𝛿𝑔 = S3 ℎ . (27)

The anomalous dimension is given up to four loops by

𝛾 =
1
2

+ . . . − 3
4
(2𝜁3 + 𝜁4)

−3
4
(2𝜁3 − 𝜁4)

©« + + 2 ª®¬ + . . . . (28)

Here, in contrast to Eq. (3), each diagram denotes purely a combination of contracted tensor
couplings and the results of Feynman integrals are subsumed into the coefficients multiplying the
diagrams. The dots at vertices denote the complex conjugated terms in Eq. (1); since in this theory
the propagators link a Φ to a Φ̄, the contractions are always between conjugated and unconjugated
tensors. We only show the terms relevant for our discussion, omitting all the two-and three-loop
terms and the non-𝜁4-dependent four-loop terms. In line with Eq. (24) and in the light of Eq. (27),
we have

ℎ (3) = −1
4
𝛾
𝜁3
3 𝜁4 = −3

8
𝜁4 . (29)

Eq. (11) then leads to (once again using Eq. (27))

𝛿𝛽 =[𝛿𝑔 + 𝛿𝑔∗, 𝛽] ⇒ 𝛿𝛾 = (𝛿𝑔 + 𝛿𝑔∗) · 𝛾 − (𝛽 + 𝛽∗) · ℎ

=(𝛿𝑔) (3)𝑘𝑙𝑚 𝜕

𝜕𝑔𝑘𝑙𝑚
𝛾 (1) − 𝛽 (1)𝑘𝑙𝑚 𝜕

𝜕𝑔𝑘𝑙𝑚
ℎ (3) + ∗ terms. (30)

It is then easy to check using Eqs. (26), (28) and (29) that the 𝜁4 terms cancel. We have indicated in
red the terms in Eq. (28) which form up into an insertion of 𝛽 (1) on ℎ (3) and are therefore cancelled
by the second term in Eq. (30).

6. Conclusions

Our goal in this talk has been to seek renormalisation schemes in which even 𝜁-functions are
absent from renormalisation group functions for a general theory. To this end we have considered
two renormalisation schemes, MOM and MOM′. The MOM scheme is defined by subtracting𝑂 (𝜖0)
parts of 𝑛-point functions in addition to poles in 𝜖 , while in the MOM′ scheme we only subtract
even-𝜁 finite parts. We have considered a general multi-coupling theory, focussing attention on one
where the 𝛽-function is defined by the anomalous dimensions; the supersymmetric Wess Zumino
model is a concrete example. In this context we have shown (for more details see Ref. [23])
that the no-𝜋 theorem holds for 𝜁4 up 5 loops in both the MOM′ and MOM schemes and for 𝜁6

up to 6 loops in the MOM′ scheme. We believe that these results may be extended to higher
loops and higher even-𝜁s for both MOM and MOM′, but evidently this will require more work.
The theoretical underpinning of our work is based on 𝑝-integrals, i.e. integrals with a single
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momentum dependence; these naturally arise in two-point functions, hence our primary interest
in theories whose renormalisation is determined by anomalous dimensions. However we believe
that an extension to 3-point and 4-point graphs is feasible, based on nullification of one or two
(respectively) of the external momenta. There are certainly well-motivated nullification procedures
for 3-point vertices in QCD, as described in Ref. [21]. Furthermore this nullification procedure has
also been carried out for 𝜙3 theory in six dimensions[24]. The implementation of a MOM-type
scheme in both these cases leads to the expected absence of even 𝜁s up to the loop order considered.
It seems likely that we shall be able to apply the same procedure to 𝜙4 theory in four dimensions,
despite additional complications arising in this case from potential infra-red issues when nullifying
momenta in 4-point graphs. Finally there is evidence that the expected behaviour of 𝑝-integrals on
which we have been relying breaks down at high loop orders[25]2-in fact at eight loops, for 𝜁12.
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