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1. Introduction

In these proceedings, we tackle the computation of the electron self-energy, which is one of the
most basic objects in quantum electrodynamics, up to three loops. This continues the long history of
calculating the electron self-energy, starting with the one-loop computation by Schwinger [1] which
was then carried on with the two-loop treatment by A. Sabry [2] that was just recently completed
and rephrased into the modern mathematical language in [3]. Such calculations give us insides
of the perturbative structure, not just of quantum electrodynamics itself, but any quantum field
theory. To handle the perturbative treatment we use the modern approach of computing scattering
amplitudes [4–9] by decomposing the self-energy in terms of a basis of independent scalar Feynman
integrals, which are also known as master integrals.

The success of current amplitude computations lies especially in the understanding of the
special functions to which the master integrals evaluate. This means the analytic properties like
functional relations and identities, as well as the numerical evaluation at given points, are well under
control. This is particularly true for the function space of so-called multiple polylogarithms [10–15],
where it was shown that many scattering amplitudes can be expressed through these [16]. With
these proceedings, we want to go one step further and show that more general functions involving
elliptic objects can appear in quantum field theory computations and present techniques to handle
these new special functions.

These proceedings consist mainly of three parts. In the first part, we discuss the decomposition
of the electron self-energy into scalar Feynman integrals. Afterwards, in section three, we describe
how the master integrals necessary for the self-energy up to three loops can be computed using an
𝜖-factorized differential equation. Section four deals with the iterated integrals showing up in the
self-energy. Finally, in section five we give our conclusions.

2. Decomposition into Feynman integrals

In our discussion, we want to compute the electron self-energy in quantum electrodynamics
up to three loops. We denote by 𝑚 and 𝑝 the mass and momenta of the electron, and we work in
𝑑 = 4 − 2𝜖 dimensions. Moreover, we define 𝑥 = 𝑝2/𝑚2 as our convenient variable, in particular,
when we later want to expand the self-energy for small momenta. We work in a general 𝑅𝜉 gauge
for the photon propagator. To simplify the subsequent expressions, we set from here on the electron
mass to unity, i.e. 𝑚 = 1. We leave it as an exercise for the reader to reintroduce the mass
dependence in our formulas if wanted.

We can write down the electron self-energy in terms of two different form factors

Σ̂(𝑝) = Σ𝑉 (𝑝) /𝑝 + Σ𝑆 (𝑝)1 , (1)

where both form factors can be computed in a perturbative series

Σ𝑉,𝑆 (𝑝) =
∞∑︁
ℓ=0

(𝛼
𝜋

)ℓ
Σ
(ℓ )
𝑉,𝑆

(𝑝) , (2)

where each coefficient Σ (ℓ )
𝑉,𝑆

(𝑝) is expressed through ℓ-loop scalar Feynman integrals.
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Figure 1: Feynman graphs necessary at one, two and three loops for the electron self-energy. At three loops
we only show three out of the 20 different diagrams.

Our workflow for computingΣ (ℓ )
𝑉,𝑆

(𝑝) is as follows: We first generate all relevant diagrams using
the program QGRAF [17]. We handle all tensor structures with FORM such that we can decompose
Σ
(ℓ )
𝑉,𝑆

(𝑝) just through scalar integrals [18–20]. Using the program Reduze 2 [21, 22] we can map
all integrals to families of scalar integrals for which we determine a set of master integrals. Besides
Reduze 2 we also apply Kira 2 [23–25] to compute a set of differential equations our master
integrals satisfy. This set of differential equations, which we also call the Gauss-Manin system, is
then transformed into an 𝜖-form [26] such that we can write down systematically the 𝜖-expansion
of our master integrals in terms of iterated integrals. Afterwards, these iterated integrals are
plugged into our form factors, such that necessary simplifications and cancellations are happening
analytically. Finally, the series expansions of the iterated integrals are used to obtain numerical
values for the form factors which we visualize in a plot. Notice that we do not renormalize the
electron self-energy in these proceedings and leave this open for our upcoming work [27], where
also additional material and explicit results will be presented.

Let us start with the relevant Feynman diagrams in quantum electrodynamics up to three loops.
At one loop, there is only one possible Feynman diagram one can draw, and at two loops, there
are three different ones (see figure 1). For three loops, the combinatorics gets a little bit more
complicated, such that QGRAF turned out to be very useful. We found 20 different diagrams, some
of which are also shown in figure 1.

Figure 2: Top sector Feynman graphs defining the three different families for the electron self-energy at one,
two and three loops. We call them the bubble, kite and paramecia family.

Now, in our second step, we map for each loop order these diagrams to a family of scalar
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Feynman integrals. For one and two loops, the corresponding family is given by the bubble,
with one massless propagator having two master integrals, and the massive kite containing eight
master integrals (see figure 2). We are particularly interested in the three-loop so-called paramecia
family [28] (shown on the right in figure 2) which is defined by the following propagators1

𝐷1 = 𝑘2
1 , 𝐷2 = 𝑘2

2 , 𝐷3 = 𝑘2
3 ,

𝐷4 = (𝑘1 − 𝑝)2 − 𝑚2 , 𝐷5 = (𝑘2 − 𝑝)2 − 𝑚2 , 𝐷6 = (𝑘3 − 𝑝)2 − 𝑚2 ,

𝐷7 = (𝑘1 + 𝑘3 − 𝑝)2 − 𝑚2 , 𝐷8 = (𝑘2 + 𝑘3 − 𝑝)2 − 𝑚2 , 𝐷9 = (𝑘1 + 𝑘2 + 𝑘3 − 𝑝)2 − 𝑚2 ,

(3)

such that an integral in this family is given by

𝐼𝑛1,𝑛2,𝑛3,𝑛4,𝑛5,𝑛6,𝑛7,𝑛8,𝑛9 = 𝑒3𝜖 𝛾
∫ 3∏

ℓ=1

𝑑𝑑𝑘ℓ

𝑖𝜋𝑑/2
1

𝐷
𝑛1
1 ...𝐷

𝑛9
9

. (4)

Then by using integration-by-parts relations we find the following set of 51 master integrals

𝐼0,0,0,1,1,1,0,0,0 , 𝐼1,0,0,1,1,1,0,0,0 , 𝐼1,0,1,0,1,0,1,0,0 , 𝐼1,0,1,−1,1,0,1,0,0 ,

𝐼0,0,0,1,1,1,1,0,0 , 𝐼0,0,0,2,1,1,1,0,0 , 𝐼1,1,0,0,0,0,1,1,0 , 𝐼0,1,0,1,0,0,1,1,0 ,

𝐼0,1,0,2,0,0,1,1,0 , 𝐼−1,1,0,1,0,0,1,1,0 , 𝐼0,0,0,1,1,0,1,1,0 , 𝐼1,1,1,0,0,0,0,0,1 ,

𝐼1,1,1,−1,0,0,0,0,1 , 𝐼1,1,0,1,1,1,0,0,0 , 𝐼1,1,1,0,1,0,1,0,0 , 𝐼1,1,1,−1,1,0,1,0,0 ,

𝐼0,1,0,1,1,1,1,0,0 , 𝐼0,1,0,1,1,1,2,0,0 , 𝐼1,1,1,0,0,−1,1,1,0 , 𝐼1,1,1,0,0,−2,1,1,0 ,

𝐼1,0,0,1,1,0,1,1,0 , 𝐼0,0,0,1,1,1,1,1,0 , 𝐼0,0,−1,1,1,1,1,1,0 , 𝐼0,0,−2,1,1,1,1,1,0 ,

𝐼1,1,1,1,0,0,0,0,1 , 𝐼1,0,1,0,1,0,1,0,1 , 𝐼1,0,1,0,1,0,2,0,1 , 𝐼1,1,1,0,1,0,1,0,1 ,

𝐼1,1,1,1,1,1,0,0,0 , 𝐼1,0,1,1,1,1,1,0,0 , 𝐼1,1,1,1,0,0,1,2,0 , 𝐼1,2,1,1,0,0,1,1,0 ,

𝐼1,1,0,1,1,0,2,1,0 , 𝐼1,1,0,2,1,0,2,1,0 , 𝐼1,0,0,1,1,1,1,2,0 , 𝐼1,1,1,1,1,0,0,0,2 ,

𝐼1,1,2,1,1,0,0,0,1 , 𝐼1,1,1,2,1,0,0,0,2 , 𝐼1,0,1,1,1,0,1,0,2 , 𝐼1,1,2,0,0,0,1,1,1 ,

𝐼1,1,1,0,0,1,1,1,1 , 𝐼1,1,1,1,2,1,1,0,0 , 𝐼1,1,0,1,1,1,1,1,0 , 𝐼1,1,1,1,1,0,1,0,1 ,

𝐼1,1,1,2,1,0,1,0,1 , 𝐼1,1,1,1,0,0,1,1,1 , 𝐼0,1,1,1,1,0,1,1,1 , 𝐼1,1,1,1,0,1,1,1,1 ,

𝐼1,1,1,1,1,1,1,1,0 , 𝐼1,1,1,1,1,0,1,1,1 , 𝐼1,1,1,1,1,−1,1,1,1 . (5)

For the later considerations, the sectors

ES1 : 𝐼0,0,0,1,1,1,1,0,0 , 𝐼0,0,0,2,1,1,1,0,0

ES2 : 𝐼0,1,0,1,0,0,1,1,0 , 𝐼0,1,0,2,0,0,1,1,0 , 𝐼−1,1,0,1,0,0,1,1,0

ES3 : 𝐼0,1,0,1,1,1,1,0,0 , 𝐼0,1,0,1,1,1,2,0,0

ES4 : 𝐼1,0,1,0,1,0,1,0,1 , 𝐼1,0,1,0,1,0,2,0,1 , 𝐼1,1,1,0,1,0,1,0,1

(6)

are particularly interesting, because their maximal cuts can be related, as we show in the next section,
to the maximal cuts of the equal-mass sunset integral. This will then show that these integrals are
of elliptic type and we need special care for deriving an 𝜖-factorized differential equation.

1Actually, to capture all scalar integrals, we have to introduce two scalar families at three loops. Nevertheless, we do
not discuss here the second family because, after integration-by-parts reduction, one does not find any new additional
master integrals that are not already included in the paramecia family.
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3. Canonical differential equations for elliptic Feynman integrals

In this section, we want to briefly discuss how one can construct an 𝜖-factorized basis, starting
with the Laporta basis in (5). We put special effort into the four elliptic sectors in (6). But let us
start by briefly recalling the concept of an 𝜖-factorized or canonical basis.

From integration-by-parts identities, one can show that a generic set of master integrals satisfies
a first-order system of differential equations of the following form

𝑑

𝑑𝑥
®𝐼 = 𝐵(𝑥; 𝜖) ®𝐼 , (7)

where the Gauss-Manin connection 𝐵(𝑥; 𝜖) consists of rational functions in 𝑥 and 𝜖 , and is naturally
in block-triangular form if one collects the master integrals by sectors. Our choice (5) satisfies
exactly such a Gauss-Manin system. It is convenient to transform this system into a so-called
𝜖-factorized form

®𝐽 = 𝑇 (𝑥; 𝜖) ®𝐼 with
𝑑

𝑑𝑥
®𝐽 = 𝜖 𝐴(𝑥) ®𝐽 and 𝜖 𝐴(𝑥) = 𝑇

(
𝐵(𝑥; 𝜖)𝑇−1 − 𝑑𝑇−1

𝑑𝑥

)
, (8)

such that in the new basis of master integrals, the connection form 𝐴(𝑥) is not any more dependent
on the dimensional regulator 𝜖 . When such a basis is found, the solution of this Gauss-Manin
system can easily be written down through the path-ordered exponential

®𝐽 (𝑥) = P exp
[
𝜖

∫
𝛾

𝐴(𝑥)
]
®𝐽0 , (9)

where ®𝐽0 contains the boundary condition at 𝑥0 and the integration path connects the boundary point
to the generic point 𝑥. So we see that formally, in each order in 𝜖 the solutions can be expressed
through iterated integrals of the kernels appearing in the connection form 𝐴(𝑥). If 𝐴(𝑥) just contains
d log-forms of rational functions in 𝑥 the function space can be identified with the space of multiple
polylogarithms. In our case, we will see that certain entries in 𝐴(𝑥) contain elliptic integrals, and
therefore a broader function space is required. Subsequently, we describe techniques for how the
rotation 𝑇 (𝑥; 𝜖) can be constructed.

Most of the sectors in the paramecia family, or at least their maximal cuts, can be related to
integrals over d log-forms [29] and therefore one can apply standard methods [30–32] to determine
good initial integrals from which one can derive an 𝜖-basis. For instance, an integrand analysis in
Baikov representation [33–35] turned out to yield most of the canonical integrals in our case. Here
the first 29 integrals in (5) are built out of bubble-type graphs such that it is more convenient to look
for candidates in two dimensions and then relate them to four dimensions using dimensional shift
relations [36]. With this approach, one easily finds suitable candidates for an 𝜖-factorized basis,
except for the elliptic sectors (6).

For the elliptic sectors, we follow the approach introduced in[37] which is based on splitting the
matrix of fundamental solutions of the corresponding elliptic differential equation into a unipotent
and semi-simple part, which can be seen as a generalization of the leading singularities in the d
log-case. To start this approach we have to identify suitable initial candidates that have, in particular,
no infrared or ultraviolet singularities. Different from the d log-case, where one looks for integrals

5
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such that their integrands can also be brought into d log-form, we look for integrals such that their
integrands can be associated with standard differential forms2 of an elliptic curve given by

𝜆1 =
𝑋𝑑𝑋

𝑌
, 𝜆2 =

𝑑

𝑑𝑧

(
𝑑𝑋

𝑌

)
, 𝜆3 =

𝑋𝑑𝑋

𝑌
, (10)

where the elliptic curve is defined by a quartic polynomial equation𝑌2 = 𝑃4(𝑋) and 𝑧 is the modulus
of the curve. Notice here that the first differential 𝜆1 is holomorphic and therefore has no poles at
all, whereas 𝜆2 has a double pole at infinity, which is different than what one would consider in the
d log-situation. The differential form of the third kind 𝜆3 has a single pole and is therefore more
similar to a d log-form than the other two forms.

Figure 3: Three-loop banana graph with one massless propagator.

Let us look in detail into the elliptic sector ES2 which describes the three-loop one massless
propagator banana graph shown in figure 3. As already noticed it is more convenient to discuss this
sector in 𝑑 = 2 − 2𝜖 dimensions which is why we use the dimension shift operator D− to transform
our integrals into the right dimension. Using a loop-by-loop Baikov representation [38] one can
show that the maximal cut of the first master integral in this sector is related to 𝜆1, i.e.

D− 𝐼max cut
0,1,0,1,0,0,1,1,0 ∼

∫
𝑑𝑋

𝑌
with

𝑌2 = 𝑃sunset(𝑋) = 𝑋 (𝑋 − 4) (𝑋 − (1 −
√
𝑥)2) (𝑋 − (1 +

√
𝑥)2) ,

(11)

where the elliptic curve 𝑃sunset is exactly the one already appearing in the two-loop equal-mass
sunset integral [6]. Very similarly, one can show that the maximal cuts of the other two master
integrals in this sector can be related to the other differential forms 𝜆2 and 𝜆3. Up to a simple
rotation of the master integrals in ES2 we find that their maximal cuts satisfy the Gauss-Manin
system

𝐵ban(𝑥; 𝜖) =
©­­«

0 1 0
3−𝑥

(9−𝑥 ) (1−𝑥 )𝑥 − 9−20𝑥+3𝑥2

(9−𝑥 ) (1−𝑥 )𝑥 0
0 0 0

ª®®¬ + O(𝜖) , (12)

where the second row is exactly describing the Picard-Fuchs equation

Lban = (9 − 𝑥) (1 − 𝑥)𝑥𝜕2
𝑥 + (9 − 20𝑥 + 3𝑥2)𝜕𝑥 − (3 − 𝑥) , Lban𝜛𝑖 (𝑥) = 0 (13)

2Here we use for convenience as differential of the second kind the derivative of the first one which is in cohomology
equivalent to a linear combination of the standard forms 𝑋𝑑𝑋

𝑌
, 𝑋

2𝑑𝑋
𝑌

.
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governing the periods 𝜛0, 𝜛1 of the sunset elliptic curve 𝑃sunset. The two solutions can be computed
using the Frobenius method yielding

𝜛0(𝑥) = 1 + 𝑥

3
+ 5𝑥2

27
+ 31𝑥3

243
+ 71𝑥4

729
+ O(𝑥5) ,

𝜛1(𝑥) = 𝜛0(𝑥) log(𝑥) + 4𝑥
9

+ 26𝑥2

81
+ 526𝑥3

2187
+ 1253𝑥4

6561
+ O(𝑥5) ,

(14)

where the solution 𝜛0 is locally holomorphic and 𝜛1 contains also contributions of log(𝑥). We also
call both solutions the holomorphic and logarithmic periods, respectively. With these solutions, we
can build the full matrix of fundamental solutions, which we also call the Wronskian matrix

𝑊 =

(
𝜛0(𝑥) 𝜛1(𝑥)
𝜛′

0(𝑥) 𝜛′
1(𝑥)

)
=

(
𝜛0(𝑥) 0
𝜛′

0(𝑥)
1

(9−𝑥 ) (1−𝑥 )𝑥𝜛0 (𝑥 )

) (
1 𝜏 =

𝜛1 (𝑥 )
𝜛0 (𝑥 )

0 1

)
C 𝑊ss𝑊u , (15)

where we define the unipotent part such that it satisfies the following nilpotent differential equation

𝑑

𝑑𝜏
Wu =

(
0 1
0 0

)
Wu . (16)

Here, 𝜏 is the 𝜏-parameter of the sunset elliptic curve. We can interpret the semi-simple part of the
Wronskian matrix as being the generalized leading singularities of our master integrals. Therefore,
the main step to constructing an 𝜖-factorized basis is to remove these leading singularities so that
we just end up with the pure part of our integrals. Since this analysis was done in exactly two
dimensions, we have to take into account a further rotation, removing the last non-𝜖-factorized
entries of the differential equations. This rotation can easily be determined, and in total, we have
the following result

𝑇ban(𝑥; 𝜖) =
©­­«

𝜖 0 0
−1

2
(
9 + 30𝑥 − 7𝑥2) 𝜖𝜛2

0 1 0
0 0 𝜖

ª®®¬𝑊−1
ss

©­­«
1 0 0

− 1+3𝜖
𝑥

− 3
𝑥

0
− 1

3 (3 + 𝑥) 0 1

ª®®¬ with

𝐴ban(𝑥) =
©­­­«

9+30𝑥−7𝑥2

2(9−𝑥 ) (1−𝑥 )𝑥
1

(9−𝑥 ) (1−𝑥 )𝑥𝜛2
0

0
(81+1188𝑥−594𝑥2+372𝑥3−23𝑥4)𝜛2

0
4(9−𝑥 ) (1−𝑥 )𝑥

9+30𝑥−7𝑥2

2(9−𝑥 ) (1−𝑥 )𝑥 36𝜛0

−2
3𝜛0 0 1

𝑥

ª®®®¬ ,

(17)

which rotates the initial integrals in sector ES2 to an 𝜖-basis. Observe that here we have embedded
naturally the 2 × 2 Wronskian matrix into a 3 × 3 matrix by adding an identity on the last entry.

Proceeding in a similar fashion with the other three elliptic sectors, we can also construct
𝜖-factorized bases for them. Interestingly, in all four elliptic sectors, the elliptic curve can be traced
back to the sunset one 𝑃sunset defined in (11). To obtain a full 𝜖-form for all 51 master integrals,
a further rotation, including mixing to the subsectors, has to be considered. Fortunately, there are
no couplings between the different elliptic sectors, and thus it is not hard to find the final rotation,
which can be found in the ancillary file of [27]. Let us remark that the only new transcendental
functions we have to introduce are 𝜛0 and its derivative 𝜛′

0, whereas 𝜛′
0 only appears in the rotation

and not in the final 𝜖-form. Moreover, we find that the top sector integrals, i.e. the kite at two loops
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and the paramecia integral at three loops, do not couple explicitly in the Gauss-Manin system to
the differential forms of second kind which contain double poles. In the next section, we want to
continue discussing the forms appearing in the final 𝜖-factorized connection form at two and three
loops and how the iterated integrals constructed out of them look like.

4. Two and three loop self-energy in terms of iterated integrals

After we have computed the 𝜖-factorized differential equations relevant for the three-loop
electron self-energy, we can look in detail into the appearing integration kernels. Collecting the
independent kernels, we find the following 16 ones:

𝑓𝑖 =

{
1

3 + 𝑥
,

1
1 + 𝑥

,
1
𝑥
,

1
𝑥 − 1

,
1

2 − 𝑥
,

1
𝑥 − 9

,

1√︁
(3 + 𝑥) (𝑥 − 1)

,
1√︁

(𝑥 − 1) (𝑥 − 9)
,

1√︁
(𝑥 − 1) (𝑥 − 9)

1
𝑥

}
for 𝑖 = 1, . . . , 9 , (18)

𝑓𝑖 =

{
1

(𝑥 − 9) (𝑥 − 1)𝑥𝜛0(𝑥)2 , 𝜛0(𝑥),
𝜛0(𝑥)
𝑥 − 1

,
(𝑥 − 3)𝜛0(𝑥)√︁
(𝑥 − 1) (𝑥 − 9)

,
(𝑥 + 3)4𝜛0(𝑥)2

𝑥(𝑥 − 1) (𝑥 − 9) ,

(3 + 𝑥)
(
81 + 729𝑥 − 117𝑥2 + 11𝑥3) 𝜛0(𝑥)2

𝑥(𝑥 − 1) (𝑥 − 9) ,

(81 + 1188𝑥 − 594𝑥2 + 372𝑥3 − 23𝑥4)𝜛0(𝑥)2

𝑥(𝑥 − 1) (𝑥 − 9)

}
for 𝑖 = 10, . . . , 16 , (19)

in which the first 9 are familiar d log-kernels and the additional 7 kernels are of elliptic type. At one
loop, we only find 𝑓3, 𝑓4 as independent entries in the differential equation, giving rise to harmonic
polylogarithms[11]. In the two-loop case, we can identify three d log-kernels and four elliptic
kernels given by 𝑓3, 𝑓4, 𝑓6 and 𝑓10, 𝑓11, 𝑓12, 𝑓14, respectively. The iterated integrals constructed out
of them can be identified with the space of iterated integrals of modular forms of Γ1(6)[39] another
well studied function space. These are all the integration kernels necessary to express all master
integrals appearing in the self-energy up to three loops.

In the next step, we can analyze the iterated integrals and the associated kernels within the bare
electron self-energy Σ

(3)
𝑉,𝑆

, extending the analysis up to the finite part in the regulator 𝜖 . To do this,
we also have to fix the boundary conditions for our 51 master integrals. We do this numerically
around 𝑥 = 1 by using AMFlow [40]. With a subsequent PSLQ algorithm, we can reconstruct
the transcendental numbers, which are built from suitable products, through the following set of
numbers

{1, 𝜋, log(2), 𝜁 (3),Li4(1/2), 𝜁 (5),Li5(1/2)} . (20)

Notice that these are also the transcendental numbers appearing in the 𝑔 − 2 of the electron except
Li5(1/2) which also drops out in the finite part of the self-energy but is necessary to fix all 51 master
integrals up to weight five. For further details about the reconstruction, we again refer to [27]. With
the boundary conditions at hand, it turns out that not all of the 19 kernels show up in the finite part
of Σ (3)

𝑉,𝑆
, and similarly at lower loops an even smaller number as discussed above is required. In

more detail, we only find the following iterated integrals in the different 𝜖-orders in the self-energy

8
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1/𝜖3 1/𝜖2 1/𝜖 𝜖0

1L 1 1, 𝐼 ( 𝑓4) = log(1 − 𝑥)
2L 1 1, 𝐼 ( 𝑓4) MF

3L 1 1, 𝐼 ( 𝑓4) MF 183 different iterated integrals of max. length 5

.

Here we have included also the empty iterated integral 𝐼 () B 1 and the setMF is defined by

MF ={1, 𝐼 ( 𝑓4), 𝐼 ( 𝑓11), 𝐼 ( 𝑓12), 𝐼 ( 𝑓3, 𝑓4), 𝐼 ( 𝑓4, 𝑓4), 𝐼 ( 𝑓10, 𝑓11),
𝐼 ( 𝑓3, 𝑓4, 𝑓4), 𝐼 ( 𝑓4, 𝑓3, 𝑓4), 𝐼 ( 𝑓11, 𝑓10, 𝑓11), 𝐼 ( 𝑓12, 𝑓10, 𝑓11)}

(21)

and can be identified with a subset of iterated integrals of modular forms of Γ1(6). We can now
make three important observations: Foremost, the maximal length of iterated integrals is given by 1,
3 and 5 for 1, 2 and 3 loops, respectively. Moreover, we see that poles at two and three loops contain
exactly the same iterated integrals as the ones appearing already at lower loops. This shows directly
that cancellations between the iterated integrals are happening analytically, such that the iterated
integrals group in the right way as expected from renormalization. Thirdly, in the 183 iterated
integrals in the finite part at three loops, the d log-kernel 𝑓1 and all elliptic kernels proportional to
𝜛2

0 , which can be traced back to the differential of the second kind, drop out and contribute only in
higher orders in 𝜖 to the self-energy. This is an interesting observation since it suggests that these
kernels are of too high transcendental weight to be allowed in the finite part of the self-energy.

To end our discussion about the self-energy, we also mention how one can evaluate the above
introduced iterated integrals. For this, we consider a local series expansion of the kernels in (19)
such that the multiple integrations can easily be performed on the level of generalized power series,
including also log(𝑥) terms. For this purpose, we have to use the local holomorphic series of
the period 𝜛0 given in (14). By plugging all series expansions of all iterated integrals into the
self-energy, we obtain a local series expansion of Σ (ℓ )

𝑉,𝑆
for ℓ ≤ 3. To extend this to a global function,

we have to perform analytic continuation, which can be done using the differential equation. Notice
that if we want to continue, e.g., to values 𝑥 > 1, we have to use a new local holomorphic period
𝜛1

0 which is given by the holomorphic solution of (13) now around 𝑥 = 1. As an example, we show
in figure 4 the finite part of the bare self energy Σ

(3)
𝑉

. From figure 4 we can see immediately the
threshold singularity at 𝑥 = 1 and the vanishing imaginary part for 𝑥 < 1 as expected.

5. Conclusions

In these proceedings, we have discussed the bare electron self-energy up to three loops. This
is one fundamental object in quantum electrodynamics, which also exhibits elliptic contributions
starting from two loops. We have given a strategy of tackling espacially these elliptic contributions
by constructing an 𝜖-factorized basis such that the master integrals and even the self-energy can be
expressed through independent elliptic iterated integrals. These can be used to analyze the analytic
structure of the electron self-energy, and, moreover, these functions can be evaluated in the whole
parameter space by using generalized series expansions together with analytic continuation.

9
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2

The Electron Self-Energy at 2L & 3L
๏ For example, for           we can plot the finite remainder of           at 3L:

<latexit sha1_base64="+tPHcMOsHtTOXb4k2fnJduGuDIE="></latexit>

› = 1
<latexit sha1_base64="O65z5QAc6vP+zRqHuHsXA3dqUys="></latexit>�e,V
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<latexit sha1_base64="Zd/JXLYF/JE8VMUwmECl1gCQy/w="></latexit>Im

threshold singularity 
@

<latexit sha1_base64="JolBSO8MfGO4Yx0usnjh0ly0VVc="></latexit>

s = 1

๏ Nevertheless, we s>ll have to do some further things: full analy>c con>nua>on, renormaliza>on, improve 
our tool box,…

๏ We see that although ellip>c integrals are involved in this problem we can derive and evaluate an 
expression for the electron self-energy up to 3L.

Preliminary 
results

Figure 4: Plot of the finite part of the self-energy Σ
(3)
𝑉

for 𝜉 = 1.

We leave it to future work appearing in our upcoming publication [27] to discuss the renor-
malization of the electron self-energy. Moreover, further details and explicit results can be found
in [27] and the thereby attached ancillary file.
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