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1. Introduction

Tensor networks (TNs) are promising sign-problem-free tools that enable studies of static
and dynamic properties of quantum many-body systems [1–8]. In the context of high-energy and
nuclear physics, much effort has been directed at lattice gauge theories (LGTs), both Abelian [9–
23] and non-Abelian gauge theories [24–29], in 1+1 and higher dimensions [30–36], see also
Refs. [8, 37–39] for reviews.

This work reports a tensor-network study of the SU(2) LGT in (1+1)D, employing a recently-
developed theoretical formulation [40]. This LGT has been extensively studied in Refs. [24–26],
where different formulations of the SU(2) gauge theory [41], namely truncated angular-momentum
basis and purely fermionic basis, were used to compute static and dynamic quantities. The static
quantities of interest comprise ground-state energy estimation via the density-matrix renormal-
ization group (DMRG) and its continuum-limit extrapolation for various model parameters. In
contrast, the dynamical computation explores string-breaking dynamics in the presence of static
and dynamical charges on the lattice. (See Refs. [42–47] for recent quantum-simulation experiments
of string breaking in Abelian models). While Refs. [24, 26] observe string-breaking dynamics in
the SU(2) LGT, they are either constrained to small Hilbert-space truncation cutoffs and lattice sizes
(Ref. [24]) or to the evolution of only static charges (Ref. [26]).

This work is aimed at extending existing results, setting the stage for studies of other non-
equilibrium processes, such as post-collision phenomena, in the SU(2) gauge theory. Specifically,
we simulate the dynamics of string breaking by exploring sufficiently long strings composed
of dynamical fermions embedded in sufficiently large lattice volumes to enable approaching the
continuum limit. We also control the gauge-boson-truncation effects, reaching larger cutoffs than
previously accessible. As a result, we observe richer phenomenology compared to previous studies.
Our work is enabled by a gauge-invariant reformulation of the Kogut-Susskind LGT [48] based on
loop, string, and hadron degrees of freedom [40], resulting in a simpler Abelianized theory.

This proceedings is organized as follows: Section 2 briefly reviews the loop-string-hadron
formalism, followed by Sec. 3, where the tensor-network framework for the LSH formulation is
introduced. In Sec. 4, we compute the ground-state energy along with the effect of external static
charges, i.e., the static potential. Section 5 contains a study of the quenched dynamics of dynamical
strings and the string-breaking phenomenon. We conclude in Sec. 6.

2. Loop-string-hadron formulation

The loop-string-hadron (LSH) formulation replaces the gauge-invariant degrees of freedom,
such as Wilson loops/lines, by local snapshots of the same. These snapshots are defined using
a gauge-invariant and orthonormal LSH basis, which in (1+1)D is characterized by a set of three
integers {𝑛𝑙, 𝑛𝑖 , 𝑛𝑜}. 𝑛𝑙 ∈ Z+∪{0} is a bosonic quantum number while 𝑛𝑖 , 𝑛𝑜 ∈ {0, 1} are fermionic
quantum numbers. The global state is a tensor-product state associated with these quantum numbers
at each site 𝑟 of the spatial lattice, i.e.,

⊗𝑁
𝑟=1 |𝑛𝑙, 𝑛𝑖 , 𝑛𝑜⟩𝑟 , glued together via an Abelian Gauss law

(AGL), 𝑁𝐿 (𝑟) = 𝑁𝑅 (𝑟 + 1), where 𝑁𝐿 (𝑟) ≔
[
𝑛𝑙 + 𝑛𝑜 (1 − 𝑛𝑖)

] ���
𝑟

and 𝑁𝑅 (𝑟) ≔
[
𝑛𝑙 + 𝑛𝑖 (1 − 𝑛𝑜)

] ���
𝑟
,

∀𝑟 . For a more detailed exposition of the LSH formalism, see Ref. [40].
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ĵ†
8 ĵ>

1p
#̂'+1

#̂' = =̂; + =̂8 (1 � =̂>) ˆ̄L�+ = 1p
#̂!+1
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Table 1: The list of relevant operators for defining the LSH Hamiltonian and dynamical strings in (1+1)D.
All the operators and states in the table above carry a site index A that has been suppressed for brevity. The
symbol � is used to denote addition modulo 2.

with a block-diagonal structure, simplifying algorithmic complexity. Additionally, we impose a
penalty term in the Hamiltonian to ensure the satisfaction of the AGL. The LSH Hamiltonian com-
prises at most nearest-neighbor interactions, allowing a compact matrix-product-operator (MPO)
representation.

Finally, tensor-network techniques rely upon truncating the bond dimension at some maximum
value, denoted as ⇡max, to enable efficient computations. The tensors � constitute the variational
degrees of freedom which are optimized to approximate ground states and perform time evolution.
We rely upon existing methods defined in the ITensors.jl package [43] to construct and optimize the
MPS and MPOs needed for this study.

4. Probing static properties

Using standard DMRG methods, the ground state for the dimensionless Hamiltonian
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Table 1: The list of relevant operators for defining the LSH Hamiltonian and dynamical strings in (1+1)D.
Note that 𝜆̂− |0, 𝑛𝑖 , 𝑛𝑜⟩ = 0 and the symbol ⊕ is used to denote addition modulo 2. These definitions are valid
for a single site; when embedded in a lattice, the operators carry a position label 𝑟 and the 𝜒(𝑟) definitions
must be endowed with additional structure to ensure proper anticommutation relations [40].

The Hamiltonian in the LSH formulation can be written as:

𝐻̂ (LSH) =
𝑔2𝑎

4

𝑁−1∑︁
𝑟=1

[
𝑁̂𝐿 (𝑟)

2

(
𝑁̂𝐿 (𝑟)

2
+ 1

)
+
(
𝑁̂𝐿 (𝑟) ↔ 𝑁̂𝑅 (𝑟 + 1)

)]
+ 𝑚

𝑁∑︁
𝑟=1

(−1)𝑟 (𝑛̂𝑖 (𝑟) + 𝑛̂𝑜 (𝑟))

+ 1
2𝑎

𝑁−1∑︁
𝑟=1

{
1√︁

𝑁̂𝐿 (𝑟) + 1

[
Ŝ++

out(𝑟)Ŝ+−
in (𝑟 + 1) + Ŝ+−

out (𝑟)Ŝ−−
in (𝑟 + 1)

] 1√︁
𝑁̂𝑅 (𝑟 + 1) + 1

+ H.c.

}
.

(1)

Here, 𝑔 is the coupling strength, 𝑚 is the mass of the staggered fermions, and 𝑎 is the lattice spacing.
The operators used in the Hamiltonian are defined in Table 1. In this work, we apply open boundary
conditions (OBCs) but our formalism is also applicable to periodic boundary conditions (PBCs).

3. Tensor-network framework for the LSH formulation

A matrix-product-state (MPS) ansatz for a (1+1)D system with 𝑁 spatial sites is given by

|Ψ[𝐴]⟩ =
∑︁

𝑝1,..., 𝑝𝑁

∑︁
𝑎1,...,𝑎𝑁−1

𝐴𝑎1
𝑝1 𝐴

𝑎1,𝑎2
𝑝2 . . . 𝐴𝑎𝑁−1

𝑝𝑁
|𝑝1, 𝑝2, . . . , 𝑝𝑁 ⟩.

Here, 𝑝𝑟 and 𝑎𝑟 label the physical and virtual degrees of freedom at site 𝑟 , respectively. The
maximum number of values of 𝑎𝑟 is referred to as the bond dimension. In order to represent LSH
states using an MPS, the infinite-dimensional Hilbert space associated with the gauge bosons must
be truncated. One could either restrict the loop quantum number to 𝑛𝑙 (𝑟) ≤ 𝑛𝑙,max, ∀𝑟 , leading to a
local physical Hilbert-space dimension of 4(𝑛𝑙,max+1). The other choice is to restrict the value of the
𝑁𝐿/𝑅 quantum number to 𝑁𝐿/𝑅 ≤ 2𝐽max, where 𝐽max is the cutoff on the irreducible representation
of the gauge group in the Kogut-Susskind formulation. The truncated LSH state in either case can
be represented with an MPS, with |𝑝𝑟 , . . . , 𝑝𝑁 ⟩ ≡

⊗𝑁
𝑟=1 |𝑝𝑟 ⟩ and |𝑝𝑟 ⟩ ≡ |𝑛𝑙 (𝑟), 𝑛𝑖 (𝑟), 𝑛𝑜 (𝑟)⟩.

The LSH Hamiltonian admits two 𝑈 (1) global symmetries resulting in the conservation of
charges 𝑄 =

∑𝑁
𝑟=1

[
𝑛𝑖 (𝑟) + 𝑛𝑜 (𝑟)

]
and 𝑞 =

∑𝑁
𝑟=1

[
𝑛𝑜 (𝑟) − 𝑛𝑖 (𝑟)

]
. For OBCs, 𝑄 ∈ [0, 2𝑁] and

𝑞 ∈ [−𝑁, 𝑁], and only certain combinations of 𝑄 and 𝑞 are consistent with the AGL. We restrict
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ourselves to the 𝑞 = 0 and 𝑄 = 𝑁 sector. These global symmetries endow the local tensors
with a block-diagonal structure, simplifying algorithmic complexity. Additionally, we impose a
penalty term in the Hamiltonian to ensure the satisfaction of the AGL. The LSH Hamiltonian com-
prises at most nearest-neighbor interactions, allowing a compact matrix-product-operator (MPO)
representation.

Finally, tensor-network techniques rely upon truncating the bond dimension at some maximum
value, denoted as 𝐷max, to enable efficient computations. The tensors 𝐴 constitute the variational
degrees of freedom which are optimized to approximate ground states and perform time evolution.
We rely upon existing methods defined in the ITensors.jl package [49] to construct and optimize the
MPS and MPOs needed for this study.

4. Probing static properties

Using standard DMRG methods, the ground state for the dimensionless Hamiltonian

𝐻̂ ≔
2
𝑎𝑔2 𝐻̂

LSH = 𝐻̂𝐸 + 𝜇𝐻̂𝑀 + 𝑥𝐻̂𝐼 , (2)

with 𝜇 = 2𝑚
𝑔

√
𝑥 and 𝑥 = 1

𝑎2𝑔2 , is estimated for two cases: (a) the zero static-charge sector and (b) a
pair of spatially separated static charges. The AGL is imposed as a penalty term in the Hamiltonian

as 𝐻̂P = ΛP
∑

𝑟

[
𝑁̂𝐿 (𝑟) − 𝑁̂𝑅 (𝑟 +1) +Q𝑟

]2
where Q𝑟 ∈ Z originates from the static charges inserted

on the lattice.1 We take ΛP to be proportional to the upper bound on the single-site energy, i.e.,
ΛP = 2𝜇 + 2𝑥 + 𝐽max(2𝐽max + 1), and verify that the computations are effectively restricted to the
correct AGL sector.

We first consider the zero static-charge sector, i.e., Q𝑟 = 0 ∀𝑟 . The initial state is taken to be
the strong-coupling vacuum defined as fully filled odd sites |𝑛𝑙 = 0, 𝑛𝑖 = 1, 𝑛𝑜 = 1⟩ and empty even
sites |𝑛𝑙 = 0, 𝑛𝑖 = 0, 𝑛𝑜 = 0⟩. The dimensionless ground-state energy is denoted as 𝑤0 = 2

𝑎𝑔2 𝐸0,
where 𝐸0 is the ground-state energy associated with the dimensionful Hamiltonian 𝐻̂.

The lattice computations are specified by dimensionless quantities 𝑁, 𝑥, 𝑚
𝑔 , and 𝐽max or 𝑛𝑙,max,

corresponding to a lattice with (dimensionless) lattice spacing 𝑔𝑎 = 1√
𝑥

and (dimensionless) volume
𝑔𝐿 = 𝑁√

𝑥
with 𝐿 ≔ 𝑁𝑎. The continuum limit corresponds to the following ordered limit at fixed

𝑚
𝑔 : At a fixed 𝑥, take 𝐽max or 𝑛𝑙,max → ∞ followed by 𝑁 → ∞. Finally, take 𝑥 → ∞ [50].

We compute the value of the ground-state energy for 𝑚
𝑔 = 0.5 and 𝐽max = 2 for various values

of 𝑔𝑎 and system volumes 𝑔𝐿 in Fig. 1(a). The solid black line corresponds to the analytical
continuum value of − 2

𝜋 for 𝑚
𝑔 = 0 [25, 51]. A complete continuum-limit study of this energy is in

progress (the dotted line is to guide the eye and is not yet a fit to data).
Next, we compute the ground-state energy in the external static-charge sector: we insert

Q𝑟1 = −1 and Q𝑟2 = +1 at sites 𝑟1 and 𝑟2, respectively, with 𝑟1 < 𝑟2, and leave Q𝑟 = 0 for 𝑟 ≠ 𝑟1, 𝑟2.
The static potential is obtained by subtracting the ground-state energy in the zero static-charge sector,
𝑤0, from the ground state energy 𝑤(𝑟1, 𝑟2) for different string lengths 𝑔𝑙 ≔ 𝑔𝑎(𝑟2 − 𝑟1) ≡ 𝑔𝑎Δ𝑟 ,
where both 𝑤0 and 𝑤(𝑟1, 𝑟2) are calculated via DMRG. Figure 1(b) represents the static potential per

1This approach is similar to the one followed in Ref. [24]—it neglects any modifications to the Hamiltonian resulting
from the non-vanishing static charges.
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Figure 1: (a) Ground-state energy in the vacuum sector plotted as a function of lattice spacing 𝑔𝑎 for various
system volumes 𝑔𝐿 and for 𝐽max = 2. The theoretical value (solid black line) corresponds to 𝑚

𝑔 = 0 while
the DMRG data points correspond to 𝑚

𝑔 = 0.5. (b) and (c) Properties of the static-string ground state for
𝑔𝐿 = 12, 𝑥 = 6, 𝑚

𝑔 = 1.225, and a maximum loop quantum number 𝑛𝑙,max = 1. (b) shows the static potential
per unit volume while (c) shows the maximum bond dimension as a function of the static-string length 𝑔𝑙.
𝐸𝐸, 𝑂𝑂, 𝐸𝑂, and 𝑂𝐸 refer to choices of placements of the string endpoints at even (E) or odd (O) sites.
The values corresponding to 𝑂𝐸 and 𝐸𝑂 strings often coincide, thus the green diamonds are often hidden
behind the purple hexagons.

unit volume as a function of the static-string length for different choices of static-charge placement:
the string begins/ends at an even (E) site or odd (O) site, and for 𝑔𝐿 = 12, 𝑔𝑎 = 0.4, and 𝑚

𝑔 = 1.225.
These plots are generated by imposing a maximum loop-quantum-number cutoff of 𝑛𝑙,max = 1. A
small difference in the string potential is observed, but the overall behavior is consistent across all
four choices of string endpoints. The linear part of the potential corresponds to the unbroken string
while the plateau region signals the broken string.

Figure 1(c) shows the maximum bond dimension the MPS requires to reach convergence as a
function of 𝑔𝑙. We set the DMRG’s convergence threshold to less than 10−8. The maximum bond
dimension peaks around the length of 𝑔𝑙 ∼ 8, at which the string breaks, indicating a larger amount
of entanglement in the state at the transition point.

While not shown here, we have also performed computations for the static potential for a larger
volume 𝑔𝐿 = 16 and a smaller lattice spacing 𝑔𝑎 = 0.25 at 𝐽max = 2 at different values of 𝑚

𝑔 .
We observe that as the quark mass is decreased, the amount of entanglement in the system grows,
consistent with a faster approach to the string-breaking point. The complete result of this analysis
will be reported elsewhere. These results are in qualitative agreement with those in Ref. [24] which
employed a smaller cutoff.

5. Dynamic properties

With the MPS ansatz described in Sec. 3, one can set up a dynamical study of this model as well.
In particular, we aim to study the string-breaking phenomenon for an initial (bare) mesonic state.
This state is constructed from the interacting vacuum by applying a “string” operator, i.e, a gauge-
invariant-antiquark bilinear operator where the pair is separated by distance 𝑔𝑙 = 𝑔𝑎Δ𝑟 . This state,
which is not an eigenstate of the LHS Hamiltonian, is then evolved under the LSH Hamiltonian.
The extended meson is expected to disintegrate into shorter mesons due to confinement.

5
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Figure 2: (a) Ground-state-subtracted site-local electric-field density, Eq. (5), and (b) fermion-number
density, Eq. (6), as a function of time. (c) and (d) are the same quantities as in (a) and (b) but at single time
slices 𝑡aphys = 0.0, 𝑡bphys = 3.12, and 𝑡cphys = 7.92. (Note that 𝑡a coincides with the y-axis in the top subplots.)

In the LSH formulation, this (bare) mesonic state can be written as:

|𝑆[𝐴]⟩ = 𝑆𝑟 ,Δ𝑟 |Ω[𝐴]⟩, (3)

where we choose the string operator to be 𝑆𝑟 ,Δ𝑟 ≔ 1
𝑔𝑎

(
𝑆LSH
𝑟 ,Δ𝑟 − 𝑆LSH

𝑟+1,Δ𝑟

)
. Here, 𝑟 is assumed odd and

Δ𝑟 is assumed even. This choice in the staggered formulation turns out to be consistent with the string
operator in the continuum formulation. |Ω[𝐴]⟩ in Eq. (3) is the ground state of the Hamiltonian
defined in Eq. (2) obtained via DMRG. The string operator of the LSH formulation can be derived
from the string operator of the Kogut-Susskind formulation (i.e., Ψ̂†

𝑟𝑈̂𝑟+1𝑈̂𝑟+2 . . . 𝑈̂𝑟+Δ𝑟−1Ψ̂𝑟+Δ𝑟
with Ψ being the staggered fermion operator and 𝑈 being the gauge-link operator) using the
mapping between the LSH and Kogut-Susskind operators. The result is:

𝑆LSH
𝑟 ,Δ𝑟 =

∑︁
𝜎1,𝜎2,...,𝜎Δ𝑟=±

1√︁
𝑁̂𝐿 (𝑟) + 1

Ŝ+,𝜎1
out (𝑟) ˆ̄L𝜎1,𝜎2 (𝑟 + 1) . . . ˆ̄L𝜎Δ𝑟−1,𝜎Δ𝑟 (𝑟 + Δ𝑟 − 1)

× Ŝ𝜎Δ𝑟 ,−
in (𝑟 + Δ𝑟) 1√︁

𝑁̂𝑅 (𝑟 + Δ𝑟) + 1
, (4)

where the string (Ŝ𝜎1,𝜎2
out/in ), loop ( ˆ̄L𝜎1,𝜎2), and diagonal 𝑁̂𝐿/𝑅 operators are defined in Table 1.

Once the initial mesonic state is evolved for time 𝑡, it turns into state |𝜓(𝑡)⟩ ≔ 𝑒−𝑖𝑡 𝐻̂ |𝑆[𝐴]⟩.
Here, 𝐻̂ is the dimensionless Hamiltonian defined in Eq. (2), and 𝑡 is dimensionless time. The
following set of observables are then used to analyze the dynamics of string breaking:

1. (Ground-state subtracted) instantaneous electric-flux density at each lattice site,

𝐻E(𝑟, 𝑡) ≔ ⟨𝜓(𝑡) | ℎ̂E(𝑟) |𝜓(𝑡)⟩ − ⟨Ω[𝐴] | ℎ̂E(𝑟) |Ω[𝐴]⟩, (5)
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Figure 3: Loschmidt echo plotted as a function of 𝑡phys for fixed 𝑚
𝑔 = 0.2 parameter sets (a) {𝑁, 𝑥,Δ𝑟, 𝑇} =

{32, 1, 4, 3}, (b) {64, 4, 8, 1.5}, and (c) {128, 16, 16, 0.75}.
where ℎ̂E(𝑟) ≔ 𝑁̂𝐿 (𝑟 )

4

(
𝑁̂𝐿 (𝑟 )

2 + 1
)
+ 𝑁̂𝑅 (𝑟 )

4

(
𝑁̂𝑅 (𝑟 )

2 + 1
)
.

2. (Ground-state-subtracted) instantaneous fermion-number density at each lattice site,

𝐻N(𝑟, 𝑡) ≔ ⟨𝜓(𝑡) | [𝑛̂𝑖 (𝑟) + 𝑛̂𝑜 (𝑟)] |𝜓(𝑡)⟩ − ⟨Ω[𝐴] | [𝑛̂𝑖 (𝑟) + 𝑛̂𝑜 (𝑟)] |Ω[𝐴]⟩. (6)

3. Loschmidt-echo rate function,

𝜆(𝑡) = − lim
𝑁→∞

1
𝑁

log( |G(𝑡) |), (7)

where G(𝑡) ≔ ⟨𝑆[𝐴] |𝜓(𝑡)⟩. This rate is used to detect the transition from a longer initial
string to a collection of shorter strings with small to vanishing overlap to the initial state.

We employ the 2-site time-dependent variational-principle (TDVP) algorithm [52, 53] to evolve
the initial mesonic state with the Hamiltonian in Eq. (2) for the lattice parameters 𝑁 = 128, 𝑥 =
16, 𝑚𝑔 = 0.2, 𝐽max = 5/2, 𝐷max = 200, 𝑇 = 2, and 𝑑𝑡 = 0.01. 𝐷max is the maximum bond
dimension that is dynamically set by the TDVP algorithm, 𝑇 is the total (dimensionless) simulation
time, and 𝑑𝑡 is the chosen TDVP time step. The dimensionful time is defined as 𝑡phys =

( 2
𝑎𝑔2

)
𝑡.

Figure 2(a) displays the heatmap of 𝐻E in the (𝑡phys, 𝑟) plane. The initial string of length 𝑔𝑙 = 16,
positioned at the center of the lattice, begins to break apart from its ends as time progresses. This
observation aligns with the heatmap of the number-density displayed in Fig. 2(b). Streams of
particle and antiparticle pairs can be seen moving both inward and outward, resulting in subsequent
collision processes and the generation of several new pairs.

Figures 2(c) and (d) represent the local electric-field and fermion-number density at the spec-
ified time slices 𝑡a/b/c

phys , respectively. These plots demonstrate the change in the distribution of
electric-energy density from localized (string-like) in the center toward delocalized outward. This
result aligns with the abundant generation of particles in later times. These plots display richer
phenomenology compared with existing work [24, 26], given the larger Hilbert-space cutoff and
longer dynamical strings employed in this work. A comprehensive analysis of these dynamics, in-
cluding entanglement generation, correlations, and error estimates will be reported in an upcoming
publication.

Finally, the Loschmidt-echo rate function 𝜆 is used to probe the change in the initial state.
Non-analyticities in the rate function correspond to times of least overlap between the initial and
time-evolved states, thus signifying string breaking. We probe increasingly finer lattices at a fixed

7
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bare mass 𝑚
𝑔 = 0.2, physical volume 𝑔𝐿 = 32, and physical string length 𝑔𝑎Δ𝑟 = 4 in Fig. 3. The

Loschmidt-echo profiles line up closely as 𝐽max and 𝐷max are varied for 𝑥 = 1, 4. More pronounced
bond-dimension truncation effects are observed for the finest lattice spacing of 𝑥 = 16 at later times.
However, the profiles fluctuate significantly as the lattice spacing is decreased. This suggests a need
to use even finer lattice spacings to observe a stable profile and obtain the critical time associated
with the peak of the Loschmidt echo in the 𝑎 → 0 limit. Such a calculation requires a simultaneous
increase in the bond dimension to ensure accuracy. Work is in progress in this direction.

6. Conclusion

This work introduces a tensor-network framework within the loop-string-hadron formulation
of the SU(2) lattice gauge theory in (1+1)D. We compute the ground-state energy in this theory
in the zero and non-zero static-charge sectors. Additionally, we perform simulations of dynamical
string breaking that yield rich phenomenology. Our results extend the reach of previous work
to larger systems, larger Hilbert-space truncation cutoffs, and longer strings, with the possibility
of continuum-limit extrapolation even for dynamical quantities. A complete analysis of these
properties, including continuum-limit extrapolations, is underway.

A key takeaway from this work is that the LSH framework is a suitable starting point for
tensor-network studies of non-Abelian gauge theories: it only involves gauge-invariant degrees of
freedom, retains the locality of Hamiltonian, requires the imposition of only Abelian constraints,
and is generalized to any dimension and other boundary conditions. The simplified construction
of dynamical fermions will facilitate creating interacting wave packets in scattering simulations,
and the Abelianized form will likely enable efficient tensor-network ansatze in higher dimensions.
Generalization of these calculations to the SU(3) LGT is underway.
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