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Simulation of adiabatic methods on a quantum computer has been successfully used to prepare
ground states of gauge theories. However, this process requires a high number of quantum gates,
which is inaccessible in the NISQ era. An alternative approach is to use variational methods,
which utilise a hybrid of classical and quantum computation. We show how a particular example,
the Quantum Approximate Optimisation Algorithm (QAOA), can be used to prepare ground states
of the Schwinger Model, with an improved circuit depth compared to the adiabatic approximation
that targets current devices. In addition, we discuss how, in principle, Permutational Quantum
Computing can give us better optimisation beyond the NISQ era.
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1. Introduction

Lattice formulations provide a non-perturbative framework to perform gauge theory calcula-
tions in regimes with strong interactions. Whilst successful in many cases, there are issues when
attempting to evaluate a path integral using typical Markov-Chain Monte Carlo methods if the
integrand is highly oscillatory. This is known as the sign problem [1] and arises in many topics
of interest, such as real time evolution, out-of-equilibrium dynamics, high fermionic density, and
models with topological terms or chemical potentials. One option to circumvent the sign problem
is to switch to the Hamiltonian formulation, however the memory required to store the full wave
function is dependent on the size of the Hilbert space, which grows exponentially as the lattice is
scaled up. This fast becomes infeasible for classical computation, however the outlook for quantum
computation is promising, since qubits can more naturally represent these large Hilbert spaces.

An important consideration when designing a quantum computation is the resources required in
comparison with the current hardware available. The so called Noisy Intermediate Scale Quantum
(NISQ) era describes the class of present day quantum machines which have access to up to tens or
hundreds of qubits, whilst being prone to error rates which limit the depth (quantum gate count) of
a circuit [2]. For example, the adiabatic theorem can be used to guarantee preparation of the ground
state (approximate) of a desired Hamiltonian from a known Hamiltonian, however the number of
gates required to do so is infeasible to run without noise dominating [3]. Eventually it is hoped
that technologies will develop to the point of fault tolerance, which will likely require us to perform
quantum error corrections [4]. However, it is worth exploring the options for the quantum state
preparation that are available in the near-term. One choice is to employ variational methods, which
take a combined quantum and classical computation approach to reduce the resources required on
the quantum side. We set out the method for a particular form of this, a version of the Quantum
Approximate Optimisation Algorithm (QAOA) [5] which uses the 𝑆𝑛-CQA ansatz [6]. This has
potential applications with many particle physics models as it is suitable for models with an
𝑆𝑈 (𝑑)𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦.

2. Translating gauge theory Hamiltonian for quantum computation

Before diving into specific quantum algorithmic methods, it is useful to briefly cover the basics
of converting a particle physics problem into a form we can work with quantum computation. As
an example, and the main model considered in this paper, we look at the Schwinger model (1 + 1
dimensional QED) with an added topological term 𝜃 which as discussed in the previous section,
would cause a sign problem with Monte Carlo methods. Using the staggered fermion 𝜒𝑛 of mass
𝑚, the Hamiltonian for 𝑁 sites is given by

𝐻 = −𝑖
𝑁−1∑︁
𝑛=1

(
𝑤 − (−1)𝑛 𝑚

2
sin 𝜃

) [
𝜒†
𝑛𝑒

𝑖𝜙𝑛 𝜒𝑛+1 − h.c.
]
+ 𝑚 cos 𝜃

𝑁∑︁
𝑛=1

(−1)𝑛 𝜒†
𝑛𝜒𝑛 + 𝐽

𝑁−1∑︁
𝑛=1

𝐿2
𝑛, (1)

where for lattice spacing 𝑎 and coupling strength 𝑔, we have 𝑤 = 1/(2𝑎) and 𝐽 = 𝑔2𝑎/2. 𝜙𝑛 lives
on the 𝑛th site and is related to the gauge operator 𝜙𝑛 ↔ −𝑎𝑔𝐴1(𝑥), whilst 𝐿𝑛 lives on the link
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between sites 𝑛 and 𝑛 + 1 and is related to the conjugate momentum 𝐿𝑛 ↔ −Π(𝑥)/𝑔.

Quantum gates in theory can be any unitary operation, however in practice, there are standard
gate sets whose combinations can fully span the Hilbert space of the qubits [7]. Thus, we seek to
translate the Hamiltonian above into a form easily implementable with fundamental quantum gates.
The traditional approach is to map to a spin system, as the Pauli operators are the most common
basic gates. There are different choices to map fermions to spins, we opt for the Jordan-Wigner
transformation [8] given by

𝜒𝑛 =

(∏
𝑙<𝑛

−𝑖𝑍𝑙

)
𝑋𝑛 − 𝑖𝑌𝑛

2
, (2)

where any (𝑋𝑛, 𝑌𝑛, 𝑍𝑛) would indicate a corresponding Pauli gate on qubit 𝑛. We also have the
advantage in one spatial dimension to solve the Gauss law

𝐿𝑛 − 𝐿𝑛−1 = 𝜒†
𝑛𝜒𝑛 −

1 − (−1)𝑛
2

, (3)

providing we specify open boundary conditions. This comes with the drawback of introducing non-
local interactions to the final result, which may incur an extra cost depending on the connectivity
between qubits of a quantum computer [9]. The full spin Hamiltonian ignoring constant terms is
given by 𝐻 = 𝐻𝑍𝑍 + 𝐻± + 𝐻𝑍 , where

𝐻𝑍𝑍 =
𝐽

2

𝑁−1∑︁
𝑛=2

∑︁
1≤𝑘≤𝑙≤𝑛

𝑍𝑘𝑍𝑙,

𝐻± =
1
2

𝑁−1∑︁
𝑛=1

(
𝑤 − (−1)𝑛𝑚

2
sin 𝜃

)
[𝑍𝑛𝑍𝑛+1 + 𝑌𝑛𝑌𝑛+1] ,

𝐻𝑍 =
𝑚 cos 𝜃

2

𝑁∑︁
𝑛=1

(−1)𝑛𝑍𝑛 −
𝐽

2

𝑁−1∑︁
𝑛=1

(𝑛 mod 2)
𝑛∑︁
𝑙=1

𝑍𝑙 . (4)

It is not uncommon to need to implement the exponential of this or similar Hamiltonians, for example
with time evolution. And we use Suzuki-Trotter decomposition to evaluate the time evolution here
-

𝑒𝐴+𝐵 = lim
𝑛→∞

(
𝑒𝐴/𝑛𝑒𝐵/𝑛

)𝑛
, (5)

and truncate at some 𝑛, a step called Trotterisation. Using fewer terms will naturally require a lower
circuit depth, but the potential error incurred in doing so should be considered.

3. Variational Quantum Eigensolver

A general approach to utilising variational methods on a quantum computer is the Varia-
tional Quantum Eigensolver (VQE) [10]. Taking advantage of the fact that the ground state of a
Hamiltonian will trivially have an equal or lower energy compared to an arbitrary state, we use a
parametrised ansatz circuit to prepare a state and measure its energy. This energy becomes the cost
function 𝐶 (𝜽) = ⟨𝜓(𝜽) |𝐻 |𝜓(𝜽)⟩ which we optimise to a minimum using classical computation, as
shown in Figure 1. Choice of ansatz is a key decision which involves many factors to consider. For
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Figure 1: Circuit diagram showing the general structure of a VQE algorithm.

example, a hardware efficient ansatz [11] is generally applicable (i.e. agnostic to the target physics
model) and only uses nearest neighbour two-qubit gates (which typical quantum computers will
have connectivity to support.) However, the cost space is prone to suffer from vanishing gradients,
called barren plateaus, which has crushing consequences if the optimiser gets stuck in such a region
[12]. A logical consideration is to design problem specific ansatze, which can try to take advantage
of known features or symmetries of the model [13]. This can, say, reduce the number of parameters
needed to optimise over, which heuristically tends to mitigate the barren plateau problem. With this
in mind we consider QAOA.

4. Quantum Approximate Optimisation Algorithm (QAOA)

Quantum Approximate Optimisation Algorithm (QAOA) [5, 10] is a quantum algorithm de-
signed to generate a quantum state that represents a superposition of all potential solutions to a
given problem. It operates by applying a series of unitary transformations to an initial state, where
the number of transformations and their specific parameters are tailored to the problem for which
the QAOA algorithm is implemented. That being said, for our purposes we will treat it as a standard
VQE ansatz, which generates a state 𝜓𝑝 parametrised by the two vectors of parameters 𝜷 and 𝜸

given as

𝜓𝑝 (𝜷, 𝜸) = 𝑒−𝑖𝛽𝑝 �̂�𝑀 𝑒−𝑖𝛾𝑝 �̂�𝐶 . . . 𝑒−𝑖𝛽1�̂�𝑀 𝑒−𝑖𝛾1�̂�𝐶 , (6)

where𝐻𝑀 and𝐻𝐶 are the so-called mixer and cost Hamiltonians respectively. The cost Hamiltonian
is simply the problem Hamiltonian, for example that of the Schwinger model defined in equation 4.
The mixer Hamiltonian is more flexible, with the only condition being that it does not commute with
the cost Hamiltonian - this prevents the optimiser from getting stuck in a higher energy eigenstate.
Note that this is an example of a layered ansatz with 𝑝 layers, and thus 2𝑝 parameters. Choosing
more layers requires more gates but the parametrised space may encapsulate the ground state with
higher fidelity. As an example of this Figure 2 shows QAOA results for the Schwinger model from
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1 to 5 layers, using a standard XY mixer,

𝐻𝑀 =
1
2

𝑁−1∑︁
𝑛

𝑋𝑛𝑋𝑛+1 + 𝑌𝑛𝑌𝑛+1. (7)

We choose to initialise the qubits in the ground state of the mixer Hamiltonian. Considering this, the
motivation to choose an ansatz of this form is due to its similarity to using an adiabatic process. In
the limit of infinite layers, convergence is guaranteed as we can choose parameters to be equivalent
from adiabatically moving from the mixer Hamiltonian to the cost Hamiltonian.

Figure 2: Results of QAOA with 1-5 layers for the Schwinger model. The dotted line is the result obtained
from exact diagonalisation. 𝑁 = 4, 𝑚 = 0.35, 𝑤 = 0.6, 𝐽 = 5/12.

5. 𝑆𝑛 Convolutional Quantum Alternating Ansatz

The lack of theoretical guarantees of convergence for finite layers is a current downside of
QAOA, but only encourages exploring the practicality of the algorithm at varying levels. The 𝑆𝑛

Convolutional Quantum Alternating Ansatz takes the same form of equation 6, but uses a specially
designed mixer.

To introduce the 𝑆𝑛 Convolutional Quantum Alternating (𝑆𝑛-CQA) ansatz, it is first necessary
to cover the topic of the Schur basis. Typical quantum computation involves measuring qubits in the
basis of the eigenstates of the Pauli Z operator, commonly referred to as the computational basis.
However this is not the only model of quantum computation, and the alternative we consider is
permutational quantum computing. Here, we instead work in the state-space of qubits coupled via
Clebsch-Gordan coefficients, and measure in the basis of eigenstates of the total spin and angular
momentum operators, 𝑍 and 𝑆2 respectively. We choose the particular coupled qubit subsets of

{1, 2} ⊆ {1, 2, 3} · · · ⊆ {1, 2, 3 . . . 𝑁 − 1} ⊆ [𝑁], (8)
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where [𝑁] = {1, 2, 3, ..., 𝑁}. This choice is such that the simultaneous eigenstates of 𝑆2
[2] , 𝑆

2
[3] , . . . ,

𝑆2
[𝑁 ] , 𝑍[𝑁 ] form a complete basis for an N-qubit Hilbert space, which we denote the Schur basis. We

can use the relevant Clebsch-Gordan coefficients to map computational basis states to Schur basis
states (to some arbitrary order) by implementing an algorithm for the quantum Schur transform [14].

The name permutational quantum computing comes from the fact that instead of using quantum
gates, qubits are permuted before measurement. The central operations used in the 𝑆𝑛-CQA ansatz
are Young-Jucys-Murphy (YJM) elements, which are defined as a sum of transpositions

𝑋𝑘 = (1, 𝑘) + (2, 𝑘) + (3, 𝑘) + · · · + (𝑘 − 1, 𝑘), (9)

where 1 < 𝑘 ≤ 𝑁 and 𝑋1 = 0 is set as a convention. All YJM-elements are diagonal in the Schur
basis. Finally we are able to define the mixer Hamiltonian used in the (𝑆𝑛-CQA) ansatz, which
takes the form

𝐻𝑀 =
∑︁
𝑘<𝑙

𝛽𝑘𝑙𝑋𝑘𝑋𝑙, (10)

where the 𝛽𝑖’s are parameters to be optimised over and the 𝑋𝑖’s are the YJM elements.

6. Discussion

Our study explores quantum algorithms for preparing ground states in gauge theories, focusing
on the Schwinger model. Classical methods face challenges like the sign problem, making quantum
computation a promising alternative, particularly with variational approaches suited for NISQ-era
devices.

We investigated QAOA as a method for ground-state preparation and found it significantly
reduces circuit depth compared to adiabatic methods, making it more feasible for current hardware.
However, its convergence at finite depth remains uncertain. To enhance optimisation and mitigate
barren plateaus, we are currently testing the 𝑆𝑛 Convolutional Quantum Alternating Ansatz (𝑆𝑛-
CQA) for the Schwinger model. This ansatz leverages the Schur basis and permutational quantum
computing to encode problem-specific symmetries, potentially improving convergence. Our goal
is to determine whether this method consistently outperforms standard QAOA or at what limits it
provides better and faster convergence. Challenges remain, particularly in implementing Schur-
based operations on quantum processors and optimising variational parameters efficiently.
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