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We study the 3D Ising model in the infinite volume limit 𝑁𝑥,𝑦,𝑧 → ∞ by means of numerical
simulations. We determine 𝑇𝑐 as well as the critical exponents 𝛽, 𝛾 and 𝜈, based on finite-size
scaling and histogram reweighting techniques. In addition, we study a “dimensionally reduced”
scenario where 𝑁𝑧 is kept fixed (e.g. at 2, 4, 8), while the limit 𝑁𝑥,𝑦 → ∞ is taken. For each fixed
𝑁𝑧 we determine 𝑇𝑐 as well as 𝛽, 𝛾, 𝜈. For 𝑇𝑐 we find a smooth transition curve which connects
the well known critical temperatures of the 2D and the 3D Ising model. Regarding 𝛽, 𝛾, 𝜈 our data
suggest that the “dimensionally reduced” Ising model is in the same universality class as the 2D
Ising model, regardless of 𝑁𝑧 .
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1. Introduction

The Ising model is analytically solvable in 2D [1], and it has been investigated on various
occasions in 3D. We would like to know whether the two models connect smoothly to each other
if one studies a dimensionally reduced version of the latter, i.e. a model on a 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 lattice
where only the extensions 𝑁𝑥 = 𝑁𝑦 are taken large (jointly dubbed 𝐿 below), while 𝑁𝑧 is kept fixed.

To this end we write a 3D Ising model code with periodic boundary conditions, so that we may
study the 3D Ising model in the infinite volume limit, 𝑁𝑥,𝑦,𝑧 → ∞, as well as the dimensionally
reduced Ising model with fixed 𝑁𝑧 = 1, 2, 4, 8, in the limit 𝑁𝑥,𝑦 → ∞, using Monte Carlo
simulations. Our goal is to determine the critical temperature 𝑇𝑐 and the critical exponents 𝛽, 𝛾,
and 𝜈 through finite-size scaling and histogram reweighting techniques. Simulations are performed
for the ferromagnetic Ising model, governed by the Hamiltonian and partition function

H = −𝐽
∑︁
⟨𝑖 𝑗 ⟩

𝜎𝑖𝜎𝑗 , Z =
∑︁

configs{𝜎}
𝑒−𝛽H (1)

with 𝐽 > 0. We define the dimensionless coupling 𝐽 := 𝛽𝐽 with 𝛽 = 1/(𝑘B𝑇). The spin variables
𝜎𝑖 take values ±1 and the sum is over nearest-neighbor pairs ⟨𝑖 𝑗⟩, where 𝑖, 𝑗 label sites in 2D or 3D.

2. Numerical methods

2.1 Monte Carlo sampling method

We simulate 𝐿3 and 𝐿 × 𝐿 × 𝑁𝑧 Ising lattices using the Metropolis algorithm in combination
with the Wolff cluster algorithm. This way we ensure that the code is reasonably efficient, regardless
whether the dialed parameter 𝐽 is close to 𝐽𝑐 or far away from the latter. Random numbers are
generated using George Marsaglia’s KISS random number generator. For the 3D Ising model, we
obtain data for box sizes 𝐿 with 24 ≤ 𝐿 ≤ 256. In case of the dimensionally reduced Ising model
with 𝑁𝑧 = 1, 2, 4, 8, we use various ranges of 𝐿, for instance 32 ≤ 𝐿 ≤ 2048 for 𝑁𝑧 = 8. We
perform O(106-108) measurements with 10 updates between adjacent measurements, where an
update is defined as a Metropolis sweep over the whole lattice, followed by a Wolff cluster update.
O(105) measurements are discarded for thermalization before data acquisition begins.

2.2 Observables

We measure the following observables for a system with 𝑁 = 𝑁𝑥𝑁𝑦𝑁𝑧 sites

𝑚 =
1
𝑁

∑︁
𝑖∈Λ

𝜎𝑖 𝜒 = 𝐽𝑁 (⟨|𝑚 |2⟩ − ⟨|𝑚 |⟩2) 𝑈4 = 1 − ⟨|𝑚 |⟩4

3⟨|𝑚 |2⟩2 (2)

where ⟨.⟩ denotes the ensemble average, 𝑚 is called the magnetization, 𝜒 the magnetic susceptibility
and 𝑈4 the fourth-order Binder cumulant of the magnetization [2]. Both in 𝜒 and 𝑈4 we use the
finite-volume version (|𝑚 | instead of 𝑚).
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2.3 Finite-size scaling

We use the finite size scaling theory, first developed by Fisher [3–5], to determine the critical
exponents. For large values of 𝐿, the following scaling relations are expected to hold

⟨|𝑚 |⟩ |𝐽=𝐽𝑐 ∝ 𝐿−𝛽/𝜈 max
𝐽

𝜒 ∝ 𝐿𝛾/𝜈 𝜕𝑈4

𝜕𝐽

����
𝐽=𝐽𝑐

∝ 𝐿1/𝜈 . (3)

To determine the critical coupling 𝐽𝑐 we use Binder’s fourth-order cumulant crossing technique.
As the lattice size 𝐿 → ∞, the Binder cumulant 𝑈4 → 0 for 𝐽 < 𝐽𝑐 and 𝑈4 → 2/3 for 𝐽 > 𝐽𝑐. One
can plot 𝑈4 as a function of 𝐽 for different lattice sizes. For large enough values of 𝐿, the locations
of the intersections indicate 𝐽𝑐.

2.4 Histogram reweighting

The use of histograms allows to obtain additional information from Monte Carlo simulations
by transforming samples from a known probability distribution into samples from a different
distribution within the same state space [6, 7]. A Monte Carlo simulation is first run at the inverse
temperature 𝐽′. The expectation value of an observable O at another coupling 𝐽 in the vicinity of
𝐽′ can be determined via

⟨O⟩𝐽 =

〈
O𝑒−(𝐽−𝐽 ′ )𝐸

〉
𝐽 ′〈

𝑒−(𝐽−𝐽 ′ )𝐸
〉
𝐽 ′

. (4)

As 𝐽 can be varied continuously, the histogram method is able to precisely locate the peak in 𝜒 and
the intersections of 𝑈4.

2.5 Estimation of peak parameters

Because of the exponential increase in statistical errors when reweighting to a coupling 𝐽

significantly different from the simulated coupling 𝐽′, histogram reweighting is only feasible in
close proximity to 𝐽′. By fitting data from multiple simulations performed around the estimated
peak of the magnetic susceptibility 𝜒 or in the vicinity of the critical coupling 𝐽𝑐, we get preliminary
estimates of the relevant couplings for further simulations.

Fig. 1 shows Gaussian fits to the peak regions of 𝜒 for 𝑁𝑧 = 4, 𝐿 = 320 in the left panel and
𝑁𝑧 = 8, 𝐿 = 1792 in the right panel. Fig. 2 presents quadratic fits to 𝑈4 for a selection of 𝐿 × 𝐿 × 8
lattices. By averaging the intersection points of 𝑈4 for various 𝐿, a preliminary estimate of 𝐽𝑐 is
obtained for fixed 𝑁𝑧 (here 𝑁𝑧 = 8).

The couplings determined from the peaks in 𝜒 (as identified by the fits) are used to perform
additional simulations, which provide the final results for 𝛾/𝜈. Similarly, the preliminary estimates
of 𝐽𝑐 serve as the couplings for the simulations used to obtain the results for 𝐽𝑐, 𝛽/𝜈 and 𝜈.
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Figure 1: Gaussian fit to the peak region of the magnetic susceptibility for 𝑁𝑧 = 4, 𝐿 = 320 (left) and 𝑁𝑧 = 8,
𝐿 = 1792 (right). The locations of the peaks are used as preliminary estimates for further simulations.
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Figure 2: Binder cumulant 𝑈4 of the magnetization versus 𝐽 for 𝐿 × 𝐿 × 8 Ising lattices. The curves show
quadratic fits to the data, used to determine a preliminary estimate of the critical coupling at 𝑁𝑧 = 8.

2.6 Error analysis

We perform a delete-𝑑-jackknife analysis to estimate the statistical errors of all quantities,
where 𝑑 is chosen such that the data is divided into 10000 jackknife-blocks. Because of ensemble
sizes of O(106-108) and integrated autocorrelation times 1 ≤ 𝜏int ≤ 15 (in original units), it is
ensured that 𝑑 ≫ 2𝜏int + 1. In addition to statistical errors, one also has to deal with systematic
errors which stem from the fact that scaling relations are only valid for asymptotically large 𝐿. Our
strategy is to exclude the smallest systems from the analysis one by one, until the estimator of the
desired quantity, which includes only data with 𝐿min ≤ 𝐿, does not change significantly any more.
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3. Results

3.1 Critical coupling

Fig. 3 shows the locations of the Binder cumulant crossings for pairs of increasing lattice sizes
𝐿1 < 𝐿2 of two 𝐿𝑖 × 𝐿𝑖 × 𝑁𝑧 geometries (𝑖 = 1 or 𝑖 = 2) at 𝑁𝑧 = 2 and 𝑁𝑧 = 4. One can clearly see
the systematic deviation for small 𝐿1. The location of the intersection seems to reach a plateau at
𝐿1 = 128 in the left panel and 𝐿1 = 512 in the right panel. To obtain an estimator of the critical
coupling 𝐽𝑐 for a fixed 𝑁𝑧 , we calculate the weighted average of all crossings where 𝐿1 reaches the
respective plateau. Fig. 4 shows 𝐽𝑐 as a function of 𝑁−1

𝑧 , together with a cubic spline interpolation
to guide the eye. One can clearly see a smooth transition between the couplings of the 2D Ising
model and the 3D Ising model. The latter has been investigated in Refs. [8–11].
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Figure 3: Locations of the Binder cumulant crossing of Fig. 2 for pairs of increasing lattice sizes 𝐿1 < 𝐿2
of two 𝐿𝑖 × 𝐿𝑖 × 𝑁𝑧 geometries (𝑖 = 1 or 𝑖 = 2) at 𝑁𝑧 = 2 (left) and 𝑁𝑧 = 4 (right).
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Figure 4: Critical couplings 𝐽𝑐 as a function of 𝑁−1
𝑧 . A cubic spline interpolation is shown to guide the eye.

Error bars are smaller than the symbol size.
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3.2 Critical exponents 𝛽, 𝛾, 𝜈 and effective dimension 𝑑eff

To get an estimator for the critical exponents 𝛽/𝜈, 𝛾/𝜈 and 𝜈, we fit the finite size scaling
relations (eq. 3) to our numerical data. Fig. 5 shows estimates for the exponents 𝛾/𝜈 and 𝜈 for
𝑁𝑧 = 4 and 𝑁𝑧 = 8, as a function of the minimal spatial lattice size included in the fit (𝐿min). The
estimators seem to rapidly decrease until 𝐿min = 448 and 𝐿min = 256, respectively, where they reach
a plateau (with our error bars). Repeating the analysis in the same fashion for all other exponents
and values of 𝑁𝑧 , and calculating the effective dimension

𝑑eff =
2𝛽 + 𝛾

𝜈
, (5)

we collect our results in Tab. 1 and display them (as a function of 1/𝑁𝑧) in Fig. 6. We find no
dependence of the critical exponents on 𝑁𝑧; in fact our results for 𝛽/𝜈, 𝛾/𝜈 and 𝜈 at any given 𝑁𝑧

are consistent with the analytically known scaling exponents of the 2D Ising model.
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Figure 5: 𝐿min dependence of the estimate of the critical exponent 𝛾/𝜈 for 𝑁𝑧 = 4 (left) and of 𝜈 for
𝑁𝑧 = 8 (right). The estimators seem to reach a plateau (with our error bars) at 𝐿min = 448 and 𝐿min = 256,
respectively. The analytic values of the 2D Ising model are shown as dashed lines for comparison.

𝑁𝑧 𝐽𝑐 𝛽/𝜈 𝛾/𝜈 𝜈 𝑑eff

1 0.440 686 94(44) 0.125 02(16) 1.750 50(54) 1.000 3(15) 2.000 53(63)
2 0.276 032 19(13) 0.125 023(45) 1.749 95(80) 1.000 39(59) 1.999 99(81)
4 0.236 027 75(14) 0.125 078(87) 1.750 88(42) 0.998 8(15) 2.001 03(46)
8 0.226 103 634(93) 0.125 23(16) 1.750 29(80) 0.999 7(12) 2.000 76(86)

3D 0.221 654 94(49) 0.519 3(13) 1.963 2(50) 0.628 75(82) 3.001 9(61)

Table 1: Critical exponents 𝛽/𝜈, 𝛾/𝜈 and the effective dimension 𝑑eff for various choices of 𝑁𝑧 . The analytic
values for the 2D Ising model are 𝐽𝑐 = 0.440 686 79 · · · , 𝛽/𝜈 = 0.125, 𝛾/𝜈 = 1.75, 𝜈 = 1 whereupon 𝑑eff = 2.
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Figure 6: Critical exponents 𝛽/𝜈, 𝛾/𝜈, 𝜈 and 𝑑eff (top left to bottom right) as a function of 𝑁−1
𝑧 . The

analytical values of the 2D Ising model are shown as dashed lines.

4. Conclusions

We have studied a 3D Ising model with a mixture of the Metropolis algorithm and the Wolff
cluster flipping algorithm. Data analysis has been performed by means of histogram reweighting
and finite size scaling techniques. We considered the case where 𝑁𝑥,𝑦,𝑧 → ∞ as well as the
dimensionally reduced case where 𝐿 = 𝑁𝑥 = 𝑁𝑦 → ∞ with fixed 𝑁𝑧 = 1, 2, 4, 8. Using a wide
range of system sizes, we have obtained results for 𝐽𝑐, 𝛽/𝜈, 𝛾/𝜈, 𝜈 and 𝑑eff . Our 3D results are
compatible with the latest results of A. M. Ferrenberg, J. Xu and D. P. Landau [11]. Regarding 𝐽𝑐

and 𝜈 our dimensionally reduced results are compatible with (though more precise than) the results
of M. Caselle and M. Hasenbusch [8]. Regarding 𝛽/𝜈 and 𝛾/𝜈 we are unaware of a publication
with similarly accurate results at fixed 𝑁𝑧 to check against. In any case our results suggest that all
𝐽 (𝑁𝑧) lie on a smooth curve which connects the analytically known value in 2D (𝑁𝑧 = 1) with the
well known value in 3D (𝑁𝑧 → ∞). For any finite 𝑁𝑧 our critical exponents suggest that the model
is still in the 2D Ising model universality class.
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