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Topology in 2D non-Abelian Lattice Gauge Theories P. Rouenhoff

1. Introduction

The phase spaces of two-dimensional 𝑆𝑈 (𝑁𝑐) lattice gauge theories on the torus exhibit a
trivial topological structure. This changes when the gauge group is replaced by 𝑈 (𝑁𝑐), which
is due to the 𝑈 (1)-factor in 𝑈 (𝑁𝑐) ≃ 𝑈 (1)×𝑆𝑈 (𝑁𝑐 )

Z2
with the cyclic group Z2 [1–3]. In that case

the phase space is divided into topological sectors, regions in which the topological charge 𝑞, a
topological index that can be assigned to a gauge configuration, is constant. For each 𝑞 one can
find a field configuration that minimizes the gauge action, which is called an instanton. Hence,
between these sectors, there are action barriers. As they diverge with vanishing lattice spacing 𝑎,
an algorithmic problem known as “topological freezing” arises, which affects both 2D 𝑈 (𝑁𝑐) as
well as 4D 𝑆𝑈 (𝑁𝑐) gauge theory.

In order to gain insight into this problem, let us examine the topological structure of the phase
space more closely. An integer-valued definition for 𝑞 in 2D 𝑈 (𝑁𝑐) theory is given as [4–6]

𝑞 ≡ 1
2𝜋

∑︁
𝑛∈Λ

Im [log det𝑈□(𝑛)] (1)

with the 𝑈 (𝑁𝑐)-valued (untraced) plaquette

𝑈□(𝑛) = 𝑈𝑥 (𝑛)𝑈𝑡 (𝑛 + 𝑥)𝑈†
𝑥 (𝑛 + 𝑡 )𝑈†

𝑡 (𝑛), (2)

which is also needed for the Wilson gauge action which we use throughout this work:

𝑆[𝑈] = 𝛽

𝑁𝑐

∑︁
𝑛∈Λ

Re Tr
(
1 −𝑈□(𝑛)

)
. (3)

A handy parametrization of 𝑈 (2) via 𝑆𝑈 (2) ≃ 𝑆3 allows to calculate the gauge action as

1
2
⟨Re Tr𝑈□⟩𝑈 (2) =

∫ 𝜋
2

0 d𝛼
[
𝐼0(𝛽 cos(𝛼)) + 𝐼2(𝛽 cos(𝛼))

]
2
∫ 𝜋

2
0 d𝛼 𝐼1 (𝛽 cos(𝛼) )

cos(𝛼)

− 1
𝛽
, (4)

with the 2D convention 𝛽 ≡ 2𝑁𝑐

𝑎2𝑔2 . Similarly the topological susceptibility, defined as 𝜒top ≡ ⟨𝑞2 ⟩
𝑉

, is

𝑎2𝜒
𝑈 (2)
top =

∫ 𝜋
2

0 d𝛼 𝛼2 𝐼1 (𝛽 cos(𝛼) )
cos(𝛼)

𝜋2
∫ 𝜋

2
0 d𝛼 𝐼1 (𝛽 cos(𝛼) )

cos(𝛼)

. (5)

We compare measurements of 𝑎2𝜒
𝑈 (2)
top and ⟨Re Tr𝑈□⟩𝑈 (2) to the analytic results in Tab. 1 and

Fig. 1. For further analytical results in 2D 𝑈 (𝑁𝑐) theory see Refs. [4, 5, 7].

𝛽 𝐿/𝑎 𝑠wil/𝑔2 analyt. value (4) 𝜒top/𝑔2 analyt. value (5)
1.0 16 0.218802(78) 0.21875985 0.02005(12) 0.02006011
2.25 24 0.40535(12) 0.40542353 0.03887(36) 0.03886658
4.0 32 0.52582(21) 0.52555107 0.04846(79) 0.04812073
6.25 40 0.54526(26) 0.54522256 0.0435(10) 0.04291103
9.0 48 0.52835(21) 0.52794370 0.0366(12) 0.03527802

Table 1: Measurements of the Wilson action density resp. topological susceptibility of 2D 𝑈 (2) theory for
various (𝛽, 𝐿/𝑎)-pairs which implement a fixed physical box volume, compared to the analytical solution.
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Figure 1: The action density and topological susceptibility of 2D𝑈 (2) theory as given in Tab. 1. In the limit
𝛽 → ∞ we find that 𝑠wil/𝑔2 → 1/2 and 𝜒top/𝑔2 → 0.02533 = 1/(2𝜋)2.

2. Global minima per topological sector

In 2D 𝑈 (1) theory formulas for instanton configurations, i.e. field configurations of minimal
action and fixed topological charge 𝑞 ∈ Z, are known as [8]

𝑈𝑥 (𝑥, 𝑡) = e−i𝑡 2𝜋𝑞
𝑁𝑥𝑁𝑡 , 𝑈𝑡 (𝑥, 𝑡) = ei𝑥 2𝜋𝑞

𝑁𝑥
𝛿𝑡,𝑁𝑡 , (6)

with 𝑆
𝑈 (1)
inst = 𝛽𝑁𝑥𝑁𝑡

(
2𝜋𝑞
𝑁𝑥𝑁𝑡

)
. In 2D 𝑈 (2) theory, instanton configurations can be derived as

𝑈𝑥 (𝑥, 𝑡) = e−i𝑡 𝜋𝑞

𝑁𝑥𝑁𝑡 exp(i®𝑢®𝜎 𝛿𝑥,𝑁𝑥
), 𝑈𝑡 (𝑥, 𝑡) = ei𝑥 𝜋𝑞

𝑁𝑥
𝛿𝑡,𝑁𝑡 exp(i®𝑣®𝜎 𝛿𝑡 ,𝑁𝑡

) , (7)

where ®𝜎 contains the Pauli matrices and the auxiliary vectors ®𝑢, ®𝑣 ∈ R3 are subject to the following
constraints. If 𝑞 is odd, require that ®𝑢 ⊥ ®𝑣 and | ®𝑢 | = |®𝑣 | = 𝜋

2 , and if 𝑞 is even, require only ®𝑢 ∥ ®𝑣.
This construction is illustrated in Fig. 2 for two different gauges. All horizontal links take the

value e−i𝑡 𝜋𝑞

𝑁𝑥𝑁𝑡 , save for those at 𝑥 = 𝑁𝑥 . This last 𝑥-slice receives an additional factor of exp(i®𝑢®𝜎).

e−i𝑡 𝜋𝑞

𝑁𝑥𝑁𝑡

1

e−i𝑡 𝜋𝑞

𝑁𝑥𝑁𝑡 exp(i®𝑢®𝜎)

ei𝑥 𝜋𝑞

𝑁𝑥 exp(i®𝑣®𝜎) ei 𝜋𝑞

𝑁𝑥𝑁𝑡

ei 𝜋𝑞

𝑁𝑥𝑁𝑡

e−i(𝑡+𝑥) 𝜋𝑞

𝑁𝑥𝑁𝑡

1

1

e−i(𝑡+𝑁𝑥−1) 𝜋𝑞

𝑁𝑥𝑁𝑡 exp(i®𝑢®𝜎)

ei𝑥 𝜋𝑞

𝑁𝑥 exp(i®𝑣®𝜎) ei 𝜋𝑞

𝑁𝑥𝑁𝑡

ei 𝜋𝑞

𝑁𝑥𝑁𝑡

Figure 2: Left: A visualization of (7), the instanton-like solution for 2D𝑈 (2) theory with topological charge
𝑞. Right: the same configuration in maximal tree gauge. Unity matrices are shown as dashed lines.
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Figure 3: Left: Action of the 𝑈 (2) instanton configurations (7) as well as the lower bound (8). Right:
excess of the action density of five thermalized configurations (𝛽 = 6.0) over the bound (8) plotted against
the gradient flow time 𝜏 = 𝜌 · 𝑁stout with two step sizes 𝜌. Square lattices of 𝐿/𝑎 = 32 are used in both cases.

All vertical links are unity 1, except for those at 𝑡 = 𝑁𝑡 , which are ei𝑥 𝜋𝑞

𝑁𝑥 exp(i®𝑣®𝜎). Despite the four
cases implied in this construction, each untraced plaquette takes the same value ei 𝜋𝑞

𝑁𝑥𝑁𝑡 .
The homogeneity of the action density is the aim of the construction (7), as it is a requirement

for 2D configurations to be of locally minimal action. Merely multiplying each link of (6) with
unity 1 fails to achieve this for arbitrary 𝑞. It would amount to a configuration of minimal action for
𝑞 ∈ 𝑁𝑐 Z, as the topological charge of this configuration has an additional factor of 𝑁𝑐 due to the
determinant in (1). The configuration thus obtained is included in (7) by taking | ®𝑢 | = |®𝑣 | = 0. If one
takes the 𝑁𝑐-th root of the 𝑈 (1)-parts of the links, one does produce a configuration of topological
charge 𝑞, but it is not of minimal action. This is because the plaquette at (𝑥, 𝑡) = (𝑁𝑥 , 𝑁𝑡 ) differs
from the rest by a Z𝑁𝑐

-factor, leading to an inhomogeneous action density. For 𝑁𝑐 = 2 our
construction (7) fixes this, but for 𝑁𝑐 ≥ 3 we have not succeeded yet in constructing instanton
configurations for arbitrary 𝑞 ∈ Z.

It is interesting to test whether thermalized configurations would evolve towards such 𝑞-
instanton configurations under gradient flow. To that end consider the action of (7)

𝑆
𝑈 (2)
inst
𝛽

= 𝑁𝑥𝑁𝑡

(
1 − cos

(
𝜋𝑞

𝑁𝑥𝑁𝑡

))
, (8)

which is illustrated in Fig. 3 (left). The right panel shows that the action of thermalized configura-
tions with fixed 𝑞 converges to (8) under gradient flow, which is in line with the fact that (7) is of
minimal action in a given topological sector.

For odd 𝑞 it can be shown that any two choices of ®𝑢 and ®𝑣 in (7) are gauge equivalent. For
even 𝑞 this is not the case, as | ®𝑢 | and |®𝑣 | can be chosen freely, allowing for further transformations
that do not change the action and cannot be represented by a gauge transformation. Consider (7)
after transforming it into maximal tree gauge 𝑈𝑡 (𝑥, 𝑡) = 1∀𝑡 < 𝑁𝑡 and 𝑈𝑥 (𝑥, 1) = 1∀𝑥 < 𝑁𝑥 . In
this gauge, the last 𝑡-slice {𝑈𝑡 (𝑥, 𝑁𝑡 )

�� 𝑥 = 1...𝑁𝑥} and the last 𝑥-slice {𝑈𝑥 (𝑁𝑥 , 𝑡)
�� 𝑡 = 1...𝑁𝑡 } can

always be multiplied by a center element of the gauge group (here 𝑈 (1)). For (7) with even 𝑞,
however, a multiplication by exp(i𝑟 ®𝑢®𝜎) resp. exp(i𝑠®𝑣®𝜎) with suitable 𝑟, 𝑠 ∈ R is also possible.
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Figure 4: The action of (9), evaluated for various (𝑞, 𝑧)-combinations (𝑁𝑐 = 2). The lower bound is Eq. (8).

3. Special topological configurations

For 2D 𝑈 (𝑁𝑐) theory one may derive further configurations of homogeneous action density

𝑈𝑥 (𝑥, 𝑡) = e−i𝑡 2𝜋𝑞
𝑁𝑐

1
𝑁𝑥𝑁𝑡 exp

(
−i𝑡

2𝜋
𝑁𝑐

1
𝑁𝑥𝑁𝑡

(
𝑧𝑁𝑐 − 𝑞

)
diag(1, ..., 1, 1 − 𝑁𝑐)

)
, (9a)

𝑈𝑡 (𝑥, 𝑡) = ei𝑥 2𝜋𝑞
𝑁𝑐

1
𝑁𝑥

𝛿𝑡,𝑁𝑡 exp
(
i𝑥

2𝜋
𝑁𝑐

1
𝑁𝑥

(
𝑧𝑁𝑐 − 𝑞

)
𝛿𝑡 ,𝑁𝑡

diag(1, ..., 1, 1 − 𝑁𝑐)
)
, (9b)

where 𝑧 ∈ Z, and we have plugged in the last generator 𝜆𝑁2
𝑐−1/2 of the Lie algebra su(𝑁𝑐) with

𝜆𝑁2
𝑐−1 =

√︄
2

𝑁2
𝑐 − 𝑁𝑐

diag(1, ..., 1, 1 − 𝑁𝑐) . (10)

Hence, for a given charge 𝑞 there is an infinite tower of such configurations (9), and we find

𝑈□(𝑛)
���
𝑛=(𝑁𝑥 ,𝑁𝑡 )

= ei 2𝜋𝑞
𝑁𝑐

(
1

𝑁𝑥𝑁𝑡
−1

)
exp

(
i
2𝜋
𝑁𝑐

(
1

𝑁𝑥𝑁𝑡

− 1
) (

𝑧𝑁𝑐 − 𝑞
)
diag(1, ..., 1, 1 − 𝑁𝑐)

)
, (11a)

𝑈□(𝑛)
���
𝑛≠(𝑁𝑥 ,𝑁𝑡 )

= ei 2𝜋𝑞
𝑁𝑐

1
𝑁𝑥𝑁𝑡 exp

(
i
2𝜋
𝑁𝑐

1
𝑁𝑥𝑁𝑡

(
𝑧𝑁𝑐 − 𝑞

)
diag(1, ..., 1, 1 − 𝑁𝑐)

)
, (11b)

Re Tr𝑈□(𝑛) = (𝑁𝑐 − 1) cos
(

2𝜋𝑧
𝑁𝑥𝑁𝑡

)
+ cos

(
2𝜋

𝑁𝑥𝑁𝑡

(
𝑞 − (𝑁𝑐 − 1)𝑧

))
. (11c)

The untraced plaquette 𝑈□(𝑛) depends on the site 𝑛, while Re Tr𝑈□(𝑛) is independent of the
location. Hence, for any 𝑁𝑐 the action density of a “special configuration” (9) depends only on 𝑞

and 𝑧. Some of them (for 𝑁𝑐 = 2 and a 322 lattice) are shown in Fig. 4.
For 𝑁𝑐 = 2 the “special configurations” (9) contain, as a subset, some of the instanton

configurations discussed in Sec. 2, but not all of them. For instance the choice (𝑞, 𝑧) = (2, 1) in (9)
yields the same configuration as 𝑞 = 2, ®𝑢 = ®𝑣 = 0 in (7). Accordingly, this makes (11c) assume
the value 2 cos

(
2𝜋

𝑁𝑥𝑁𝑡

)
, which matches (8) in the case 𝑞 = 2. But for 𝑞 = 1 there is no choice

of 𝑧 which would match the lower bound (8). This situation is illustrated in Fig. 4. For arbitrary
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Figure 5: The action of the “special configuration” (9) with 𝑁𝑐 = 2 and (𝑞, 𝑧) = (1, 5) under gradient flow,
after each link has been multiplied with a random 𝑈 (2)-element of step size 𝜀, for 𝑁𝑥 = 𝑁𝑡 = 32. The lower
bound is Eq. (8). Without perturbation the configuration (9) seems to be stable under gradient flow.

Figure 6: The action of the “special configuration” (9) with 𝑁𝑥 = 𝑁𝑡 = 32, 𝑁𝑐 = 2 and (𝑞, 𝑧) = (1, 5) under
gradient flow, after an arbitrary link has been multiplied with a 𝑈 (2)-element of the form exp(i𝜀𝜎𝑗/2). The
grey, dotted lines show the action of (9) for 𝑞 = 1 and various values of 𝑧. Left: 𝜀 = 10−1, right: 𝜀 = 10−3.

𝑁𝑐 we recover the instanton configurations for 𝑞 ∈ 𝑁𝑐Z by dialing 𝑧 = 𝑞/𝑁𝑐, but the “special
configurations” (9) do not provide any help in constructing 𝑞-instanton configurations for 𝑞 ∉ 𝑁𝑐Z.

When each link of a “special configuration” (9) for 𝑁𝑐 = 2 is multiplied by a random 𝑈 (2)-
element of step size 𝜀 and the result subject to gradient flow, the action decreases until it reaches the
instanton action (8) of the corresponding 𝑞-sector. For smaller 𝜀 the decrease of the action occurs
later in the course of the gradient flow, and for 𝜀 = 0 no decrease is observed at all, see Fig. 5.

If only one link is perturbed by a small 𝑈 (2)-element of the form exp(i𝜀𝜎𝑗/2) the behavior
depends on the Lie direction 𝑗 . For 𝑗 ∈ {0, 3} (where 𝜎0 is the identity) the action remains
unchanged under subsequent gradient flow, but for 𝑗 ∈ {1, 2} the action decreases, see Fig. 6.
Contrary to the case of a global perturbation as in Fig. 5, the action forms intermediate plateaus at
the action levels of some “special configurations” whose actions lie in between that of the original
configuration and the global minimum (7) of the 𝑞-sector. This behavior is found for any position

6
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of the perturbed link and has been checked for (𝑞, 𝑧) combinations with 𝑞 = 0, ..., 5 and 𝑧 = 0, ..., 3.
The one feature which we find repeated is that a smaller perturbation 𝜀 leads to a longer relaxation
time 𝜏/𝑎2, but the final configuration is always the global minimum (7) of the respective 𝑞-sector,
see Fig. 6.

4. Open questions

In the previous section we found that perturbing an arbitrary link of a “special configuration”
(9) with a given (𝑞, 𝑧) combination in the 𝑗 = 1 or 𝑗 = 2 direction in color space suffices to make
the result flow into the global minimum of the respective charge 𝑞 sector. But after a perturbation
in the 𝑗 = 0 or 𝑗 = 3 direction it is stable under gradient flow (as is the unaltered configuration).

Given this dichotomy, the question arises whether a member of the family (9) of uniform-action
configurations (dubbed “special configurations” above) is a local minimum of the action in the space
of gauge configurations or instead a saddle point. Since, as of this writing, we do not know the
answer, we briefly mention a few steps taken so far to clarify the issue.

In the first place one may perturb an arbitrary link 𝑈𝜇 (𝑛) of (9) with a 𝑈 (𝑁𝑐) element
exp(i𝜀𝜆 𝑗/2) and measure the action difference Δ𝑆 for a few step sizes 𝜀. One expects to find a
parabola with a minimum at 𝜀 = 0. Doing this for 𝑁𝑐 = 2 we find this expectation confirmed,
see Fig. 7 (left). But we were surprised to see that the parabola has universal features – it’s always
the same parabola, regardless of (𝑞, 𝑧), the position 𝑛, direction 𝜇 and the Lie direction 𝑗 (also
replacing 𝜎𝑗 by 𝑟0𝜎0 + ®𝑟 ®𝜎 with | |𝑟 | | = 𝜀 leaves it unchanged).

Still, this observation does not explain why a small perturbation of a single link of a “special
configuration” (9) may suffice to make the result evolve, under gradient flow, towards the sector
minimum (7) of that 𝑞 value. Therefore we decided to perturb an arbitrary link in Lie direction 𝑗1
with a step size 𝜀1 = 0.001, followed by a second perturbation 𝜀2 of the same link in an orthogonal
direction 𝑗2 ≠ 𝑗1. This second Δ𝑆 curve is no longer universal; for some ( 𝑗1, 𝑗2) combinations its
minimum is at 𝜀2 ≠ 0, see Fig. 7 (right). But it is worth mentioning that the decrease in the second
step is orders of magnitude smaller than the increase in the first step.

Figure 7: Left: a link of a “special configuration” (9) with 𝑁𝑥 = 𝑁𝑡 = 32, 𝑁𝑐 = 2 and (𝑞, 𝑧) = (1, 5) is
perturbed by a𝑈 (2)-element of step size 𝜀1 and Δ𝑆 is measured in units of machine precision 𝜀machine. Right:
after a perturbation 𝜀1 = 10−3 along an algebra direction 𝑗1, a perturbation 𝜀2 along 𝑗2 ⊥ 𝑗1 is applied.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
6
1

Topology in 2D non-Abelian Lattice Gauge Theories P. Rouenhoff

Altogether these tests nurture the belief that any “special configuration” (9) is a local minimum
of the action in the 𝑈 (𝑁𝑐) theory, but more research is needed to establish this firmly.

5. Conclusion

We have explored a few topics in 𝑈 (𝑁𝑐) gauge theories in 2D with periodic boundary condi-
tions. These theories are interesting, since they have topological features akin to 𝑆𝑈 (𝑁𝑐) theories
in 4D.

Analytical expressions for the average plaquette and the topological susceptibility agree with
our Monte Carlo (MC) data, but they suggest that it takes rather high 𝛽-values to enter the Symanzik
scaling regime for these quantities.

We were able to write down exact 𝑞-instanton configurations (7) in the case of 𝑁𝑐 = 2, that is
gauge fields 𝑈𝜇 (𝑛) with topological charge 𝑞 and minimal Wilson action 𝑆 in that sector. Unlike
instantons in 4D, they have uniform action density.

Given a configuration 𝑈𝜇 (𝑛) in a thermalized MC stream, the gradient flow lets it evolve
towards a gauge transformed version of the minimum solution (7) in that 𝑞-sector. In 2D the
gradient flow is thus “trivializing” within a given topological sector 𝑞, but not globally.

Finally, we constructed a class of “special configurations” (9) of homogeneous action density
for arbitrary 𝑁𝑐, labeled by a pair (𝑞, 𝑧) ∈ Z2. They seem to play a special role in 2D 𝑈 (𝑁𝑐)
theories, but more work is needed to elucidate their role.
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