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Karsten-Wilczek and Borici-Creutz fermions show a near-degeneracy of the 2 species involved,
similar to the 2𝑑/2 species of staggered fermions. Hence in 𝑑 = 2 dimensions all three formulations
happen to be minimally doubled (two species). This near-degeneracy shows up both in the
eigenvalue spectrum of the respective Dirac operator and in spectroscopic quantities (e.g. the pion
mass), but in the former case it is easier to quantify. We use the quenched Schwinger model to
determine the low-lying eigenvalues of these fermion operators at a fixed gradient flow time 𝜏

(either in lattice units or in physical units, hence keeping either 𝜏/𝑎2 or 𝑒2𝜏 fixed at all 𝛽).
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Taste-splittings of staggered, KW and BC fermions under gradient flow in 2D Stephan Dürr

1. Introduction

Taste splittings are an unwanted effect – a lattice artefact or “cut-off effect”. They are genuine
to any lattice fermion action involving more than one species (a.k.a. “doubled action”).

For instance staggered fermions involve 2𝑑/2 species in 𝑑 space-time dimensions (i.e. 2 species
or “tastes” in 2D, and 4 in 4D). This is visible in the eigenvalue spectrum of 𝑎𝐷stag; instead of one
continuum eigenvalue one finds a pair (in 2D) or a quartet (in 4D) of near-degenerate eigenvalues
on a representative gauge background 𝑈𝜇 (𝑛) [1, 2]. Accordingly, in a dynamical simulation with
one field of 𝑎𝐷stag the well-known rooting procedure effectively replaces each pair (quartet) by the
geometric mean of the two (four) multiplet eigenvalues in 2D (4D).

More recently, Karsten-Wilczek (KW) [3, 4] and Borici-Creutz (BC) [5, 6] fermions were
proposed, since they entail only two species. This is just the minimum number required by the
Nielsen-Ninomyia theorem (and hence the same number in 2D and 4D). As a result, in 4D one can
simulate 𝑁𝑓 = 2 QCD with KW or BC fermions without using the rooting trick.

Specifically in 2D, not just KW and BC fermions, but also staggered fermions happen to be
“minimally doubled”. Accordingly, the Schwinger model (QED in 2D) is well suited to compare
the taste-breaking effects of these three fermion formulations to each other. There are two options
for addressing the taste breaking effects. One may determine spectrosopic quantities like 𝑎2𝑀2

𝜋,𝑉
−

𝑎2𝑀2
𝜋,𝑃

, where the second subscript indicates the taste structure of the pion. Or one may measure
the above mentioned eigenspectra and determine the splitting within each pair.

Today it is common practice to evaluate the Dirac operator 𝑎𝐷 on a gauge background𝑉 which
is derived from the actual configuration 𝑈 via a few steps of stout smearing [7] or some gradient
flow evolution [8, 9]. At first sight the difference between these smoothings procedures is small,
since the correspondence 𝑛stout𝜌stout = 𝜏flow/𝑎2 (see e.g. [10] and references therein) says that the
flow time in lattice units (r.h.s.) equals the cumulative sum of the stout parameters used (l.h.s.).

The effect of 1 or 3 stout steps on the eigenvalues of 𝑎𝐷stag, 𝑎𝐷KW and 𝑎𝐷BC has been
investigated in Ref. [11]. Here we take first steps towards exploring the effect of the gradient flow.

Figure 1: Effect of the gradient flow on two gluonic actions (left) and on two topological charges (right).
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Figure 2: Same data as in Fig. 1, after subtracting the respective (analytically known) 1-instanton values.

2. Effect of the gradient flow on gluonic quantities

In the two-dimensional𝑈 (1) theory one defines𝑈⊓⊔(𝑛) = 𝑈1(𝑛)𝑈2(𝑛+ 1̂)𝑈∗
1 (𝑛+ 2̂)𝑈∗

2 (𝑛) where
𝑛 = (𝑥, 𝑦) is the lattice site and 𝑈∗

𝜇 (𝑛) the complex conjugate of 𝑈𝜇 (𝑛). Using the parametrization
𝑈𝜇 (𝑛) = 𝑒i𝜑𝜇 (𝑛) one may write 𝑈⊓⊔(𝑛) = 𝑒i𝜑⊓⊔ (𝑛) with the plaquette angle, mapped to the interval
[−𝜋, 𝜋[, given by 𝜑⊓⊔(𝑛) ≡ mod(𝜑1(𝑛) + 𝜑2(𝑛 + 1̂) − 𝜑1(𝑛 + 2̂) − 𝜑2(𝑛) + 𝜋, 2𝜋) − 𝜋.

The Wilson action is 𝑆wil [𝑈] = 𝛽
∑

𝑛{1−Re𝑈⊓⊔(𝑛)} = 𝛽
∑

𝑛{1−cos 𝜑⊓⊔(𝑛)} and another option
is 𝑆opt [𝑈] = 𝛽

∑
𝑛

1
32 [sin 𝜑⊓⊔(𝑛) + sin 𝜑⊓⊔(𝑛− 1̂) + sin 𝜑⊓⊔(𝑛− 1̂− 2̂) + sin 𝜑⊓⊔(𝑛− 2̂)]2. Two definitions

of the topological charge are in common use, the geometric charge 𝑞geo [𝑈] = 1
2𝜋

∑
𝑛 Im log𝑈⊓⊔(𝑛) =

1
2𝜋

∑
𝑛 𝜑⊓⊔(𝑛) ∈ Z and optionally 𝑞opt [𝑈] = 1

2𝜋
∑

𝑛 Im𝑈⊓⊔(𝑛) = 1
2𝜋

∑
𝑛 sin 𝜑⊓⊔(𝑛) ∈ R.

We choose a thermalized gauge configuration at (𝛽, 𝐿/𝑎) = (7.2, 24), and plot 𝑠(𝜏)/𝛽 and
𝑞(𝜏) versus the flow time 𝜏/𝑎2 in the interval [0, 7.2] in Fig. 1. It seems that 𝑠wil − 𝑠opt → 0
and 𝑞geo − 𝑞opt → 0 for large 𝜏/𝑎2, as expected. Fortunately, the 𝑞-instanton configuration in the
Schwinger model is known analytically [12]; its action is 𝑠𝑞−inst/𝛽 = 1 − cos( 2𝜋𝑞

𝑁𝑥𝑁𝑦
). Hence, by

subtracting from either observable its 𝜏/𝑎2 = ∞ value, we can study the asymptotic ascent. Fig. 2
suggests that for 𝑠 and 𝑞 the asymptotic value is assumed exponentially in the flow time 𝜏/𝑎2.

We checked the effect that larger/smaller boxes at the same coupling 𝛽 have; we found no
significant change. In the Schwinger model varying the lattice spacing 𝑎 at fixed physical box size
𝐿 is simple, if 𝑎 is set through the dimensionful coupling 𝑒, since 𝛽 = 1/(𝑎𝑒)2. This allows us to
compile a list of matched lattices/flow-times before running any simulation, see Tab. 1.

𝛽 3.2 5.0 7.2 12.8 20.0 28.8 51.2
𝐿/𝑎 16 20 24 32 40 48 64

𝜏max/𝑎2 3.2 5.0 7.2 12.8 20.0 28.8 51.2

Table 1: Parameters for matched lattices and gradient flow times. The volume in physical units (𝑒𝐿)2 =

(𝐿/𝑎)2/𝛽 is always 80, the maximum flow time in physical units 𝑒2𝜏max = 𝜏max/(𝑎2𝛽) is always 1.

3

https://orcid.org/0000-0001-5168-5669


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
6
0

Taste-splittings of staggered, KW and BC fermions under gradient flow in 2D Stephan Dürr

Figure 3: Left: Upper half of the eigenvalues i𝜆 of 𝑎𝐷stag (top), 𝑎𝐷KW (middle) and 𝑎𝐷BC (bottom) on a
𝛽 = 3.2 configuration with |𝑞 | = 1 versus the flow time 𝜏/𝑎2. Right: Taste splittings derived from these data.

3. Effect of the gradient flow on Dirac operator eigenvalues

The massless staggered Dirac operator 𝑎𝐷stag has purely imaginary eigenvalues which come
in pairs ±i𝜆, due to 𝜖-hermiticity. In Fig. 3 we plot the 15 smallest imaginary parts 𝜆 > 0 on the

4

https://orcid.org/0000-0001-5168-5669


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
6
0

Taste-splittings of staggered, KW and BC fermions under gradient flow in 2D Stephan Dürr

Figure 4: Taste splittings similar to the right-hand panels of Fig. 3 but for 𝛽=5.0 (left) and 𝛽=7.2 (right).

original background 𝑈 at 𝜏/𝑎2 = 0. At this stage, no pairing is visible. Only as we repeat this for
smoothed backgrounds 𝑉 , the pairing becomes visible at 𝜏/𝑎2 ≃ 1. The staggered taste splittings
(e.g. 𝛿1 = 2𝜆1, 𝛿2 = 𝜆3 − 𝜆2 for 𝑞 = 1, see Ref. [11]) all seem to decline exponentially in 𝜏/𝑎2. For
KW and BC fermions, the situation is similar for the pair ±i𝜆1 (which is the would-be zero-mode
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Figure 5: Taste splittings similar to the right-hand panels of Fig. 3 but for 𝛽=12.8 (left) and 𝛽=20.0 (right).

pair for |𝑞 | = 1), while all non-topological mode splittings diminish only reluctantly.
In Fig. 4 we repeat this for 𝛽 = 5.0, 7.2, in Fig. 5 for 𝛽 = 12.8, 20.0, and in Fig. 6 for 𝛽 =

28.8, 51.2. Throughout, we select a single representative configuration with topological charge
𝑞 = ±1. What changes is the maximum flow-time in lattice units, in line with Tab. 1. Beginning at
𝛽 = 12.8 double precision may be insufficient to resolve the smallest taste splitting.
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Figure 6: Taste splittings similar to the right-hand panels of Fig. 3 but for 𝛽=28.8 (left) and 𝛽=51.2 (right).

To summarize one may say that increasing 𝛽 in a fixed physical volume did not bring any
significant change. The would-be zero-mode splitting decreases roughly exponentially for each
formulation. But the non-topological zero-mode splittings diminish in this way only in the staggered
case, while they reach values 𝑎 |𝛿KW,BC | ≃ 10−3 in the KW/BC cases. For staggered fermions it is
interesting to compare 𝑎 |𝛿stag | at fixed flow-time in lattice/physical units across 𝛽, see Tab. 2.
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𝛽 3.2 5.0 7.2 12.8 20.0 28.8 51.2
𝑎 |𝛿stag | at 𝜏/𝑎2 = 1 3e-3 1e-3 1e-3 3e-4 3e-4 1e-4 1e-4
𝑎 |𝛿stag | at 𝑒2𝜏 = 1 1e-5 1e-8 1e-10 1e-12 𝜖 𝜖 𝜖

Table 2: Typical size of 𝑎 |𝛿stag | at 𝜏/𝑎2 = 1 and 𝑒2𝜏 = 1. Here 𝜖 denotes a zero to machine precision.

4. Conclusions

KW and BC fermions distinguish between would-be zero-mode splittings (which decrease
exponentially in the gradient flow time) and non-topological mode splittings (which do not). By
contrast, staggered fermions reduce their taste breakings exponentially with the flow time, regardless
of the nature of the underlying continuum mode. The good news for staggered practitioners is that
all taste splittings disappear when at least one of the limits 𝛽 → ∞, 𝜏/𝑎2 → ∞ is taken.

It will be interesting to extend this investigation to ensembles at various (𝛽, 𝐿/𝑎) combinations,
keping the physical box size fixed as in Ref. [11]. The gradient flow allows for two smoothing
strategies: the flow time may be kept fixed in lattice units (𝜏/𝑎2 = const) or in physical units
(𝑒2𝜏 = const in 2D), see Tabs. 1 and 2. In the first case, locality of the fermion formulation in the
continuum limit is guaranteed by construction (as is true with any fixed number of stout steps). In
the second case, locality is an issue but the lattice regulator gets replaced by a diffusive regulator
with universal properties [8, 9] (see also the discussion in Ref. [10]).

An issue not addressed so far is the admixture of lower-dimensional operators to 𝐷KW and
𝐷BC [13–15], as the respective coefficients are not known in 2D. We plan to embark on such a
calculation; with such numbers in hand one can try to compensate these mixing effects. Perhaps,
with correct unmixing, a future version of our KW/BC taste splitting plots might look different ?
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