
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
5
7

Extracting the distribution amplitude of
pseudoscalar mesons using the HOPE method

Alex Chang,𝑎 William Detmold,𝑏 Anthony V. Grebe,𝑐 Issaku Kanamori,𝑑 C.-J.
David Lin,𝑎,𝑒 Robert J. Perry𝑏, 𝑓 ,∗ and Yong Zhao𝑔

𝑎Institute of Physics, National Yang Ming Chiao Tung University,
1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan
𝑏Center for Theoretical Physics, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA
𝑐Fermi National Accelerator Laboratory,
Batavia, IL 60502, USA
𝑑RIKEN Center for Computational Science,
Kobe 650-0047, Japan
𝑒Centre for High Energy Physics, Chung-Yuan Christian University,
Chung-Li, 32032, Taiwan
𝑓Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos, Universitat de
Barcelona,
Martí Franquès 1, E08028, Spain
𝑔Physics Division, Argonne National Laboratory,
Lemont, IL 60439, USA
E-mail: s44930e0@gmail.com, wdetmold@mit.edu, agrebe@mit.edu,
kanamori-i@riken.jp, dlin@nycu.edu.tw, perryrobertjames@gmail.com,

yong.zhao@anl.gov

The pseudoscalar meson light-cone distribution amplitudes (LCDAs) are essential non-
perturbative inputs for a range of high-energy exclusive processes in quantum chromodynamics.
In this proceedings, progress towards a determination of the low Mellin moments of the pion and
kaon LCDAs by the HOPE Collaboration is reported.

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:s44930e0@gmail.com
mailto:wdetmold@mit.edu
mailto:agrebe@mit.edu
mailto:kanamori-i@riken.jp
mailto:dlin@nycu.edu.tw
mailto:perryrobertjames@gmail.com
mailto:yong.zhao@anl.gov
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
5
7

Extracting the distribution amplitude of pseudoscalar mesons using the HOPE method Robert J. Perry

1. Introduction

The light-cone distribution amplitude (LCDA) is a non-perturbative object of interest for a range
of high-energy exclusive processes in quantum chromodynamics (QCD) [1]. It can be defined in
terms of the matrix element,

⟨0|𝜓(𝑧)𝛾𝜇𝛾5𝑊 [𝑧,−𝑧]𝜓(−𝑧) |𝑀+( ®𝑝)⟩ = 𝑖𝑝𝜇 𝑓𝑀

∫ 1

−1
𝑑𝜉 e−𝑖 𝜉 𝑝 ·𝑧𝜙𝑀 (𝜉, 𝜇), (1)

where W[−𝑧, 𝑧] is a light-like (𝑧2 = 0) Wilson line and 𝜙𝑀 (𝜉, 𝜇) is the LCDA for the meson 𝑀 . In
the above equation, 𝑓𝑀 , ®𝑝, and 𝑝𝜇 are the decay constant, three-momentum, and the four-momentum
of the meson, respectively.

Despite the clear phenomenological value in computing this quantity from first principles,
the presence of a light-like separation in the definition of the relevant operator prohibits a direct
calculation using Euclidean formulations of lattice QCD (LQCD). Historically, the solution has
been to employ an operator product expansion (OPE) to relate this operator to a sum of local
operators, which can be calculated using LQCD [2, 3]. The meson-to-vacuum matrix elements of
these local operators can be shown to be related to the Mellin moments of the LCDA,

⟨0|𝜓𝛾{𝜇1𝛾5(𝑖
↔
𝐷 𝜇2) . . . (𝑖

↔
𝐷 𝜇𝑛 })𝜓 |𝑀+( ®𝑝)⟩ = 𝑓𝑀 ⟨𝜉𝑛⟩𝑀 (𝜇) [𝑝𝜇1 𝑝𝜇2 . . . 𝑝𝜇𝑛 − tr], (2)

where

⟨𝜉𝑛⟩𝑀 (𝜇) =
∫ 1

−1
𝑑𝜉 𝜉𝑛𝜙𝑀 (𝜉, 𝜇) (3)

are the Mellin moments. This approach has been limited to the lowest few moments because the
higher spin lattice operators mix with lower dimensional operators and the mixing coefficients
contain power divergences. More recently, other approaches have been proposed [4–14].

2. The HOPE method

The heavy-quark operator product expansion (HOPE) is an alternative approach [6, 15] to
extracting information about the Mellin moments of the LCDA. It is based on studying the hadronic
matrix element

𝑅
𝜇𝜈

𝑀
(𝑡−, ®𝑝, ®𝑞) =

∫
𝑑3®𝑧 𝑒𝑖 ®𝑞 · ®𝑧 ⟨0|𝑇{𝐽𝜇

𝐴
(𝑡−/2, ®𝑧/2)𝐽𝜈𝐴(−𝑡−/2,−®𝑧/2)}|𝑀 ( ®𝑝)⟩ , (4)

where
𝐽
𝜇

𝐴
= Ψ𝛾𝜇𝛾5𝜓 + 𝜓𝛾𝜇𝛾5Ψ (5)

is an axial-vector current involving a light or strange quark 𝜓 and a fictitious valence heavy quark
Ψ with mass 𝑚Ψ. The momentum-space hadronic matrix element is given by

𝑉
𝜇𝜈

𝑀
(𝑝, 𝑞) =

∫
𝑑𝑡−𝑒

𝑖𝑞4𝑡−𝑅
𝜇𝜈

𝑀
(𝑡−, ®𝑝, ®𝑞). (6)

The matrix element of this two-current operator can be written in terms of local operators via an
application of the heavy-quark operator product expansion. To one-loop it can be written as [15]

𝑉
𝜇𝜈

𝑀
(𝑞, 𝑝) = −

2𝑖 𝑓𝜋𝜖 𝜇𝜈𝜌𝜎𝑞𝜌𝑝𝜎
�̃�2

∞∑︁
𝑛=0,even

F𝑛 (�̃�2, 𝜇, �̃�, 𝑚Ψ)𝜙𝑀,𝑛 (𝜇) + higher-twist terms , (7)
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where 𝜙𝑀,𝑛 (𝜇) are the Gegenbauer moments, 𝜇 is the renormalization scale, and F𝑛 are coefficients
that can be computed in QCD perturbation theory and can be expressed as functions of the kinematic
variables,

�̃�2 = 𝑄2 + 𝑚2
Ψ , �̃� =

2𝑝 · 𝑞
�̃�2

, (8)

with 𝑄2 = −𝑞2. To zeroth order in the coupling, the above expression can be equivalently written
as

𝑉
𝜇𝜈

𝑀
(𝑞, 𝑝) = −

2𝑖 𝑓𝜋𝜖 𝜇𝜈𝜌𝜎𝑞𝜌𝑝𝜎
�̃�2

∞∑︁
𝑛=0

(
�̃�

2

)𝑛
⟨𝜉𝑛⟩𝑀 + higher-twist terms , (9)

where the Gegenbauer and Mellin moments of the LCDA are related via

𝜙0,𝑀 = ⟨𝜉0⟩𝑀 = 1, 𝜙1,𝑀 =
5
3
⟨𝜉1⟩𝑀 , 𝜙2,𝑀 =

7
12

(
5 ⟨𝜉2⟩𝑀 − ⟨𝜉0⟩𝑀

)
,

𝜙3,𝑀 =
3
4

(
7 ⟨𝜉3⟩ − 3 ⟨𝜉1⟩

)
, 𝜙4,𝑀 =

11
24

(
21 ⟨𝜉4⟩𝑀 − 14 ⟨𝜉2⟩𝑀 + ⟨𝜉0⟩𝑀

)
, . . .

(10)

3. Numerical Strategy

In practice, the HOPE strategy involves computing correlation functions using LQCD which
provide access to the hadronic matrix element defined by Eq. (4). By fitting the numerical data
to the HOPE formula given by Eq. (7), information about the Gegenbauer moments of the meson
LCDA can be determined. From the relations given in Eq. (10), this information can be converted
into information about the Mellin moments. The hadronic matrix element can be determined from
the correlation functions,

𝐶𝑖 𝑗 (𝑡, ®𝑝) =
∫

𝑑3𝑥𝑒𝑖 ®𝑝 · ®𝑥 ⟨0|O𝑖 (𝑡, ®𝑥)O†
𝑗
(0, ®0) |0⟩ , (11)

𝐶
𝜇𝜈

𝑗
(𝑡𝑒, 𝑡𝑚, ®𝑝𝑒, ®𝑝𝑚) =

∫
𝑑3𝑥𝑒𝑑

3𝑥𝑚𝑒
𝑖 ®𝑝𝑒 · ®𝑥𝑒𝑒𝑖 ®𝑝𝑚 · ®𝑥𝑚 ⟨0|𝐽𝜇

𝐴
(𝑡𝑒, ®𝑥𝑒)𝐽𝜈𝐴(𝑡𝑚, ®𝑥𝑚)O

†
𝑗
(0, ®0) |0⟩ , (12)

where O𝑖 (𝑡, ®𝑥) is an interpolating operator for the meson. In the studies covered in this proceedings,
two interpolating operators, O1 = 𝜓𝛾5𝜓 and O2 = 𝜓𝛾4𝛾5𝜓, are employed. The optimal linear
combination which maximizes the overlap of the operator onto the ground state is constructed by
solving the generalized eigenvalue problem [16, 17],∑︁

𝑗

𝐶𝑖 𝑗 (𝑡ref, ®𝑝)𝑣𝑛, 𝑗 (𝑡ref, 𝑡0) = 𝜆𝑛 (𝑡ref, 𝑡0)
∑︁
𝑗

𝐶𝑖 𝑗 (𝑡0, ®𝑝)𝑣𝑛, 𝑗 (𝑡ref, 𝑡0). (13)

The eigenvector 𝑣𝑛, 𝑗 (𝑡ref, 𝑡0) defines the optimized interpolating operator for the 𝑛th state. Thus the
optimized interpolating operator for the ground state is

O𝑀 (𝑡, ®𝑥) =
∑︁
𝑗

𝑣0, 𝑗 (𝑡ref, 𝑡0)O 𝑗 (𝑡, ®𝑥). (14)

This optimized interpolating operator is used self-consistently in the definitions of the two- and
three-point correlation functions. In terms of this optimized interpolating operator for the pion, the
two-point correlation function 𝐶𝑀𝑀 (𝑡, ®𝑝) admits the spectral decomposition

𝐶𝑀𝑀 (𝑡, ®𝑝) =
∑︁
𝑛

|𝑍𝑛,𝑀 ( ®𝑝) |2
2𝐸𝑛

𝑒−𝐸𝑛 ( ®𝑝)𝑡 (15)
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Figure 1: Fitting one-loop HOPE expression to the 𝑡−-even and 𝑡−-odd components of the hadronic matrix
element computed using LQCD.

where 𝑍𝑛,𝑀 ( ®𝑝) = ⟨0|O𝑀 (0, ®0) |𝑛, ®𝑝⟩.
The three-point correlation function 𝐶𝑀 can be written as

𝐶
𝜇𝜈

𝑀
(𝑡𝑒, 𝑡𝑚, ®𝑝𝑒, ®𝑝𝑚) = 𝑅

𝜇𝜈

𝑀
(𝑡−, ®𝑝, ®𝑞)

𝑍∗
0,𝑀 ( ®𝑝)

2𝐸0( ®𝑝)
𝑒−𝐸0 ( ®𝑝)𝑡+/2 + excited states, (16)

where 𝑡+ = 𝑡𝑒 + 𝑡𝑚, 𝑡− = 𝑡𝑒 − 𝑡𝑚, ®𝑝 = ®𝑝𝑒 + ®𝑝𝑚 and ®𝑞 = ( ®𝑝𝑒 − ®𝑝𝑚)/2. By constructing the ratio

R𝜇𝜈
𝑀

(𝑡−, 𝑡+, ®𝑝, ®𝑞) =
𝐶𝑀 (𝑡𝑒, 𝑡𝑚, ®𝑝𝑒, ®𝑝𝑚)
𝑍0,𝑀 ( ®𝑝)
2𝐸0 ( ®𝑝) 𝑒

−𝐸0 ( ®𝑝)𝑡+/2
, (17)

and studying the large 𝑡+ limit, it is possible to show that

lim
𝑡+→∞

R𝜇𝜈
𝑀

(𝑡−, 𝑡+, ®𝑝, ®𝑞) = 𝑅
𝜇𝜈

𝑀
(𝑡−, ®𝑝, ®𝑞). (18)

which may be fit to the HOPE formula to obtain information about the low Mellin moments of the
meson LCDA.

4. Results

4.1 Determination of fourth Mellin moment of pion in the quenched approximation

In Ref. [18], the second moment of the pion LCDA was determined using the HOPE method.
However, the pion momentum was insufficient to study higher moments of the pion LCDA. The
following analysis builds upon that work by studying the hadronic matrix element 𝑅𝜇𝜈 (𝑡, ®𝑝, ®𝑞) at
larger pion three-momenta. In this study, the pion state is taken to have | ®𝑝 |/(2𝜋/𝐿) = 2 units of
momentum. The hadronic matrix element is computed on four ensembles generated in the quenched
approximation for a range of heavy quark masses. The simulation parameters for these ensembles
have previously been reported in Ref. [18].

In this study the ratio R𝜇𝜈𝜋 (𝑡−, 𝑡+, ®𝑝, ®𝑞) is fit to the one-loop HOPE formula evaluated at a
renormalization scale of 𝜇 = 2 GeV. An example of this fit is shown in Fig. 1. Following this, data
is extrapolated to the continuum, twist-two limit using the extrapolation formula,

𝑋 (𝑎, 𝑚Ψ) = 𝑋0 +
𝐴

𝑚Ψ

+ 𝐵𝑎2 + 𝐶𝑎2𝑚Ψ + 𝐷𝑎2𝑚2
Ψ, (19)
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Figure 2: Performing continuum, twist-2 extrapolation of fitted ⟨𝜉2⟩.

Name (𝐿/𝑎)3 × 𝑇/𝑎 𝛽 𝑎 (fm) 𝜅light 𝜅strange 𝑚𝜋 (MeV) 𝑚𝐾 (MeV)

B451 323 × 64 3.46 0.075 0.136981 0.136409 422 577

N305 483 × 128 3.7 0.049 0.137025 0.136676 428 584

H107 323 × 96 3.4 0.085 0.136946 0.136203 368 550

B452 323 × 64 3.46 0.075 0.137046 0.136378 352 548

N204 483 × 128 3.55 0.064 0.137112 0.136575 353 549

N304 483 × 128 3.7 0.049 0.137079 0.136665 353 558

N450 483 × 128 3.46 0.075 0.137099 0.136353 287 528

Table 1: Lattice details for dynamical ensembles employed in calculation of second Mellin moment of the
pion and low Mellin moments of the kaon. Further details about these ensembles can be found in Ref. [20]

where 𝑋 ∈ { 𝑓𝜋 , ⟨𝜉2⟩ , ⟨𝜉4⟩}. The form of this extrapolation is inspired by power-counting arguments
for the leading higher-twist and lattice artifacts. In order to estimate the systematic uncertainty
stemming from the use of this parameterization, the model averaging prescription proposed in
Ref. [19] is employed. The resulting continuum, twist-two extrapolations of the second and fourth
Mellin moments are presented in Fig. 2.

4.2 Progress in determination of second Mellin moment of pion

Previous work [18] focused on a proof-of-principle determination of the second moment
of the pion LCDA. Due to the exploratory nature of that work, the quenched approximation
was employed. As a result, the determined second Mellin moment of the LCDA suffers from
a uncontrolled systematic error. Therefore, the HOPE Collaboration is currently repeating this
calculation using dynamical ensembles generated by the CLS Collaboration [20]. Details of the
dynamical ensembles employed in this work are given in Table 1. Using this set of ensembles,
it will be possible to perform an extrapolation to the physical point in addition to the continuum,
twist-two extrapolation performed in previous HOPE studies.

Except in several small ways, this analysis mirrors the analysis of the fourth moment and
the previous quenched analysis of the second moment [18]. A preliminary study of excited state

5
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Figure 3: (Left) Studying excited state contamination in the extracted second Mellin moment of the pion
LCDA. (Right) Continuum, twist-two extrapolation of the second moment of the pion LCDA using ensembles
with a pion mass of approximately 𝑚𝜋 ≈ 350 MeV.

contamination in the extracted second Mellin moment is presented in Fig. 3. After extrapolating
excited state contamination, the resulting values of the second moment on the ensembles considered
here is shown in Fig. 3, along with the preliminary continuum, twist-two extrapolation. This
extrapolation employs the same ansatz proposed in Eq. (19). It is important to note that this analysis
only considers ensembles with approximately equivalent pion masses.

4.3 Progress in determination of low moments of kaon LCDA

Exploratory work has commenced on the determination of the low moments of the kaon
LCDA using the HOPE method. Due to the presence of a strange quark, both the odd and even
Mellin moments are non-zero. In order to assess the sensitivity of the hadronic matrix element to
the presence of the low Mellin moments it is useful to note that in momentum space, the linear
combinations

𝑉
𝜇𝜈

𝐾,even(𝑝, 𝑞) =
1
2

[
𝑉
𝜇𝜈

𝐾
(𝑝, 𝑞) −𝑉

𝜇𝜈

𝐾
(𝑝,−𝑞)

]
, (20)

𝑉
𝜇𝜈

𝐾,odd(𝑝, 𝑞) =
1
2

[
𝑉
𝜇𝜈

𝐾
(𝑝, 𝑞) +𝑉 𝜇𝜈

𝐾
(𝑝,−𝑞)

]
, (21)

are sensitive to the even and odd Mellin moments, respectively. That is, at tree-level,

𝑉
𝜇𝜈

𝐾,even(𝑝, 𝑞) = −
2𝑖 𝑓𝜋𝜖 𝜇𝜈𝜌𝜎𝑞𝜌𝑝𝜎

�̃�2

∞∑︁
𝑛=0,even

(
�̃�

2

)𝑛
⟨𝜉𝑛⟩𝑀 + higher-twist terms , (22)

𝑉
𝜇𝜈

𝐾,odd(𝑝, 𝑞) = −
2𝑖 𝑓𝜋𝜖 𝜇𝜈𝜌𝜎𝑞𝜌𝑝𝜎

�̃�2

∞∑︁
𝑛=0,odd

(
�̃�

2

)𝑛
⟨𝜉𝑛⟩𝑀 + higher-twist terms , (23)

In addition to this linear combination, it is possible to further separate the hadronic matrix element
into real and imaginary parts, as previously employed in studies of the pion LCDA [18]. The
combination of these two approaches make it possible to isolate ⟨𝜉1⟩𝐾 and ⟨𝜉2⟩𝐾 in Im𝑉

𝜇𝜈

odd(𝑝, 𝑞)
and Re𝑉 𝜇𝜈even(𝑝, 𝑞), respectively. These amplitudes have been calculated using the ensembles listed
in Table 1 and are shown in Fig. 4. The clear non-zero signal for each of these amplitudes is
encouraging for a determination of these two Mellin moments using the HOPE method.

6
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Figure 4: Real and imaginary components of the 𝑞-even and 𝑞-odd amplitudes which are sensitive to the
even and odd Mellin moments of the Kaon LCDA.

5. Conclusions

The LCDA is the non-perturbative object of interest for a range of high-energy exclusive
processes in QCD. In this proceedings, recent progress by the HOPE calculation in computing the
low Mellin moments of the pion and the kaon LCDA are presented.
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