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HiRep allows flexible simulations of higher representations of Wilson Fermions with various
actions and gauge groups and a range of inverters and integrators. This is particularly important
for enabling evaluations of observables relevant to phenomenological inputs for Beyond-the-
Standard-Model physics from lattice field theory. We present progress on the GPU porting of
available features, especially in terms of scaling to large jobs on AMD GPUs.
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1. Motivation

Modern supercomputers reach unprecedented peak bandwidths and computational throughput
using Graphics Processing Units (GPUs). Exploiting these peak performances to simulate BSM
physics allows the generation of high-precision, non-perturbative predictions for experimental input.
While there is support for models with higher representations from numbers of colors of 2 to 5 in
Grid [1, 2] using Staggered or Wilson Fermions, HiRep [3, 4] is currently the highest performing
option supporting Wilson Fermions with arbitrary numbers of flavors and colors in SU(N) gauge
groups with fermions in the fundamental and selected higher representations for CPUs and GPUs.
We aim to minimize the time needed for state-of-the-art lattice calculations with unprecedented
statistics, supporting possibly full machine runs without loss of efficiency. While the GPU version
was developed for NVIDIA GPUs, we reached reasonable efficiency also on AMD machines, such
as LUMI-G.

The software is available at

https://github.com/claudiopica/HiRep

2. Execution structure

2.1 Wilson-Dirac Operator

Implementing the Wilson-Dirac operator for multi-GPU runs depends on the execution of
different kernels. First, a kernel calculates the inner computations, that is, the computations that do
not depend on communicated information from other GPUs. Then, there is a boundary calculation
that computes all terms only after communicated information is received. The communications rely
on executing a kernel that synchronizes data from the local lattice to a send buffer, followed by a
memory transfer.

The efficiency of this kernel depends on the organization of these different kernels and memory
operations. They can be analyzed by using profiler tracing data, either from NVIDIA Nsight
(CUDA) or rocprof (ROCm). Below, we show traces for LUMI-Gs AMD MI250X GCDs and
UCloud DeiC Interactive HPCs NVIDIA H100 GPUs.

In these figures, times are given relative to an arbitrarily chosen starting point chosen as a
representative example of the sequence of kernel executions. There is inevitable variability from
one Dirac execution to another. The example we show is typical and not the best one we found in
the tracing data. Any timing reported here is up to the precision of the profiler’s sampling.

Our ability to achieve the peak capabilities of the device is measured in terms of memory
bandwidth instead of computational throughput, as lattice simulations are memory-bound.

In Fig. 1, we mainly want to see that the send buffer synchronizations and the Dirac boundary
execution are sufficiently parallelized to minimize the overhead. Further, the communications have
to be in parallel to the inner Dirac application, and they mainly are. In principle, the split up even
and odd parts of the Dirac inner point computations can also be streamed in parallel; in practice, this
will not work because the inner Dirac operator kernel uses the GPU to its full extent. Additionally,
this parallelization is impossible in the even-odd preconditioned version of the Dirac operator used
mainly in the HMC, so this improvement would be of little practical relevance.
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Figure 1: ROCm profiles for single and multiple Dirac operator executions on LUMI-G in a 4 GCD/single-
node job on a 484 local lattice parallelized in two dimensions. The vertical direction is arranged first by
kernel type and then by queue ID, showing the parallelization of different kernel types in different streams.
In this case, the profile on the right shows only one of the four MPI processes.
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Figure 2: Profile of repeated Dirac operator applications on four NVIDIA H100 GPUs using a 484 local
lattice parallelized in two dimensions. The tracing plot shows on the left side a single application of the Dirac
operator as part of this profile and on the right side the repeated Dirac executions on all four MPI processes.
The vertical direction is arranged first by process, then kernel type, and finally by stream ID. In contrast to
the ROCm profiles, this shows both the MPI parallelization at the node level and the software-level streaming
structure. The ROCm profiles only show a single MPI process and the queue ID at the hardware level.
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For comparison, we show in Fig. 2 the execution structure of a 4-GPU NVIDIA H100 node.
The structure in execution is similar, but the node achieves slightly better results in executing
the communications in parallel to the heavy inner Dirac kernel, and the overall execution times
are significantly reduced, mainly due to the higher theoretical peak bandwidth. Note, that the
two profiles are different in displaying the parallelism. While the NVIDIA Nsight trace contains
information about all processes and the stream to which the software submitted the kernel, the
ROCm traces only show a single process and the hardware level queue that the kernel ends up being
scheduled to, regardless of which stream the kernel was selected for.

2.1.1 Blocking and non-blocking communications

All communications in HiRep are executed from a different POSIX thread. This means we
can either call blocking or non-blocking communications in parallel to the inner Dirac execution.
While non-blocking communications have the advantage that they do not pile up requests, sending
all requests at once can enable a well-configured network to manage the requests better. Which
setup is more efficient needs to be tested on an individual basis.

2.2 Clover improvement

Clover improvement of the Wilson-Dirac operator requires the application of another diagonal
term. While the parallelization of this term is trivial, the site-by-site operations require more
memory and computation. Therefore, the applications were optimized by precomputing certain
fields, such as the LDL-factorization and exponential of the clover term, respectively, in such a way
that they need only to be recomputed whenever the gauge field is updated.

The results in Fig. 3 show that the application of the additional clover term only takes little
additional time. The extra time needed is approximately the same irrespective of the specific
improvement, either regular clover improvement (left) [5] or exponential clover improvement (right)
[6]. Due to the mathematical structure of the two improvements, the inverse of the regular clover
improvement kernel takes an approximate factor of 2 longer than the kernel shown here for this
local lattice of 484. In the exponential clover, the diagonal part of the Dirac operator and its inverse
take the same time to execute. This is particularly useful when using Hasenbusch acceleration [7].

3. Weak and strong scaling

We must stress that a good scaling up to 1000 GPUs only works for weak scaling. Here, we
observe a close-to-optimal scaling. For a single GCD execution, we are achieving around 82%
(1.34 TB/s) of the theoretical peak bandwidth of the MI250X GCD, given by 1.6384 TB/s. For
larger jobs, we are achieving less because of the overhead caused by separately calling the boundary
kernels and the buffer synchronization. If the inner Dirac kernel execution is becoming too fast to
mask the communications, additional overhead is expected causing an issue with strong scaling.

Fig. 4 shows the scaling behavior on LUMI-G, with corresponding data in Tab.1. While the
weak scaling is near perfect, achieving a peak bandwidth of 679 TB/s, jobs that contain over 128
GPUs are showing decreasing efficiency when scaling strongly. This is likely because the inner
Dirac computations are becoming too fast to mask the communications even on a state-of-the-art
network. While this is an issue for the efficiency of jobs, it is still possible to scale to relatively
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Figure 3: A single Dirac operator application including the diagonal clover term executed on AMD MI250X
GCDs on LUMI-G using a 484 local lattice with two parallelized dimensions, both for regular clover
improvement (left) and exponential clover improvement (right). The vertical direction is organized first by
kernel type and second by queue ID.
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Figure 4: Weak and strong scaling from 16 to 1024 GCDs on LUMI-G with all four dimensions parallelized
on a local lattice of 484 (weak scaling) and global lattice of 1284 (strong scaling).
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Table 1: Strong and weak scaling data for the unimproved Wilson-Dirac operator in terms of bandwidth
reached on LUMI-G using AMD MI250X GCDs

𝑇/𝑎 𝐿1/𝑎 𝐿2/𝑎 𝐿3/𝑎 GCDs Bandw. [TB/s] [%]

96 96 96 96 16 12.93176 49%
192 96 96 96 32 23.00843 44%
384 96 96 96 64 42.18804 40%
768 96 96 96 128 85.74323 41%

1536 96 96 96 256 166.92260 40%

3072 96 96 96 512 331.60242 40%
6144 96 96 96 1024 679.34508 40%
128 128 128 128 32 21.38658 41%
128 128 128 128 64 36.94729 35%
128 128 128 128 128 71.44381 34%

128 128 128 128 256 96.84180 23%
128 128 128 128 512 168.57047 20%
128 128 128 128 1024 262.96682 16%

small local lattices and scale jobs to achieve unparalleled execution times. So far, for SU(2) gauge
groups, we observe that local lattices smaller than 164 should be avoided, but for larger numbers of
colors, this needs to be tested individually.

4. Performance reached in comparison

In Fig. 5, we compare the peak bandwidths reached on two different architectures. While we
exceed the peak theoretical bandwidth on the NVIDIA-A100 on Tursa due to L2 reuse, we have yet
to reach peak performance on the MI250X on LUMI-G. The impact of the overhead is also heavier
in the case of LUMI-G. However, the scaling of the code for multi-node calculations is close to
perfect and reaches 40% of the peak performance of 1024 GCDs on LUMI-G.

5. Conclusion and outlook

We can reach 82% (1.34 TB/s) of the peak performance on AMD MI250X cards for a code
originally developed for CUDA. The code scales up to 1024 GCDs, reaching 679 TB/s. This
increases the possibilities for the BSM physics lattice community to reach high precisions for
predictions from the lattice.
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Figure 5: Comparison of bandwidths per GPU (Tursa) or GCD (LUMI-G) reached for single and multi-node
jobs. The red dashed line denotes the peak theoretical bandwidth of the respective GPU/GCD.
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