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We study the finite-temperature critical point of QCD in the heavy-quark region by a scaling study
of the Binder cumulant on large lattices. Extending our previous study at 𝑁𝑡 = 4, we perform
simulations on 𝑁𝑡 = 6 and 8 lattices with spatial volumes up to the aspect ratio 𝐿𝑇 = 𝑁𝑠/𝑁𝑡 = 18
and 15 (𝑁𝑠 = 108 and 120), respectively, to determine the critical point in the thermodynamic limit
with a high precision. To enable simulations with large spatial volumes, we adopt the hopping
parameter expansion combined with a method to effectively incorporate high order terms of the
expansion. The reliability of the method is confirmed by examining the effect of high order terms.
Using the results of the critical point at 𝑁𝑡 = 4, 6, and 8, we also attempt a preliminary continuum
extrapolation of the critical point in physical units.
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1. Introduction

In the Columbia plot in which the nature of the finite-temperature deconfinement transition in
2 + 1 flavor QCD is summarized as function of the degenerate 𝑢𝑑 and the 𝑠 quark masses, 𝑚𝑢𝑑

and 𝑚𝑠, the first-order regions are expected around the light quark limit (𝑚𝑢𝑑 = 𝑚𝑠 = 0) and in
the heavy quark region (large 𝑚𝑢𝑑 and 𝑚𝑠). While the physical point is located in the crossover
region, thermodynamic properties around the physical point may be affected by scaling due to
nearby critical points (CPs). On the edges of the first-order regions as well as in the two-flavor
chiral limit 𝑚𝑢𝑑 = 0, we expect CPs. Recent lattice studies suggest that the first-order region in the
light-quark side is quite narrow if it exists [1–3]. Because the CP in the light-quark side turned out
to be more distant from the physical point than previously considered, it is important to study the
influence of the CP in the heavy-quark side. In this study, we focus on the CP in the heavy-quark
region.

A powerful method in determining the location of CP is the finite-size scaling (FSS) analysis of
the Binder cumulant [4] assuming an approximate dominance of the leading singularity. However,
previous studies suggest that this requires rather large spatial lattices [5–7]. We thus perform
simulations with spatially large lattices. We also adopt the reweighting method to continuously
vary coupling parameters, as required by the Binder cumulant analysis.

We measure the spatial lattice size 𝐿 = 𝑁𝑠𝑎 around the critical temperature𝑇 ∼ 𝑇𝑐 by the aspect
ratio 𝐿𝑇 = 𝑁𝑠/𝑁𝑡 , where 𝑁𝑠 and 𝑁𝑡 are the spatial and temporal extent of the lattice, respectively,
𝑎 is the lattice spacing, and 𝑇 = 1/(𝑁𝑡𝑎) is the temperature. We first studied the heavy-quark QCD
at 𝑁𝑡 = 4 on lattices with 𝐿𝑇 = 6-12 (𝑁𝑠 = 24-48) [7]. In this report, we extend the study to
𝑁𝑡 = 6 [9] and 8 [10] lattices with 𝐿𝑇 up to 𝐿𝑇 = 18 and 15 (𝑁𝑠 = 108 and 120), respectively.

2. Setup

Our lattice action is a combination of the plaquette gauge action

𝑆g = −6𝑁3
𝑠𝑁𝑡 𝛽�̂� (1)

and the standard Wilson quark action, where 𝑁𝑠 and 𝑁𝑡 are the spatial and temporal lattice sizes,
and �̂� is the plaquette. Integrating out the quarks, the effective action is given by

𝑆eff = 𝑆g −
𝑁f∑︁
𝑓 =1

ln det𝑀 (𝜅 𝑓 ), (2)

where 𝑀 is he Wilson quark kernel given by

𝑀𝑥𝑦 (𝜅 𝑓 ) = 𝛿𝑥𝑦 − 𝜅 𝑓 𝐵𝑥𝑦 , 𝐵𝑥𝑦 =

4∑︁
𝜇=1

[
(1 − 𝛾𝜇)𝑈𝑥,𝜇 𝛿𝑦,𝑥+�̂� + (1 + 𝛾𝜇)𝑈†

𝑦,𝜇 𝛿𝑦,𝑥− �̂�
]
, (3)

with 𝜅 𝑓 = 1/(2𝑎𝑚 𝑓 + 8) the hopping parameter for the 𝑓 th flavor with the bare quark mass 𝑚 𝑓 , and
𝐵𝑥𝑦 the hopping term from 𝑦 to 𝑥. For simplicity, we consider the case of degenerate 𝑁f flavors in
the following, although generalization to non-degenerate cases is straightforward.
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Figure 1: Left: Relative deviation from the exact value due to truncation of the HPE for the PLT contribution
in the effective action at 𝑁𝑡 = 6 [9]. Right: Scatter plot of 𝑛th order PLT terms of the HPE it vs. the LO
Polyakov-loop, observed on an 𝑁𝑡 = 6 lattice near the CP [9].

2.1 Hopping parameter expansion

In the heavy-quark region 𝜅 ≪ 1, we may adopt the hopping parameter expansion (HPE):

𝑆eff = 𝑆g − 𝑁f𝑁
3
𝑠𝑁𝑡

∞∑︁
𝑛=1

(
�̂� (𝑛) + �̂� (𝑁𝑡 , 𝑛)

)
𝜅𝑛, (4)

where �̂� (𝑛) and �̂� (𝑁𝑡 , 𝑛) are contributions from length-𝑛 closed trajectories of 𝐵𝑥𝑦 without and
with windings along the temporal direction, respectively. Here, we assume that the spatial extent
is sufficiently large such that the effects of spatial windings are negligible. We refer to the terms
included in �̂� (𝑛) and �̂� (𝑁𝑡 , 𝑛) as the Wilson loops and the Polyakov-loop-type (PLT) loops,
respectively.

To the lowest nontrivial order (LO), we have contributions proportional to the Plaquette �̂� and
the Polyakov-loop Ω̂:

𝑆LO = −96𝑁3
𝑠𝑁𝑡𝑁f𝑁c𝜅

4 �̂� − 𝑁3
𝑠𝜆 ReΩ̂, 𝜆 = 2𝑁𝑡+2𝑁f𝑁c𝜅

𝑁𝑡 , (5)

where 𝑁𝑐 = 3 for QCD, and �̂� and Ω̂ are normalized such that they become unity in the weak-
coupling limit. To the next-to-leading order (NLO), we have contributions proportional to the
length-six Wilson loops with the factor 𝜅6 and bent PLT loops of length 𝑁𝑡 +2 with the factor 𝜅𝑁𝑡+2.
See refs. [8, 9] for details.

2.2 Convergence of HPE

Because 𝜅 = 1/(2𝑚𝑞𝑎 + 8), the HPE worsens as we approach the continuum limit 𝑎 → 0. In
accordance with this, 𝜅𝑐 becomes larger as 𝑁𝑡 increases, and we need more and more high-order
terms of the HPE to study the CP.

In Refs. [8, 9], we studied the convergence of the HPE around the heavy-quark limit. In the left
panel of Fig. 1, we show the relative deviation from the true value due to truncation of the HPE. This
is the result of the PLT loop terms in the effective action at 𝑁𝑡 = 6 in the worst convergent case [9].
The results at 𝑁𝑡 = 4 and 8 as well as those for the contribution of Wilson loops are similar [8, 9].
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Figure 2: Simulation of heavy-quark QCD incorporating LO and NLO terms of the HPE [7].

From the figure we find that, around the CP at 𝑁𝑡 = 4, 𝜅𝑐 = 0.0603(4) [7] for 𝑁f = 2, the effective
action in the LO approximation (red curve) may have an error of 10% maximally, while the NLO
(blue curve) is guaranteed to be fairly accurate. Around 𝜅𝑐 = 0.08769(7) (+11

−0 ) [9] at 𝑁𝑡 = 6, the
LO and NLO approximations may have error of 25 and 7%, respectively, while the NNLO is quite
accurate. Around 𝜅𝑐 = 0.09024(46) [10] at 𝑁𝑡 = 8, we need NNLO and higher orders to achieve a
good accuracy.

3. Method

3.1 NLO simulation

As illustrated in Fig. 2, we generate gauge configurations according to the action

𝑆g + 𝑆LO = −6𝑁3
𝑠𝑁𝑡 𝛽

∗ �̂� − 𝑁3
𝑠𝜆 ReΩ̂, 𝛽∗ = 𝛽 + 16𝑁f𝑁c𝜅

4. (6)

This action can be simulated by a pseudo-heatbath algorithm with over-relaxation, which can be
efficiently implemented on vector and parallel computers [7]. We then incorporate the NLO effects
exactly by the reweighting method:

⟨�̂�⟩NLO =
⟨�̂�𝑒−𝑆NLO⟩LO

⟨𝑒−𝑆NLO⟩LO
. (7)

We also adopt the reweighting method to continuously vary the coupling parameters around the CP.
The total simulation cost is comparable to that of quenched QCD simulations. We note that

the overlap problem of the reweighting method is largely resolved by taking the LO effects in
configuration generation [7]. These were essential for our study of first-order transition with large
lattices.

In [7], we studied the CP in heavy-quark QCD at 𝑁𝑡 = 4 adopting this NLO simulation. This
approximation truncating the HPE after the NLO will be sufficient to determine the CP at 𝑁𝑡 = 4.
However, at 𝑁𝑡 ≥ 6, we need to incorporate NNLO and higher order effects. We do this with an
effective method discussed in the next subsection.

3.2 Effective incorporation of NNLO and higher order terms of HPE

Our basic observation is the strong linear correlation among different order terms of HPE [8].
In the right panel of Fig. 1, we show the scatter plot of PLT terms of the effective action, observed at
𝑁𝑡 = 6 near the CP. This strong linear correlation suggests an approximation to replace high-order
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Figure 3: Left: Phase diagram of two-flavor QCD in the (𝛽, 𝜅) plane at 𝑁𝑡 = 6 [9]. The full and dotted lines
represent the first-order transition line and the crossover line, while the symbols at the end of the first-order
lines represent the CP. The green, blue, and red lines show the result of the NLO analysis discussed in
Sec. 3.1, the eff[LO] method, and the eff[NLO] method discussed in Sec. 3.2, respectively. Right: Effective
coupling of the Polyakov-loop term in the effective action as function of the truncation order 𝑛𝐿 in the eff[LO]
method, obsereved on an 𝑁𝑡 = 6 lattice near the CP [9].

terms by rescaled low-order term, where the rescaling factors are given in terms of the slopes in
this figure. Wilson-loop type terms show weaker but similar correlation.

In [8], we proposed to incorporate the effects of NLO and higher-order terms by shifting the LO
couplings 𝛽∗ and 𝜆 in Eq.(6) (eff[LO] method). Alternatively, because it is easy to incorporate the
NLO effects exactly as discussed in Sec. 3.1, we may incorporate the NNLO and higher order terms
by shifting the NLO couplings (eff[NLO] method) [9]. Because the latter method is exact up to
the NLO, and also because the correlation is stronger with smaller order differences, the eff[NLO]
method should be better than the eff[LO] method.

Let us test these methods consulting the final phase diagram obtained at 𝑁𝑡 = 6 [9] shown
in the left panel of Fig. 3. In the (𝛽, 𝜅) plane, the first-order deconfinement transition (full lines)
in the heavy-quark region terminates at the CP when we decrease the quark mass by increasing
𝜅, and turns into crossover shown by dotted lines. See Sec. 4 for precise definition of these lines.
The green line is the result of the NLO study discussed in Sec. 3.1, and the blue and red lines are
the results of the eff[LO] and eff[NLO] methods, respectively. We note that the blue and red lines
deviate from the green line, meaning that the NNLO and higher orders are important to determine
the CP at 𝑁𝑡 ≥ 6 in this precision. On the other hand, the red and blue lines are close to each
other. The difference between the red and blue lines is mainly whether the NLO effects are treated
exactly or effectively. The closeness of them indicates that our effective method is working well in
incorporating the NLO term.

We also studied the influence of vary high order terms in our effective methods [9]. In the
right panel of Fig. 3, we show the effective LO coupling 𝜆∗ that incorporates higher-order terms up
to the 𝑛𝐿th order in the eff[LO] method. We find that the results become stable when 𝑛𝐿 is larger
than 14 in this case. We have confirmed similar stability of 𝛽∗ in the eff[LO] method as well as the
effective NLO couplings in the eff[NLO] method when the truncation order is sufficiently large.

5
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Figure 4: Binder cumulant of the Polyakov loop along the transition line, obtained with various spatial
volumes. Left: Results at 𝑁𝑡 = 4 [7]. Right: Results at 𝑁𝑡 = 6 [9]. The symbols with both vertical and
horizontal error bars are the results of conventional FSS fits identifying the Polyakov loop as the magnetization
of the Z(2) spin model, while the symbols with horizontal error bar only are the results of FSS fits in which
possible contamination of the energy-like operator is taken into account.

4. Results

Identifying ReΩ̂ with the magnetization in the Z(2) spin system, we study the Binder cumu-
lant [4]

𝐵4 =
⟨(ReΩ̂)4⟩𝑐
⟨(ReΩ̂)2⟩2

𝑐

+ 3 (8)

along the transition/crossover line on lattices with various spatial sizes, where the transition/crossover
line is defined as the minimum position of 𝐵4 at each 𝜅.1 When the leading term of the FSS domi-
nates, 𝐵4 should be independent of 𝐿𝑇 at the CP.

4.1 𝑁𝑡 = 4

We first study the case of 𝑁𝑡 = 4 on lattices with the aspect ratio 𝐿𝑇 = 𝑁𝑠/𝑁𝑡 = 6-12 (𝑁𝑠 = 24-
48) [7]. Our results of 𝐵4 are shown in the left panel of Fig. 4. We find that 𝐿𝑇 ≥ 9 is required to
get a stable crossing of 𝐵4 to the present precision.

Performing a FSS fit using 𝐿𝑇 = 9-12, we obtain the critical exponent 𝜈 = 0.614(48) (3) and
the crossing height 𝑏4 = 1.630(24) (2), which are consistent with the expected Z(2) values 0.630 and
1.604 within 1𝜎. For the CP, we obtain 𝜆𝑐 = 0.00503(14) (2) that corresponds to 𝜅𝑐 = 0.0603(4)
for 𝑁f = 2. Because the flavor-dependence is analytically known in the HPE, it is straightforward
to translate these results for general cases such as the 2 + 1 flavor QCD.

1We also examine alternative definitions of the transition/crossover line – as the maximum position of ⟨(ReΩ̂)2⟩𝑐 ,
and as the zero position of ⟨(ReΩ̂)3⟩𝑐 . We confirm that all three definitions lead to the same transition/crossover line in
the large 𝐿𝑇 limit around the CP we studied. See Fig. 5 of [9] and Fig. 8 of [7]. The crossover line may show dependence
on the definitions in regions far from the CP. We note that the conventional definition using the maximum of ⟨(ReΩ̂)2⟩𝑐 ,
i.e. the susceptibility peak, has the strongest dependence on 𝐿𝑇 among these three definitions, on both the transition and
the crossover sides.
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Figure 5: Left: Two-dimensional histogram of Ω̂ on the complex plane at the critical point at 𝑁𝑡 = 6 and
𝐿𝑇 = 6 [9]. Right: Preliminary results of the Binder cumulant obtained at 𝑁𝑡 = 8 [10]. The symbol with
both vertical and horizontal error bars is the crossing point estimated by a FSS fit using 𝐿𝑇 = 10-15.

4.2 𝑁𝑡 = 6

We now extend the study to 𝑁𝑡 = 6 simulating lattices with 𝐿𝑇 = 6-18 (𝑁𝑠 = 36-108) [9]. Our
results of 𝐵4 are shown in the right panel of Fig. 4.

Compared to the 𝑁𝑡 = 4 case, we note that the violation of the FSS at small 𝐿𝑇 becomes greater
on the finer lattice. To understand the origin of the violation of the FSS at small 𝐿𝑇 , we study the
distribution of Ω̂ near the CP. Result for 𝐿𝑇 = 6 is shown in the left panel of Fig. 5. We note that the
distribution around the peak at ReΩ̂ ≈ 0 extends toward large |ImΩ̂|, suggesting the remnant of the
Z(3) center symmetry in the heavy-quark limit. The asymmetry of the distribution around the two
peaks becomes weaker as 𝐿𝑇 becomes larger, while it is visible even at 𝐿𝑇 = 15. This asymmetry
of the two peaks may be causing the violation of the FSS based on the Z(2) universality around the
CP.

By an FSS fit using 𝐿𝑇 = 12-18, we obtain 𝜈 = 0.627(19) (5) and 𝑏4 = 1.6297(84) (6), as
shown by the symbols with both vertical and horizontal error bars in the figure. Although the
critical exponent is consistent with the Z(2) value, the crossing height turned out to be more than
2𝜎 away.

This motivated us to try an alternative FSS fit in which possible contamination of the energy-
like operator in ReΩ̂ is taken into account. Because the full six-parameter fit turned out to be
unstable, we perform fits fixing the critical exponents and 𝑏4 to their Z(2) values. We find that the
fits work well with acceptable 𝜒2/dof when 𝐿𝑇 ≥ 10. We thus conclude that our data obtained on
spatially large lattices are consistent with the Z(2) scaling. In the right panel of Fig. 4, the result of
the CP is shown by the symbols at 𝑏4 = 1.604 with horizontal error bar only.

Taking the result of this FSS fit using 𝐿𝑇 = 12-18 as the central value, we obtain 𝜅𝑐 =

0.08769(7) (+11
−0 ) for 𝑁f = 2, where the second bracket is the systematic error estimated from the

difference with the FSS fit disregarding the contamination of the energy-like operator. This result
is consistent with the result 0.0877(9) of the two-flavor QCD study using 𝐿𝑇 = 4-7 [5], while the
error is significantly suppressed in our analysis.
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4.3 𝑁𝑡 = 8

We also extend the study to 𝑁𝑡 = 8 simulating lattices of 𝐿𝑇 = 6-15 (𝑁𝑠 = 48-120) [10]. Our
preliminary results of 𝐵4 are shown in the right panel of Fig. 5.

Although the crossing points became more scattered, overall features are similar to the 𝑁𝑡 = 4
and 6 cases. By a FSS fit using 𝐿𝑇 = 10-15, we obtain 𝜈 = 0.72(27) and 𝑏4 = 1.638(28), which
are consistent with the Z(2) values within 1𝜎 though the errors are large. By fixing 𝜈 to the Z(2)
value, we obtain 𝑏4 = 1.637(24), confirming a stability of the crossing point. The CP locates at
𝜅𝑐 = 0.09024(46) for 𝑁f = 2, to be compared with a previous result 1.1135(8) from the two-flavor
QCD study using mainly 𝐿𝑇 = 4-6 (in part 7 and 10 also) [5].

5. Summary

We determined the critical point in finite-temperature heavy-quark QCD by a finite-size scaling
study of the Binder cumulant. We found that quite large spatial lattices are required to obtain the
leading finite-size scaling signal clearly. In the heavy-quark region, such simulations with large
spatial volumes are enabled by the hopping parameter expansion combined with an effective method
to incorporate high orders. Performing simulations at 𝑁𝑡 = 4-8, we made a precise determination
of the critical point.

Using previous results of the pseudo-scalar meson mass 𝑚PS at 𝑇 = 0 [5, 11], we express the
results of the critical point in terms of physical observables. We obtain

𝑚
(CP)
PS /𝑇𝑐 = 16.30(3) 𝑁𝑡 = 4 using 𝐿𝑇 = 9−12, (9)

𝑚
(CP)
PS /𝑇𝑐 = 18.07(2) (+11

−0 ) 𝑁𝑡 = 6 using 𝐿𝑇 = 10−18, (10)

𝑚
(CP)
PS /𝑇𝑐 = 17.2(2) 𝑁𝑡 = 8 using 𝐿𝑇 = 10−15, (11)

at the CP for 𝑁f = 2. We find that the lattice-spacing dependence is quite small up to 𝑁𝑡 = 8 in this
combination, suggesting that these values are not far from the continuum limit.

Our method should work at least up to 𝑁𝑡 around 10. Determination of the CP on finer
lattices is important to draw a more definite conclusion about the continuum limit. Applications
to finite-density cases are also easy in the HPE. Extensions of the study to these directions are
underway.
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