
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
8

Portable Lattice QCD implementation based on
OpenCL

Piyush Kumar,𝑎,∗ Szabolcs Borsanyi,𝑎 Jana N. Guenther𝑎 and Chik Him
Wong𝑎

𝑎Bergische Universität Wuppertal,
Gaussstr. 20, Wuppertal, Germany
E-mail: kumar@uni-wuppertal.de, borsanyi@uni-wuppertal.de,
jguenther@uni-wuppertal.de, cwong@uni-wuppertal.de

The presence of GPU from different vendors demands the Lattice QCD codes to support multiple
architectures. To this end, Open Computing Language (OpenCL) is one of the viable frameworks
for writing a portable code. It is of interest to find out how the OpenCL implementation performs
as compared to the code based on a dedicated programming interface such as CUDA for Nvidia
GPUs. We have developed an OpenCL backend for our already existing code of the Wuppertal-
Budapest collaboration. In this contribution, we show benchmarks of the most time consuming
part of the numerical simulation, namely, the inversion of the Dirac operator. We present the code
performance on the JUWELS and LUMI Supercomputers based on Nvidia and AMD graphics
cards, respectively, and compare with the CUDA backend implementation.

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:kumar@uni-wuppertal.de
mailto:borsanyi@uni-wuppertal.de
mailto:jguenther@uni-wuppertal.de
mailto:cwong@uni-wuppertal.de
https://pos.sissa.it/

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
8

Portable Lattice QCD implementation based on OpenCL Piyush Kumar

1. Introduction

One of the major challenges in investigating the physics of quarks and gluons using lattice QCD
is the high computational cost, which grows significantly as the lattice size increases. A key step
in the simulation using Hybrid-Monte-Carlo (HMC) algorithm is the inversion of the large, sparse
fermionic matrix, 𝐷 of size 𝑁 ×𝑁 , where 𝑁 = 3×𝑁3

𝜎 ×𝑁𝜏 with staggered fermions on an 𝑁3
𝜎 ×𝑁𝜏

lattice. The inversion using iterative methods such as Conjugate Gradient (CG) requires repeatedly
applying the fermionic matrix on a pseudo-fermion, /𝐷𝜙 which is computationally expensive and is
the most time critical part of the simulation.
The high computational demand and the inherent parallelism in lattice QCD simulations have
popularized the utilization of GPUs. This has been crucial in attaining the performance required to
make the physical calculations computationally feasible. Since the first Lattice QCD implementation
on GPUs using Open Graphics Library (OpenGL) in 2006 [1], offloading the expensive parts of
the simulation to GPUs has become a standard practice. This led to the development of optimized
software packages and frameworks for lattice QCD simulations such as QUDA [2], Grid [3] and
SimulateQCD [4] which provide multi-GPU support for the accelerated simulations. Additionally,
the presence of GPU from different vendors demands the Lattice QCD codes to support multiple
architectures. To this end, Open Computing Language (OpenCL) [5] and SYCL [6] are the viable
frameworks to write a portable code. We have added an OpenCL backend (see also [7]) to our
already existing code. In this work, we show the benchmarks of the /𝐷 operator in the staggered
formalism and its inversion using CG on a single GPU.

2. OpenCL

OpenCL is an open standard for writing parallel programs to run across heterogeneous platforms
and architectures. The OpenCL API provides a standard interface for developing kernels, which
ensures code portability across different hardware architectures, unlike vendor-specific options,
such as CUDA and HIP. The execution model consists of a host program and kernels. The host
code uses the OpenCL API to query and select compute devices, associate a context for the devices
and, within the context, create a command queue for each device to manage the workload. The
lower level of the execution model consists of "Kernel", i.e. device code which is executed on
the processing elements within the compute device. As shown in Fig. 1, when the kernels are
called by the application, they are enqueued to the command queue of the device along with
the work size and work group decomposition. The work size defines the total number of work
items (threads) to be executed, while the work group size specifies how these work items are
grouped for execution on compute units. Once the dependencies of the kernel-instance are met,
i.e., completion of previously enqueued synchronization commands, OpenCL runtime launches the
kernel-instance across the available compute units of the device for execution. OpenCL offers the
runtime compilation and building of the source code for device kernels. This offers several benefits,
such as greater portability, just-in-time hardware optimizations and the flexibility of dynamically
generating or modifying kernels at runtime based on input data and application requirements.

2

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
8

Portable Lattice QCD implementation based on OpenCL Piyush Kumar

Figure 1: Schematic of OpenCL kernel execution model

3. Code Design

We show the organizational levels of the code in Fig. 2. At the top layer, we have the tasks or
algorithms, such as HMC, parallel tempering, density of states and iterative solvers. The backends
provide the implementations of the Dirac operator, the gauge action and its derivatives, etc. The
backend contains templated classes for the lattice fields ("Latfield" class) such as four dimensional
link fields, spinor fields, etc. Each backend optimizes the memory layout and management of field
objects for the target architecture. In the OpenCL backend, we store Latfield objects in the Structure
of Array (SoA) format, with sites organized such that all even sites are listed first, followed by all
odd sites. Both CPU and GPU based implementations rely on a shared library of macros defined
for the sitewise mathematical computations, which sits at the lowest level of the hierarchy.

Figure 2: Diagram illustrating the code hierarchy by providing some example classes

3

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
8

Portable Lattice QCD implementation based on OpenCL Piyush Kumar

4. Benchmarks

4.1 System specifications

We tested our code on LUMI [8] and JUWELS [9] supercomputers across various lattice sizes
up to 644. The GPU partition of LUMI is configured with 4 AMD MI250X cards per node. Each
MI250X consists of two Graphic Compute Dies (GCD), connected via Infinity Fabric with 200GB/s
bi-directional bandwidth. Each GCD of AMD MI250x card has a High-Bandwidth Memory (HBM)
bandwidth of 1.64 TB/s and a theoretical peak performance of 28.16 TFlop/s. The Booster module,
on the other hand, has 4 NVIDIA A100 Tensor core GPUs per node. A100s have an HBM bandwidth
of 1.55 TB/s and a peak performance of 19.5 TFlop/s and 9.7 TFlop/s for single (FP32) and double
(FP64) precision respectively. For the benchmarking, we evaluated the performance of our code on
a single MI250X GCD and a single A100 GPU.

4.2 Dslash Operator and its inversion

We consider the staggered /𝐷 operator on a colour vector field 𝜙𝑥 which reads:

/𝐷𝜙𝑥 =

3∑︁
𝜇=0

[
𝜂𝜇 (𝑥) 𝑈𝑥,𝜇𝜙𝑥+�̂� − 𝜂𝜇 (𝑥 − �̂�) 𝑈†

𝑥− �̂�,𝜇𝜙𝑥− �̂�
]

(1)

where the 𝑈𝜇 are the 𝑆𝑈 (3) link variables and 𝜂𝜇 (𝑥) = ±1 is the Kogut-Susskind phase factor.
Fig. 3 showcases the benchmarks of our OpenCL implementation, comparing it with the CUDA
counterpart for the Dslash kernel and CG solver. The performance of OpenCL implementation for
Dslash peaks around 164 lattice size and stays mostly constant after that. However, for a single gcd
of MI250x, we observe degradation in performance for sizes beyond 322×642. The CUDA backend
uses a different memory layout which is better suited for larger lattice sizes, thus, giving higher
performance than OpenCL for such cases. The inversion of Dirac operator requires other vector
routines apart from Dslash, such as dot product involving global reductions which have higher
latencies. These effects are more pronounced for smaller lattice sizes which explains the large gap
between the Dslash and CG benchmarks. For both Dslash and CG, the performance on one A100 is
roughly 1.5 times that of a single gcd of MI250x. In table 1, we present the achieved bandwidth (in
GB/s) for the double precision CG update routine on a 484 lattice. For the A100 GPU, we were able
to achieve approximately 85% of the peak bandwidth, similar to the CUDA backend. In contrast, for
the MI250X, this number is relatively lower at around 75% of the theoretical maximum bandwidth.

Implementation Sustained bandwidth Peak Bandwidth
OpenCL on MI250X 1134 1638

OpenCL on A100 1351 1555
CUDA on A100 1317 1555

Table 1: Bandwidth (GB/s) for CG update routine on a 484 lattice.

4

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
8

Portable Lattice QCD implementation based on OpenCL Piyush Kumar

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

1
6

4

1
6

3 x
3
2

1
6

2 x
3
2

2

1
6
x
3
2

3

3
2

4

3
2

3 x
6
4

3
2

2 x
6
4

2

3
2
x
6
4

3

6
4

4

OpenCL, AMD MI250x
OpenCL, NVIDIA A100
CUDA, NVIDIA A100

T
F
lo

p
/s

Lattice size

Dslash, Single Precision

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1
6

4

1
6

3 x
3
2

1
6

2 x
3
2

2

1
6
x
3
2

3

3
2

4

3
2

3 x
6
4

3
2

2 x
6
4

2

3
2
x
6
4

3

6
4

4

OpenCL, AMD MI250x
OpenCL, NVIDIA A100
CUDA, NVIDIA A100

T
F
lo

p
/s

Lattice size

Dslash, Double Precision

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1
6

4

1
6

3 x
3
2

1
6

2 x
3
2

2

1
6
x
3
2

3

3
2

4

3
2

3 x
6
4

3
2

2 x
6
4

2

3
2
x
6
4

3

6
4

4

OpenCL, AMD MI250x
OpenCL, NVIDIA A100
CUDA, NVIDIA A100

T
F
lo

p
/s

Lattice size

Dslash Inversion via CG, Single Precision

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1
6

4

1
6

3 x
3
2

1
6

2 x
3
2

2

1
6
x
3
2

3

3
2

4

3
2

3 x
6
4

3
2

2 x
6
4

2

3
2
x
6
4

3

6
4

4

OpenCL, AMD MI250x
OpenCL, NVIDIA A100
CUDA, NVIDIA A100

T
F
lo

p
/s

Lattice size

Dslash Inversion via CG, Double Precision

Figure 3: Comparison of benchmarks for /𝐷 and its inversion via CG in single and double precision.

4.3 Dslash Roofline

The roofline plot gives a bound on attainable performance based on the device capabilities
such as peak performance and memory bandwidths. The peak performance (Flop/s) of a kernel is
defined as follows:

Attainable performance = min

{
peak performance

arithmetic intensity × max bandwidth

}
(2)

We need to compute the arithmetic intensity (Flops/byte) of the staggered Dslash kernel to which
we now turn. From eq. (1), for each direction 𝜇, the kernel performs two complex 3 × 3 matrix
vector products and one complex 3-vector addition. This amounts to a total flop count of 570 at
each lattice site. We use gauge fixing to transform the temporal link variables to 13×3 for all the
sites with the temporal coordinate, 𝑡 ≠ 0. For each link variable, we store only the first two rows,
i.e. 12 floats. The third row is reconstructed on-the-fly when needed, using the properties of SU(3)
matrices. So, in terms of memory, the kernel reads 6 𝑆𝑈 (3) matrices, 8 complex 3-vectors and
writes 1 complex 3-vector giving a total float count of 126 per site. The arithmetic intensity of the
kernel is ∼ 0.57 Flops/Byte for FP64 and ∼ 1.13 Flops/Byte for FP32. Since the performance is
bounded by the device bandwidth, we can increase the arithmetic intensity and potentially improve
the performance by applying /𝐷 on multiple vectors at once. This allows each link variable to be
read once and then reused for multiple vectors, thereby decreasing the total number of memory

5

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
8

Portable Lattice QCD implementation based on OpenCL Piyush Kumar

accesses required. For example, the arithmetic intensity as a function of the number of vectors, 𝑛 is
given by 𝑛 ·570/(8 · (6 ·12+𝑛(9 ·6))) for FP64. In the code, we set the parameter 𝑛 = NMULTI > 1
to get the benchmarks with varying the number of vectors for 324 lattice, as summarized in Table 2
and Fig. 4. For both A100 and MI250x, we see consistent improvements in the performance up to
NMULTI=4, after which, it saturates.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 4 6 8 10 12 14 16

MI250x, FP 32
MI250x, FP 64
A100, FP 32
A100, FP 64

Pe
rf
or
m
an
ce

(T
FL
O
P/
s)

NMULTI

Figure 4: Performance of Dslash with varying number of vectors on one A100 and a single gcd of MI250x
on a 324 lattice

NMULTI A100 MI250x
FP32 FP64 FP32 FP64

1 2.244 1.245 1.512 0.759
2 2.532 1.530 2.166 1.081
3 2.953 1.929 2.550 1.250
4 3.205 2.199 2.643 1.254
6 3.090 2.039 2.554 1.218
8 3.006 2.026 2.494 1.205
10 3.439 1.693 2.477 1.211
12 3.196 2.055 2.458 1.220
14 3.091 1.562 2.425 1.223
16 3.045 2.122 2.416 1.229

Table 2: Performance of Dslash (in TFLOP/s) with varying number of vectors on a 324 lattice on one A100
and a single gcd of MI250x.

We show the roofline plots for Dslash operator on a 324 lattice in Fig. 5. For A100, we
consistently stay above the roofline which suggests the effective usage of caching. For MI250x on
the other hand, since the performance stagnates for NMULTI > 3, we see the drift away from the
roofline.

6

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
8

Portable Lattice QCD implementation based on OpenCL Piyush Kumar

 0.1

 1

 10

 100

 1 10

HBM

Peak Performance FP32

Peak Performance FP64

FP 32
FP 64

P
e
rf

o
rm

a
n
c
e
 (

T
F
L
O

P
/s

)

Arithmetic Intensity (FLOP/Byte)

Roofline Plot for NVIDIA A100

 0.1

 1

 10

 100

 1 10

HBM

Peak Performance

FP 32
FP 64

P
e
rf

o
rm

a
n
c
e
 (

T
F
L
O

P
/s

)

Arithmetic Intensity (FLOP/Byte)

Roofline Plot for Single GCD of AMD MI250X

Figure 5: Roofline plots for staggered Dslash operator with varying number of vectors on a 324 lattice on
one A100 and a single gcd of MI250x.

5. Conclusions and Outlook

Our portable OpenCL implementation for a single GPU achieves performance on par with
CUDA across a range of lattice sizes. With the current version, the use case of the OpenCL
implementation includes lattice QCD simulations at finite temperature which is carried out on
moderate lattice sizes that fit in a single GPU. The OpenCL backend is already being utilized
in production runs, particularly for the study of QCD equation of state using density of states
method. We are presently incorporating multi-GPU support to our portable implementation. It is
not straightforward to do so with OpenCL, since this API lacks the direct GPU-GPU communication
capabilities. As an alternative we are also working to develop a SYCL backend which will overcome
this shortcoming with GPU aware MPI, while maintaining the portability features of our OpenCL
implementation.

Acknowledgments

This work is supported by the MKW NRW under the funding code NW21-024-A. Further
funding was received from the DFG under the Project No. 496127839. The authors gratefully
acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding
this project by providing computing time on the GCS Supercomputer Juwels-Booster at Juelich
Supercomputer Centre. We acknowledge the EuroHPC Joint Undertaking for awarding this project
access to the EuroHPC supercomputer LUMI, hosted by CSC (Finland) and the LUMI consortium
through a EuroHPC Extreme Access call.

References

[1] G.I. Egri, Z. Fodor, C. Hoelbling, S.D. Katz, D. Nogradi and K.K. Szabo, Lattice QCD as a
video game, Comput. Phys. Commun. 177 (2007) 631 [hep-lat/0611022].

[2] QUDA collaboration, Solving Lattice QCD systems of equations using mixed precision solvers
on GPUs, Comput. Phys. Commun. 181 (2010) 1517 [0911.3191].

7

www.gauss-centre.eu
https://doi.org/10.1016/j.cpc.2007.06.005
https://arxiv.org/abs/hep-lat/0611022
https://doi.org/10.1016/j.cpc.2010.05.002
https://arxiv.org/abs/0911.3191

P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
8

Portable Lattice QCD implementation based on OpenCL Piyush Kumar

[3] P. Boyle, A. Yamaguchi, G. Cossu and A. Portelli, Grid: A next generation data parallel C++
QCD library, 1512.03487.

[4] HotQCD collaboration, SIMULATeQCD: A simple multi-GPU lattice code for QCD
calculations, Comput. Phys. Commun. 300 (2024) 109164 [2306.01098].

[5] J.E. Stone, D. Gohara and G. Shi, Opencl: A parallel programming standard for
heterogeneous computing systems, Comput. Sci. Eng. 12 (2010) 66.

[6] Khronos Group, SYCL 2020 Specification, https:
//www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf, 2021.

[7] M. Bach, V. Lindenstruth, O. Philipsen and C. Pinke, Lattice QCD based on OpenCL,
Comput. Phys. Commun. 184 (2013) 2042 [1209.5942].

[8] LUMI, LUMI Supercomputer, https://www.lumi-supercomputer.eu/, 2025.

[9] Jülich Wizard for European Leadership Science (JUWELS), JUWELS Supercomputer,
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels, 2025.

8

https://arxiv.org/abs/1512.03487
https://doi.org/10.1016/j.cpc.2024.109164
https://arxiv.org/abs/2306.01098
https://doi.org/10.1109/MCSE.2010.69
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://doi.org/10.1016/j.cpc.2013.03.020
https://arxiv.org/abs/1209.5942
https://www.lumi-supercomputer.eu/
https://www.fz-juelich.de/en/ias/jsc/systems/supercomputers/juwels

	Introduction
	OpenCL
	Code Design
	Benchmarks
	System specifications
	Dslash Operator and its inversion
	Dslash Roofline

	Conclusions and Outlook

