
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
4

Resolving the critical bubble in SU(8) deconfinement
transition

Kari Rummukainen, Riikka Seppä∗ and David J. Weir
Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki,
Finland
E-mail: kari.rummukainen@helsinki.fi, riikka.seppa@helsinki.fi,
david.weir@helsinki.fi

Strongly coupled confining models with a first order phase transition present an interesting DM
candidate. Near the critical temperature these models are strongly non-perturbative, and the
critical bubble nucleation rate has so far only been estimated via approximative methods. As a
model of a strong first order deconfinement transition, we simulate 4D SU(8) pure gauge model
with multicanonical Monte Carlo. We demonstrate that resolving the critical bubble is possible
in a strongly coupled model. We calculate the free energy of a critical bubble, which gives a
rough upper limit for the nucleation rate. For the parameter points we investigated, the thin-wall
approximation for the critial bubble free energy is off by a factor of 2, overestimating the rate at
least by a factor of 𝑒10 .

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:kari.rummukainen@helsinki.fi
mailto:riikka.seppa@helsinki.fi
mailto:david.weir@helsinki.fi
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
3
4

Resolving the critical bubble in SU(8) deconfinement transition Riikka Seppä

1. Introduction

In recent years, many confining dark matter models with a first order phase transition have
been proposed, see e.g. Refs. [1–3]. As strongly coupled confining models are non-perturbative
near the critical temperature, the nucleation rate cannot be computed perturbatively. With lattice
inputs, it can be estimated semi-classically with the thin-wall approximation or effective models
[1]. In weakly coupled theories, the whole rate could be computed purely from the lattice with the
use of real-time simulations [4]. Even without real-time simulations an estimate of the nucleation
rate can be computed by measuring the probability of a critical bubble configuration, which gives
the free energy of the critical bubble.

In this proceedings, we explore the deconfinement transition of the SU(8) pure gauge model,
using finite temperature Monte Carlo simulations, with the goal of measuring the free energy of a
critical bubble configuration. In practice this means measuring the probability of a critical bubble
configuration with respect to the metastable, in this case confining, phase. The mixed-phase bubble
configurations are extremely suppressed compared to the bulk phase configurations, which prompts
us to employ the multicanonical algorithm.

We use SU(8) pure gauge theory as a prototype model for a strongly coupled confining model.
We investigate the transition from the confining to the deconfining phase, i.e. from a ‘cold’ state to a
‘hot’ state. In the context of early universe phase transitions, the opposite direction would be a more
physically motivated scenario. Still, our study serves as a proof of principle that the nucleation rate
of a strongly coupled model can be estimated directly from the lattice.

Our choice of number of colors 𝑁𝑐 = 8, while making the simulations computationally more
demanding, is due to the transition being stronger and the correlation length shorter than for 𝑁𝑐 < 8
[5]. This allows larger superheating and -cooling, in turn making the critical bubbles smaller and
easier to contain on a finite lattice. However, we still run into troublesome effects from having to
use large lattices. We show that these effects can be lessened by smearing and by choosing a more
suitable order parameter. We obtain a preliminary result for the nucleation rate at two different
levels of superheating.

2. Lattice setup

We study the transition on a periodic 𝐿3
𝑠𝐿𝑡 lattice with lattice spacing 𝑎, so that 𝑎𝑁𝑠 = 𝐿𝑠, and

𝑎𝑁𝑡 = 𝐿𝑡 . The action is the standard plaquette action

𝑆 = 𝛽
∑︁

𝑥,𝜇>𝜈

[
1 − 1

8
Re Tr𝑈𝜇𝜈 (𝑥)

]
, (1)

where 𝑈𝜇𝜈 (𝑥) is the Wilson plaquette at 𝑥, with 𝑈𝜇 (𝑥) ∈ SU(8). The Euclidean time direction is
related to the temperature through 𝑇 = 1/(𝑁𝑡𝑎(𝛽)). If 𝑁𝑡 is held constant, the temperature is a
function of 𝛽 only. The critical value of 𝛽 is well known for this model [6]. We use 𝛽𝑐 = 44.562
[7].

We work with lattices of size 𝑁𝑠 = 60, 𝑁𝑡 = 6, and study the system at couplings 𝛽1 = 44.712
and 𝛽2 = 44.742. These correspond to Δ𝛽 = 𝛽 − 𝛽𝑐 = 0.15 and 0.18, respectively. We use a
standard mix of heatbath and overrelaxation updates, with 5 to 6 overrelaxation updates for each
heatbath, and a multicanonical accept-reject step after updating any time-direction links.
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2.1 Critical bubble free energy

We use the nonperturbative method introduced in Refs. [4, 8], more recently used e.g. in
Refs. [9, 10] to calculate the critical bubble free energy. The bubble configurations are extremely
suppressed with respect to the bulk phase configurations. We employ multicanonical Monte Carlo
[11–13], with automatic tuning as in [4]. Instead of sampling with 𝑝 ∝ exp(−𝑆) as in normal Monte
Carlo, in multicanonical method we sample with 𝑝muca ∝ exp[−𝑆 +𝑊 (O)], where O is our order
parameter, and 𝑊 a weight function iteratively constructed to make the probability distribution of
O obtained from the simulation approximately constant.

By reweighting 𝑃muca(O), the measured distribution of configurations with an order parameter
value O, with the weight function 𝑊 (O), we arrive back to the canonical distribution 𝑃(O),

𝑃(O) ∝ 𝑒−𝑊 (O)𝑃muca(O). (2)

From the reweighted probability density 𝑃(O), in practice a histogram, the free energy of the
critical bubble can be measured as [8]

𝐹𝐶

𝑇
≈ 𝐹 (O𝐶)

𝑇
− 𝐹 (Oconf)

𝑇
= − log

𝑃(O𝐶)
𝑃(Oconf)

, (3)

where O𝐶 is the value of the order parameter at the critical bubble, and Oconf the value at the
confining phase peak. The critical bubble is the most suppressed configuration of the transition,
so in essence 𝑃(O𝐶) corresponds to the minimum value of the histogram, and 𝑃(Oconf) to the
maximum value on the confinement phase peak.1

2.2 Finite size effects

In above discussion we have implicitly assumed that there exists some value of the order
parameter where we have a critical bubble configuration on the lattice, i.e. a bubble configuration
for which the order parameter is a minimum of the probability density. For a finite sized periodic
lattice this does not necessarily hold. If the bubble is too large compared to the lattice size, it will
in practice settle into a cylinder or a slab. By estimating the topological regimes with the thin-wall
approximation, illustrated in Fig. 1, a mixed-phase configuration where the nucleating stable phase
occupies up to 4𝜋/81 of the volume should generally have a spherical topology [4].

Moving above the critical temperature, i.e. superheating the system, will make the critical
bubble smaller. However, we want to obtain the nucleation rate as close to the critical temperature
as possible, so when trying to ‘fit the bubble on the lattice’, we prefer larger volumes over larger
superheating.

Increasing the volume introduces another problem. The fluctuations of the order parameter
grow as square root of the volume, so the order parameter becomes worse at ‘recognizing’ bubble
configurations. With a ‘bad’ order parameter, the bubble regime will eventually be swallowed by
the bulk phase fluctuations [8]. This leaves us unable to resolve the critical bubble configurations,
but the problem can potentially be alleviated by choosing a better order parameter.

1It would be more proper to integrate over the histogram values, but this way we get a dimensionless quantity.
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Figure 1: Schematic of different topological regimes/branches predicted by the thin-wall approximation in
a box with periodic boundaries, at the critical temperature. Above the critical temperature the broken phase
peak grows larger than the symmetric peak. For large lattices, the bulk phase fluctuations can be sufficiently
broad as to cover the curve corresponding to the droplet branch. Based on Fig. 1 of Ref. [8].

2.3 Order parameter

The Polyakov loop at spatial lattice site ®𝑥 is defined as

𝑙𝑝 (®𝑥) = Tr
𝑁𝑡−1∏
𝑡=0

𝑈4(®𝑥, 𝑡). (4)

The conventional order parameter when considering the deconfinement-confinement transition in a
pure gauge model is the volume average of the Polyakov loop,

⟨𝑙𝑝⟩ =
����� 1
𝑁3
𝑠

∑︁
®𝑥
𝑙𝑝 (®𝑥)

����� . (5)

Note that for 𝑁 = 8, the Polyakov loop is complex, which is why we take the absolute value.
If, for the volume and Δ𝛽 we want to investigate, ⟨𝑙𝑝⟩ is used as the order parameter, the

Polyakov loop fluctuates so much that the mean value of the order parameter in the presence of
the bubble is well within the fluctuations of the order parameter in the bulk phase. Thus, it is
impossible to use ⟨𝑙𝑝⟩ to distinguish the existence of a bubble. To alleviate this problem, we
investigate modified order parameters which aim to minimize the impact of fluctuations. The new
order parameter is used both to iteratively generate the weight function 𝑊 and to measure the
distribution of configurations.

We first smear the Polyakov loop field defined by Eq. (4), which gets rid of UV fluctuations. In
this work, we perform either 24 or 48 smearing steps, with one smearing step constituting to taking
the weighted average over nearest neighbours for each spatial lattice site,

𝑙𝑛+1
𝑝,𝑠 (®𝑥) =

1
4

(
𝑙𝑛𝑝,𝑠 (®𝑥) +

1
2

∑̂︁
𝑖

𝑙𝑛𝑝,𝑠 (®𝑥 + 𝑖)
)
, (6)
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where 𝑙0𝑝,𝑠 = 𝑙𝑝. With the resulting smeared Polyakov loops 𝑙𝑠 (®𝑥) we can construct

⟨𝑙2𝑠⟩ =
1
𝑁3
𝑠

∑︁
®𝑥
|𝑙𝑠 (®𝑥) |2. (7)

The smearing and the squaring already make the bulk phase fluctuation peak less wide, but we
can go further and construct two additional candidates for an improved order parameter. First of
these is

⟨𝑙𝜃 ⟩ =
1
𝑁3
𝑠

{∑︁
®𝑥
|𝑙𝑠 (®𝑥) |2 − 2𝐴

∑︁
®𝑥
|𝑙𝑠 (®𝑥) |

}
, (8)

where the constant 𝐴 is chosen to correspond to the position of the bulk phase peak of ⟨|𝑙𝑠 |⟩. A
similar order parameter was recently applied in Ref. [10].

The second (potentially) improved order parameter we construct is related to the susceptibility
of the Polyakov loop value over a given lattice configuration,

⟨𝑙𝜎⟩ =
1
𝑁3
𝑠

∑︁
®𝑥
|𝑙𝑠 (®𝑥) |2 −

(
1
𝑁3
𝑠

∑︁
®𝑥
|𝑙𝑠 (®𝑥) |

)2

. (9)

This ‘order’ parameter is not strictly speaking a ‘true’ order parameter, since it cannot differentiate
between the confined and deconfined phases, but rather it differentiates between bulk phase and
mixed-phase configurations. However, without any loss of generality in the bubble probability
measurement, by a suitable choice of weight function we can restrict the range of our simulation
to only the confined (metastable) bulk peak and mixed-phase configurations up to bubbles slightly
larger than the critical bubble. Then it does not matter that ⟨𝑙𝜎⟩ does not differentiate the bulk
phases.

3. Results

Figure 2: Snapshots of bubble configurations at 𝑁𝑠 = 60, 𝑁𝑡 = 6, 𝛽2 = 44.742. Isosurfaces of the smeared
Polyakov loop |𝑙𝑠 | at each spatial lattice site are shown, with 48 steps of smearing. From left to right:
configurations 1, 2 and 3 of Fig. 3.

We first need to confirm that the minimum of the measured probability distribution 𝑃(O)
corresponds to a bubble configuration. Based purely on the thin-wall approximation, at 𝛽2 = 44.742

5
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Figure 3: A comparison of probability distributions obtained by using different order parameters, both for the
weight function iteration and measurements. Obtained at 𝛽2 = 44.742 with Left: O = ⟨𝑙𝑝⟩ (non-smeared).
Right: O = ⟨𝑙𝜃 ⟩ (smeared with 48 steps, A = 0.05). Note that the order parameter values are not directly
comparable. Order parameter values corresponding to those calculated from configurations 1, 2, 3 of Fig. 2
are shown with markers, from left to right.

the minimum should be on the bubble branch, but at 𝛽1 = 44.712 the minimum is close to the
intersection of the bubble and the cylinder branches, so we expect to see more finite size effects.

Based on the thin-wall estimate of the location of the minimum, and how wide we observed
the bulk peak to be for the non-smeared order parameter ⟨𝑙𝑝⟩, we expect that for both 𝛽 the bulk
phase fluctuations almost completely cover up the bubble branch. This can further be confirmed
by inspecting the configurations we know to be bubble configurations, and checking where they
fall on the measured probability distribution of 𝑃(O) for a given order parameter O. We can
visually inspect configurations to check the phase topology by first smearing the Polyakov loops
at each spatial site. Three example bubble configurations are presented in Fig. 2, obtained via
multicanonical run using ⟨𝑙𝜃 ⟩ as the order parameter O.

In Fig. 3 the probability distribution measured with ⟨𝑙𝑝⟩ as the order parameter of the multi-
canonical weight iteration is compared to the distribution obtained by using ⟨𝑙𝜃 ⟩ instead. Marked
on both histograms are the points where the configurations illustrated in Fig. 2 fall, from left to
right. The configuration shown in the middle is, according to the order parameter ⟨𝑙𝜃 ⟩, near to the
critical bubble. However, when using ⟨𝑙𝑝⟩, the order parameter value is within the bulk phase peak.
Most of the bubble branch is indeed hidden by the bulk peak, making the critical bubble completely
unresolvable.

3.1 Critical bubble free energy

As described in section 2.1, we measure the critical bubble free energy at two different levels
of superheating, for one lattice size 𝑁𝑠 = 60, 𝑁𝑡 = 6, testing the three different smeared order
parameters ⟨𝑙2𝑠⟩, ⟨𝑙𝜃 ⟩, ⟨𝑙𝜎⟩. The thermodynamic and continuum limits will be explored in an
upcoming publication.
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Figure 4: Critical bubble probability log [𝑃(Oconf)/𝑃(O𝐶 )] obtained from the simulations on a 603 × 6
lattice, compared to the thin-wall estimate of the free energy, −𝐹𝐶/𝑇 . For 𝑙𝜃 and 𝑙𝜎 , two different levels of
smearing are shown for 𝛽2, and only one for 𝛽1. The thin-wall estimate takes latent heat and surface tension
measured from lattice as inputs, for the upper line from Ref. [5]. The error is from determination of these.
Lower line is a preliminary result from Ref. [7].

In Fig. 4 the results for the free energy of the critical bubble are plotted together with the
thin-wall estimate. The free energy is obtained by taking the minimum and maximum of the
corresponding histogram (see Fig. 5), and the errors via bootstrap. The thin-wall estimate is most
accurate for very small superheating, with our choices of 𝛽1 = 44.712 and 𝛽2 = 44.742 being
superheated enough that we do not expect the thin-wall estimate to be very accurate. This is indeed
what we see, with the difference in 𝐹𝐶/𝑇 being from 10 to 25. This means the nucleation rate with
the thin-wall would be an overestimate by a factor of 𝑒10 to 𝑒25, compared to the lattice result.

All of the order parameters had either 48 or 24 steps of smearing. Varying the level of smearing
should have some effect on the critical bubble free energy. Some level of smearing is necessary
to smooth the configurations enough to get rid of the majority of the UV fluctuations, but at some
point more smearing is both computationally too expensive and physically unnecessary. Using 24
steps of smearing instead of 48, i.e. using half the number of steps, did have some effect on the free
energy, but the results are within two standard deviations of each other.

Interestingly, for this volume at 𝛽2, ⟨𝑙2𝑠⟩ seems to be a good enough order parameter to resolve
the bubble branch and the critical bubble, and gives comparable result to the other tested order
parameters. However, quite a lot of smearing is required to make the critical bubble resolvable with
⟨𝑙2𝑠⟩, and by inspecting the histograms side by side, Fig. 5, the bulk phase peak is wider than for
⟨𝑙𝜃 ⟩ and ⟨𝑙𝜎⟩. We expect that at equal superheating but larger volume the bubble would not be
resolvable with just ⟨𝑙2𝑠⟩, as the bulk phase peak becomes wider.
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Figure 5: Qualitative comparison of histograms from different order parameters. Order parameters are
normalized individually so that the minimum is at 1, the maximum at 0. Left: 𝛽2 = 44.742. Right:
𝛽1 = 44.712.

4. Conclusions

We have resolved the critical bubble in the deconfinement phase transition of the SU(8) pure
gauge model, and thus showed that this is possible in a confining theory. We have tested several
different modified order parameters in order to not lose the signal under bulk phase fluctuations,
and found clear improvement over standard Polyakov loop.

The different order parameters do not agree within errors, but this is to be expected, as just
the critical bubble free energy is not necessarily order parameter independent. The full bubble
nucleation rate, which can be obtained in weakly coupled theories via evolving critical bubble
configurations with real time simulations [4], would in the end get rid of this effect, and the full rate
would be order parameter independent. Unfortunately real time evolution methods are not available
for strongly coupled SU(𝑁) theory.

Further investigation of the order parameters, and the infinite volume limit of the free energy
of the critical bubble will be presented in an upcoming publication. Our result indicates that given
some computational effort, for some confining theories the non-dynamical part of nucleation rate
can indeed be estimated from the lattice with the multicanonical method.
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