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The hadronic decay of vector charmonium Teseo San José

1. Introduction

In these proceedings, we study the hadronic decay 𝜓 (3770) → DD of the second excited
state of vector charmonium 𝜓 (3770) into a pair of DD mesons in a 𝑝-wave configuration. This
process is the main decay channel of 𝜓 (3770) and takes place close to threshold [1]. The standard
method to predict a decay width on the lattice relates the spectrum in several finite volumes to the
infinite-volume scattering phase-shifts [2–5]. For example, the authors of [6, 7] have employed
this procedure to predict the decay width of several charmonium states, including 𝜓 (3770) . With
our exploratory study carried out in [8] and summarized here, we follow an alternative method
developed by Michael and Pennanen [9] that employs ratios of correlators to estimate the decay
width. The method, explained in section 2, relies implicitly on a narrow-width approximation,
which is satisfied for our decay of interest. Alternative approaches to study hadronic decays include
the K-matrix approach [10], which assumes unitarity and analyticity of the underlying scattering
amplitudes, but it also requires e+e− → hadrons data from experiment in the energy region around
the 𝜓 (3770) pole to fix its free parameters. Several works compute the decay width of 𝜓 (3770)
using this method, see [11] for instance. In our project, we compare our results with the 3

𝑃0 quark
model [12, 13]. This is a quark rearrangement model which assumes the initial charm quarks
are spectators, preserving their quantum numbers and momentum, and a pair of light quarks is
created from the vacuum. Then, the four quarks rearrange themselves to obtain the correct quantum
numbers of the final state.

Our work predicts the hadronic mixing, 𝑥31 ≡ ⟨DD|𝜓 (3770)⟩, employing the method de-
scribed in [9]. We establish the connection to the decay width and the energy shift of the states
employing non-relativistic quantum mechanics. In particular, we consider the QCD Hamilto-
nian 𝐻0 = |𝜓 (3770)⟩ ⟨𝜓 (3770) | + |DD⟩ ⟨DD| and the perturbation 𝐻1 = |DD⟩ ⟨𝜓 (3770) | +
|𝜓 (3770)⟩ ⟨DD|. On the lattice, we have a two-level system in the centre-of-mass (CM) frame of
the charmonium state and the energy shift of the states is obtained solving the eigenvalue problem(

−Δ 𝑥31
𝑥
∗
31 Δ

)
, (1)

where Δ = (𝑚𝜓 − 𝐸DD)/2. Including the first-order perturbation, and assuming the charmonium
state is heavier, the energies are shifted to

𝑚𝜓 → 𝑚𝜓 +
√︃��𝑥31

��2 + Δ
2
, 𝐸DD → 𝐸DD −

√︃��𝑥31
��2 + Δ

2
. (2)

Note that in the case of degenerate states with 𝐻0, the energy shift is given by the hadronic mixing
alone. The situation in experiment is quite different. Indeed, the decay channel is closed in lattice
simulations, as there cannot be a decay in a finite box, and even kinematics may not allow it
depending on the quark masses. This means that we can study the effect of the mixing explicitly.
This allows us to test the effects of different theoretical methods. Meanwhile, the situation in
experiment corresponds to the decay of a discrete state to a continuum of final states, giving a
Breit-Wigner distribution in momentum space and an energy shift in the same direction to both
initial and final states. In particular, we will directly use the hadronic mixing extracted on the lattice
to obtain the decay width using Fermi’s golden rule. Theoretically, the situation in experiment for
non-relativistic states can be understood using [14].
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2. Methodology

To extract the hadronic mixing 𝑥31 ≡ ⟨DD|𝜓 (3770)⟩ in finite volume, we consider several
vector charmonium interpolators 𝑂𝜓

𝑖
with 𝑖 = 1, 2, . . . Solving a generalized eigenvalue problem

(GEVP) yields the real right-eigenvectors 𝑣𝛼 for the spectrum level 𝛼,

𝑃
DD

=

〈
𝑂

DD (𝑡)𝑂DD (0)
〉
, �̄�

𝜓
𝛼𝛼 = �̄�𝛼 𝑗

〈
𝑂

𝜓

𝑗
(𝑡)𝑂𝜓

𝑖
(0)

〉
�̄�𝛼𝑖, 𝑇𝛼 = �̄�𝛼𝑖

〈
𝑂

𝜓

𝑖
(𝑡)𝑂DD (0)

〉
. (3)

We choose 𝛼 = 3 to isolate 𝜓 (3770) , and we assume that the excited vector charmonium and the DD
pair may not be necessarily degenerate, 𝑚𝜓 ≠ 𝐸DD. Then, we can study the spectral decomposition
of the correlations in equation (3) to isolate 𝑥31 in terms of the energy difference Δ [8, 15],

R(𝑡) =
��𝑇3(𝑡)

��√︃
�̄�
𝜓

33(𝑡)𝑃
DD (𝑡)

=
𝑡≫1

��𝑥31
��

Δ
sinh(𝑡Δ) + 𝐴𝑒

−𝑡Δ
. (4)

If the tuning of the masses is perfect such that Δ → 0, R(𝑡) = 𝑥31𝑡 + 𝐴, where 𝐴 is a constant.
Equation (4) is the main relation to extract the mixing, but other relations exist if we transit between
ground states with compatible quantum numbers. We can also form the ratio [8, 15]

𝑥T(𝑡) ≡
𝑇3(𝑡)√︃

�̄�
𝜓

33(𝑡)𝑃
DD (𝑡)

𝜆
𝑡/2

1 + 𝜆 + · · · + 𝜆
𝑡
→
𝑡≫1

𝑥31, (5)

where 𝜆 = exp(2Δ), and which should tend to a constant if the D-meson ground state is well isolated
without a GEVP. This is not required for equation (4), and our data do not form clear plateaux
to fit equation (5). That is why we prefer to use equation (4) for our final results, but also show
equation (5) in figure 4. Knowing the hadronic mixing, we can compute the decay width assuming
that the final DD are non-interacting, such that each of them can be expressed as a plane wave with
periodic boundary conditions (PBCs) in a box of size 𝐿 [8, 15],

Γ =
𝐿

3

24𝜋
𝑝𝑖𝑚𝜓

��𝑥31(𝐸 = 𝑚𝜓)
��2 with 𝑝

2
𝑖 =

𝑚
2
𝜓

4
− 𝑚

2
D . (6)

In order for equation (6) to tend to the physical result when 𝐿 → ∞, the hadronic mixing should
compensate the factor 𝐿3. Note that at no point we establish an explicit connection to the infinite
volume decay, and it is clear the method relies on a narrow-width approximation to work. In order to
compare our results for 𝑥31 with the 3

𝑃0 quark model [13, 16], which uses a different normalization
for the hadronic mixing, we will compare directly the decay widths. And since both lattice and quark
model predict the mixing for any value of the D-meson momentum, including off-shell kinematics,
we lift the condition for energy conservation from the definition of the decay width. In this way we
can compare the two theoretical predictions in the entire kinematics, see figure 5.

3. Setup

We compute the necessary correlators for equation (4) in two CLS ensembles [17, 18] that
employ the Wilson-plaquette gauge action and𝑁 𝑓 = 2 mass-degenerate flavors of non-perturbatively

3
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id 𝛽 𝑎 [fm] 𝐿/𝑎 𝜅ℓ 𝑚𝜋 [MeV] 𝑚𝜋𝐿

D5 5.3 0.0658(7)(7) 24 0.13625 449 3.6
E5 5.3 0.0658(7)(7) 32 0.13625 437 4.7

Table 1: The two CLS ensembles used in this work. From left to right, we indicate the ensemble label,
the bare coupling constant, the lattice spacing, the number of nodes in every spatial direction (𝑇 = 2𝐿), the
light-quark hopping parameter, the corresponding pion mass, and the value of 𝑚𝜋𝐿.

x y x

z

y

w

x

z

y

w

x

z

y

Figure 1: The Wick contractions considered in this project. The charm quark appears as a solid line and the
light-quarks as a dashed line. We do not consider diagrams with charm-quark annihilation.

O(𝑎)-improved Wilson quarks. Table 1 gathers the label of the ensembles, their bare-coupling and
lattice spacing, the lattice extension, the light-quark hopping parameter, the pion mass, and the
value of 𝑚𝜋𝐿. A value of 𝑚𝜋𝐿 > 4 is usually required to reduce finite-volume effects (FVEs) to
a manageable level. Figure 1 shows the Wick contractions considered in this work. The red lines
indicate a charm-quark propagator, while the dashed lines indicate a light quark. We consider the
two charm quarks to belong to two different flavors such that Wick contractions with charm-quark
annihilation vanish. To set the momentum of the final-state D-mesons, we use partially twisted
boundary conditions (PTBCs) [19] on the charm quarks, such that c(𝑛) → exp(−i𝑎𝑛𝑛𝑛 · 𝜃𝜃𝜃/𝐿) c(𝑛)
and c(𝑛) → exp(i𝑎𝑛𝑛𝑛 · 𝜃𝜃𝜃 /𝐿)c(𝑛). This setup leaves the charmonium state at rest while it boosts
the 𝐷-mesons in opposite directions. Furthermore, leaving the light-quarks with anti-periodic
boundary conditions (anti-PBCs) preserves isospin symmetry and the final states D0D0 and D−D+

remain mass-degenerate in our simulations. We apply the same twist angle 𝜃 in every spatial
direction with Gaussian smearing on the quark fields to better interpolate the physical states. We
employ 𝑠 = 20 and 50 smearing iterations for the charm bilinears c𝛾𝑖c, c𝛾4𝛾𝑖c, c ©∇𝑖𝛾𝑖

®∇𝑖c, and
c ©∇𝑖𝛾4𝛾𝑖

®∇𝑖c. All are simulated at zero momentum and located at the sink. We used 𝑠 = 50 smearing
iterations for the D meson interpolator c𝛾5u. The DD system at the source is in a 𝑝-wave,

2𝑂DD
= D0(𝑝𝑝𝑝, 𝑡)D0(−𝑝𝑝𝑝, 𝑡) − D0(−𝑝𝑝𝑝, 𝑡)D0(𝑝𝑝𝑝, 𝑡) + D− (𝑝𝑝𝑝, 𝑡)D+(−𝑝𝑝𝑝, 𝑡) − D− (−𝑝𝑝𝑝, 𝑡)D+(𝑝𝑝𝑝, 𝑡). (7)

However, not all Wick contractions can be computed in this way. The two lower diagrams in
figure 1, which we name box and direct contributions to the DD propagator, include terms where
a momentum change is needed, which is incompatible with PTBCs. In this case, we subdivide

4
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Figure 2: Ratio R(𝑡) of equation (4) as a function of time, together with fit to the right-hand side (RHS) of
equation (4). Ensemble D5 at twist angle 𝜃 = 1.5 rad (LEFT), and ensemble E5 at 𝜃 = 3 rad (RIGHT). These
twist angles lie close to the on-shell condition on their respective datasets, see table 4.

the correlator into two pieces, one that can be computed using PTBC, and another containing the
momentum exchange that is computed with Fourier modes and interpolated linearly to the exact
momentum. At 𝑝𝑝𝑝 = 000 both components cancel exactly, while at large momentum the second piece
becomes negligible.

4. Analysis

In this section, we extract the mixing 𝑥31 and compute both the decay width of 𝜓 (3770) and
the energy shift. First, we need to determine the mass of 𝜓 (3770) in our simulations, 𝑚𝜓 (3770) .
To do that, we solve an 8×8 GEVP with the interpolators and smearings of section 3. The spectrum
is extracted computing the effective mass of the eigenvalues and fitting them to a constant. The
fit intervals, quality, and the extracted masses appear in table 2. Second, we require the 𝐷-meson
dispersion relation. For each meson momentum, we fit the correlator to a single exponential. In
figure 3, we show the results compared to the free dispersion relation expected in the continuum
for both ensembles. These plots indicate the system can be safely treated as non-relativistic. We
compute the twist angle corresponding to the on-shell decay assuming the two D-mesons are
noninteracting, so that 𝑚𝜓 (3770) = 2𝐸D at

√
3𝑎𝜃0/𝐿 =

√︃
(𝑎𝑚𝜓/2)2 − (𝑎𝑚D)

2
. (8)

The value in radians for each ensemble appears in table 4. Finally, we can extract the hadronic
mixing 𝑥31 using equation (4) or equation (5). Figure 2 shows examples of the fits to equation (4) on
ensembles D5 and E5. All results appear in figure 4 as a function of the final D-meson momentum
modulus, 𝑝 ≡ |𝑝𝑝𝑝 |. As mentioned in section 2, equation (4) is much better fulfilled in our setup and
we employ its output for the final results. Indeed, we observe these points can be fitted to a parabola
that vanishes at 𝑝 = 0, ��𝑥31

��(𝑝) = 𝑐1 − 𝑐2(𝑝 − 𝑝0)
2
, (9)

where 𝑝 =
√

3𝜃/𝐿, and 𝑝0 =
√︁
𝑐1/𝑐2. The results from this fit appear in table 3. The results

employing equation (5) agree qualitatively, with a better determination on the larger volume.
Plugging equation (9) in equation (6), we obtain the decay width for the entire kinematical range,

5
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Level Fit interval 𝜒
2/dof 𝑎𝑚cc 𝑚cc [GeV]

1 [5, 20] 25.96/15 1.02423(63) 3074.1(2.4)
2 [3, 12] 5.93/9 1.286(17) 3859(52)
3 [5, 9] 0.34/4 1.3148(43) 3946(13)
4 [4, 8] 3.88/4 1.379(22) 4139(67)

Table 2: Charmonium spectrum obtained from an 8 × 8 GEVP on ensemble D5. The effective mass of each
eigenvalue is fitted in the interval specified, obtaining the corresponding fit quality. The energy corresponds
to the state at rest, given in lattice units and MeV. We employ the same numbers on ensemble E5.

Figure 3: Dispersion relation for the D-meson on ensembles D5 (LEFT) and E5 (RIGHT) as a function
of the D-meson momentum modulus, 𝑝 ≡ |𝑝𝑝𝑝 |. The lattice data is fully compatible with a non-relativistic
particle in the continuum.

Ensemble 𝜒
2/dof 𝑎𝑐1 𝑐2/𝑎

D5 34.39/39 0.01869(32) 1.169(44)
E5 42.51/35 0.01276(56) 1.183(52)

Table 3: Fit of equation (9) to the ratio in equation (4).

see figure 5. The on-shell condition is indicated by the vertical dotted line. The main results for
an on-shell transition appear in table 4. In particular, we indicate the decay width in lattice and
physical units, and the energy shift computed using equation (2). Since ensemble E5 has a larger
volume, we choose its values as the main results of this project. In particular, the decay width is
compatible with the experiment. Finally, we plot the prediction of the 3

𝑃0 quark model [16] as a
grey band in figure 5. We used the results of our spectroscopy calculation to set the parameters of
the 𝜓 (3770) and D wave functions. The remaining free parameter 𝛽, which gives the quark-pair
creation strength, is fixed fitting the model to the lattice data, see [8] for more details. We observe
that the quark model describes our data on a qualitative level, and the agreement is especially good
on ensemble E5. This suggests that the physical picture given by the quark model is qualitatively
correct.

6
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Figure 4: The hadronic mixing between 𝜓(3770) and DD on ensembles D5 (LEFT) and E5 (RIGHT) as a
function of the 3-momentum modulus of each 𝐷-meson. The darker (brighter) points are obtained fittingR(𝑡)
(𝑥𝑇 (𝑡)) to equation (4) (equation (5)). We parametrize the darker points with the parabola in equation (9).

Figure 5: The decay width Γ(𝜓(3770 → DD) as a function of the 3-momentum modulus of each 𝐷-meson.
The slashed line shows the 3

𝑃0 quark-model prediction, and the full line the prediction given by our lattice
determination. The decay may only occur on-shell, marked by the vertical line. We generalize the expression
of the decay width for off-shell transitions to compare our results to the quark-model prediction, which
employs a different normalization for the hadronic mixing 𝑥31.

Ensemble 𝜃0 [rad] 𝑝 [MeV] 𝑎
��𝑥31

�� 𝜖 [MeV] Γ/𝑎 Γ [MeV]

D5 1.52(24) 329(52) 0.01837(73) 55.1(2.2) 0.0089(21) 26.8(6.2)
E5 2.89(25) 468(40) 0.0095(16) 28.5(4.9) 0.0081(21) 24.2(6.4)

Table 4: The on-shell twist angle, the corresponding momentum modulus of each 𝐷-meson, the hadronic
mixing and mass shift, and the decay width in lattice and physical units.

5. Conclusions and Outlook

In these proceedings (which summarize our work presented in [8]), we employ the ratio method
described in section 2 to compute the decay width Γ(𝜓 (3770) → DD) as well as the energy shift
in the spectrum. Our main results are gathered in table 4, and in particular we extract a decay
width that is compatible with the experimental determination. This project shows that it is possible
to extract the decay parameters of an excited state when the narrow-width approximation holds.
Our lattice implementation relies on the extraction of the charmonium spectrum via a GEVP and

7
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the use of PTBC to tune the DD system in a 𝑝-wave. Our determination of the hadronic mixing
⟨DD|𝜓 (3770)⟩ is not limited to on-shell kinematics, and we compare our results to the prediction
by the 3

𝑃0 quark model, which shows remarkable agreement, all while being an analytical method
to deduce the decay parameters. This suggests that the physical picture presented by the quark-
rearrangement model is qualitatively correct. Although we limit ourselves to two ensembles with
different volumes, the method presented here can be extended to a more complete dataset. In
particular, an extrapolation to the continuum limit in the near future is reasonable. In a similar
fashion, lowering the light-quark masses to the physical point should have only a limited effect.
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