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noise of Noisy Intermediate-Scale Quantum (NISQ) devices poses a significant challenge for run-
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and hardware noise.
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algorithm and present further numerical experiments. In particular, we examine the impact of
hardware noise and error mitigation on the algorithm’s performance. We validate the algorithm
using classical simulations of quantum hardware, including hardware noise benchmarks, which
have not been considered in previous works. Our numerical experiments demonstrate that GP-
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1. Introduction

Quantum hardware with several hundreds of qubits can already be harnessed to outperform
classical computers on specific tasks (see, e.g., Ref. [1]). These tasks, however, currently have no
practical applications and are specifically designed to be challenging for classical computers. As we
have entered the Noisy Intermediate-Scale Quantum (NISQ) era of quantum computing, the primary
challenge is to develop algorithms for NISQ devices that may demonstrate quantum advantage in
tasks of practical relevance, such as quantum chemistry [2] or quantum field theories [3, 4].

Particularly relevant for NISQ devices are hybrid quantum-classical algorithms, such as the
Variational Quantum Eigensolver (VQE) [5, 6]. VQEs can approximate the ground state of quantum
Hamiltonians by classical variational optimization of a parametrized quantum circuit. The quantum
computer measures the energy of the quantum system for a given set of parameters, i.e., the objective
of the minimization problem, while a classical optimization routine is used to find a better set of
parameters. Efficient exploration of the parameter space is crucial for successful optimization.

Nakanishi et al. [7] demonstrated that, under certain conditions, the functional form of the
VQE’s objective function can be explicitly derived and utilized to develop a more efficient opti-
mization routine. The resulting Nakanishi-Fuji-Todo (NFT) algorithm [7] uses two measurements
to sequentially optimize one parameter of the quantum circuit at a time, by fitting the objective in a
one-dimensional subspace. Indeed, this constitutes a sequential minimal optimization (SMO) [8],
which differs from global optimization protocols such as gradient-based approaches.

Despite its efficiency, the NFT algorithm faces several challenges, primarily due to the noise of
current quantum hardware. In particular, the algorithm relies on noisy measurements to identify the
global minimum in the one-dimensional subspace, which often hinders convergence and complicates
optimization. Machine learning offers a promising approach to addressing the challenge of noisy
measurements and enhancing the NFT algorithm with more flexibility. In a recent work [9], Nicoli
et al. proposed an optimization algorithm called NFT-with-EMICoRe (EMICoRe for short), which
extends the NFT framework by incorporating Gaussian Process Regression (GPR) and Bayesian
Optimization (BO) for a data-driven and potentially more noise-resilient SMO scheme. However,
this work [9] focused solely on measurement shot noise, neglecting the impact of quantum hardware
noise, such as decoherence, depolarization, and crosstalk errors.

In these proceedings, we build on prior works [7, 9] and demonstrate that EMICoRe outperforms
the NFT baseline in the presence of simulated quantum hardware noise. We start in Sec. 2 by
reviewing the theoretical foundations of VQE, Gaussian Processes, Bayesian Optimization. In
Sec. 3, we introduce the EMICoRe algorithm. This is followed by numerical experiments in Sec. 4,
which involve classical simulations of noisy quantum hardware, comparing the results with and
without error mitigation. We conclude and provide an outlook in Sec. 5.

2. Theoretical Foundations

2.1 Variational Quantum Eigensolver (VQE)

Computing the ground state energy of a quantum system described by a Hamiltonian 𝐻 and
the corresponding ground state wave function |𝜓GS⟩ is a key challenge in many fields of physics.
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The Hamiltonian of an 𝑁-qubit system can be represented as

𝐻 =

𝑇∑︁
𝛼=1

ℎ𝛼𝑃𝛼, (1)

where 𝑃𝛼 ∈ {𝑋,𝑌, 𝑍, 𝐼}⊗𝑁 is a tensor product of single-qubit Pauli operators 𝑋,𝑌, 𝑍 and the
identity operator 𝐼. The ℎ𝛼 are real coefficients, and 𝑇 is the number of individual Pauli terms.

In general, it is challenging to compute the ground state wave function |𝜓GS⟩ because it requires
diagonalizing the Hamiltonian 𝐻, which is aC2𝑁×2𝑁 -dimensional matrix for an 𝑁-qubit system and
thus scales exponentially with the number of qubits. An alternative approach to exact diagonalization
is to compute a variational approximation of the ground state. This can be achieved, for instance, by
using the Variational Quantum Eigensolver (VQE) [5, 6], where a parametric quantum state |𝜓(𝜽)⟩
is prepared on a quantum computer. This quantum state, which depends on 𝐷 angular parameters
𝜽 ∈ [0, 2𝜋)𝐷 , is obtained through a sequence of 𝐷′ (≥ 𝐷) unitary quantum gate operations
𝑈 (𝜽) = 𝑈1 · · ·𝑈𝐷′ acting on an initial state |𝜓0⟩. A subset 𝐷 of these operations are Pauli rotation
gates, 𝑈𝑑′ (𝑑) (𝜃𝑑) = 𝑅𝑃𝑑

(𝜃𝑑) = exp(−𝑖𝜃𝑑𝑃𝑑), where 𝑃𝑑 ∈ {𝑋,𝑌, 𝑍} are the Pauli matrices and 𝜃𝑑

are the angular parameters. The full variational state can thus be written as |𝜓(𝜽)⟩ = 𝑈 (𝜽) |𝜓0⟩.
After the preparation of the quantum state |𝜓(𝜽)⟩ on the quantum computer, the state is measured
in the basis of the individual Pauli strings to obtain the corresponding measured energy given by

�̃� (𝜽) = 𝐸∗(𝜽) + 𝜀, (2)
where 𝐸∗(𝜽) = ⟨𝜓(𝜽) |𝐻 |𝜓(𝜽)⟩ =

〈
𝜓0

��𝑈 (𝜽)†𝐻𝑈 (𝜽)
��𝜓0

〉
. (3)

The energy 𝐸∗(𝜽) is the true energy that would be obtained if the quantum computer were noise-
free. Typically, a quantum computer is subject to both Gaussian noise, arising from the statistical
nature of repeated measurements (i.e., measurement shot noise), and hardware noise, which stems
from imperfections in qubits, gates, and measurements [10]. Both types of noise are encoded in the
noise term 𝜀 in Eq. (2).

As shown in the green box of Fig. 1, the VQE protocol can be divided into the following steps:

1. Initialize a random quantum state with random parameters 𝜽 .

2. Measure the expectation value �̃� (𝜽) = ⟨𝜓(𝜽) |𝐻 |𝜓(𝜽)⟩ + 𝜀 on the quantum computer.

3. Use a classical non-linear optimizer, such as gradient-based or gradient-free methods, to
determine new parameters 𝜽 that minimize �̃� (𝜽).

4. Iterate to step 2 until �̃� (𝜽) converges to the ground state energy.

Under mild assumptions for the above described variational circuit, Nakanishi et al. derived an
analytical expression of the VQE’s objective functional [7],

𝐸∗(𝜽) = 𝒃⊤ ·

𝐷⊗
𝑑=1

©«
cos (𝜃𝑑)
sin (𝜃𝑑)

1

ª®®¬
 , ∀𝜽 ∈ [0, 2𝜋)𝐷 , (4)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
1
7

Machine-Learning-Enhanced Optimization of Noise-Resilient VQEs Kim A. Nicoli and Luca J. Wagner

Measure

Find Optim.

VQE

Task

Init. State

Var. WF

Params.Upd
ate

 

Figure 1: Illustration of the VQE workflow. For more details, see the text.

where 𝒃 is a set of arbitrary coefficients and 𝜃𝑑 is a 𝐷-dimensional vector of angular parameters for
the variational quantum circuit. In particular, this functional form leads to the following observation:
when keeping all but one parameter constant, i.e.,

𝜽 (𝑡 )
𝑑

= (𝜃1, . . . , 𝜃𝑑−1, 𝜃𝑑 , 𝜃𝑑+1, . . . , 𝜃𝐷)⊤ with 𝜃𝑖≠𝑑 = const., (5)

the form of the objective function for this one-dimensional subspace of the whole optimization
problem reduces to [7]

𝐸∗(𝑡 ) (𝜽 (𝑡 )
𝑑
) =

𝐾∑︁
𝑘=1

ℎ𝑘

〈
𝜓𝑘

���𝑈†
𝑑

(
𝜃
(𝑡 )
𝑑

)
𝑃𝑘𝑈𝑑

(
𝜃
(𝑡 )
𝑑

)���𝜓𝑘〉
= 𝑎

(𝑡 )
1,𝑑 cos

(
𝜃
(𝑡 )
𝑑

− 𝑎
(𝑡 )
2,𝑑

)
+ 𝑎

(𝑡 )
3,𝑑 ,

(6)

where 𝑎
(𝑡 )
ℓ,𝑑

(ℓ = 1, 2, 3) denote parameters that are independent of 𝜃 (𝑡 )
𝑑

, while the superscript (𝑡)
refers to the optimization step. As a result, measuring three points in the one-dimensional subspace
is sufficient to fit a function across the entire domain and analytically determine its minimum.

The NFT optimization algorithm [7] uses this property and sequentially optimizes each pa-
rameter in the set 𝜽 by requiring (at least) two measurements for each optimization step. The new
observed points are deterministically chosen along the axis 𝑑, i.e.,

𝚯′ =
(
𝜽 ′1, 𝜽

′
2
)
=

{
𝜽
(𝑡−1) − 𝛼𝒆𝑑 , 𝜽

(𝑡−1) + 𝛼𝒆𝑑
}
, (7)

where 𝜽
(𝑡−1) denotes the previous best point from step (𝑡 − 1).1 This approach is advantageous

because it enables analytical optimization of each parameter within its respective one-dimensional
subspace, eliminating the need to compute gradients as required by gradient-based methods, such
as SPSA [12, 13]. Furthermore, gradient-based approaches may optimize all parameters simulta-
neously during each gradient update but do not guarantee analytical minimization.

1The original paper from Nakanishi et al. [7] proposed a shift 𝛼 of 𝜋2 for Eq. (7). In the work by Nicoli et al. [9] it was
suggested that equidistant points for probing the subspace should be used, i.e., a shift of 2𝜋

3 should be preferred. Later,
it was derived by Anders et al. [11] that the offset of 2𝜋

3 provides a constant variance over the whole 1D-subspace. In a
private communication with the authors, it was reported that, because of a bug, the actual value used in the experiments
of [9] was 𝜋

3 instead of 2𝜋
3 as reported in the paper. Although this did not lead to significant differences in the numerical

experiments, in order to be consistent with the prior work, we will stick to the convention of using 𝜋
3 for NFT.
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2.2 Gaussian Processes and Bayesian Optimization

The NFT algorithm can find the exact analytical minimum within the one-dimensional subspace
if and only if the state preparation and measurements on the quantum computer are exact—that is, if
an infinite number of shots are taken and no hardware noise is present. In a real-world scenario, due to
the unavoidable hardware noise on current NISQ hardware and the inherent statistical uncertainty
from repeated measurements (shots), it may be beneficial to enhance existing algorithms with
frameworks like Bayesian Optimization (BO) [14] and Gaussian Process Regression (GPR) [15].
These techniques, widely established in machine learning, are often well-suited to deal with noisy
data [15]. Let 𝐸∗(·) : X ↦→ R be an unknown (black-box) objective function to be minimized (i.e.,
the energy in our case). With the aid of a function that suggests promising new points to observe,
often referred to as acquisition function [14], one iteratively approximates the target objective with
a surrogate function 𝐸 (𝜽) ≈ 𝐸∗(𝜽), sampled from the GP. At each optimization step, after new
points are measured, those are added to the previous set of measured points, used to update the GP.

A common choice for a surrogate model is a GP regression model with a one-dimensional
Gaussian likelihood and a GP prior [9],

𝑝(�̃� | 𝜽 , 𝐸 (·)) = N1

(
�̃� ; 𝐸 (𝜽), 𝜎2

)
, 𝑝(𝐸 (·)) = GP(𝐸 (·); 𝜈(·), 𝑘 (·, ·)). (8)

Here, 𝜎2 is the variance of the noise 𝜀 defined in Eq. (2), and the prior mean function 𝜈(·) is set
to 0 in this work. In the case of VQEs, a zero-mean prior is a reasonable choice because the target
function 𝐸∗(𝜽), which one aims to model, is a linear combination of functions centered around
zero (up to a potential constant offset stemming from Eq. (4)). The function 𝑘 (·, ·) is the kernel
(covariance) function encoding the expected correlation between two measured points. We refer to
Section 3.1 for more details on the kernel function we use in these proceedings. The GP is trained
on noisy measurements �̃� = 𝐸∗(𝜽) + 𝜀 that were collected throughout previous optimization steps.

Let {𝚯, �̃�} be 𝑁 training samples, where 𝚯 = (𝜽1, . . . , 𝜽𝑁 ) ∈ X𝑁 are the angular inputs of
the parametrized quantum circuit, and �̃� = (�̃�1, . . . , �̃�𝑁 )⊤ ∈ R𝑁 are the energies measured for the
corresponding angular parameters 𝜽 𝑖 ∈ 𝚯. The posterior of a GP regression model, see Eq. (8), is
still a GP, i.e., 𝑝(𝐸 (·) | 𝚯, �̃�) = GP (𝐸 (·); 𝜇𝚯(·), 𝑠𝚯(·, ·)). Thus, in Ref. [9], it was shown that for
arbitrary 𝑀 test points 𝚯′ =

(
𝜽 ′1, . . . , 𝜽

′
𝑀

)
∈ X𝑀 , the posterior, or predictive distribution of the

function values 𝑬′ =
(
𝐸

(
𝜽 ′1

)
, . . . , 𝐸

(
𝜽 ′𝑀

) )⊤ ∈ R𝑀 , is an 𝑀-dimensional Gaussian,

𝑝
(
𝑬′ | 𝚯, �̃�

)
= N𝑀

(
𝑬′; 𝝁′

𝚯, 𝑺
′
𝚯

)
, (9)

with mean and covariance analytically given by

𝝁′
𝚯 = 𝑲′⊤

(
𝑲 + 𝜎2𝑰𝑁

)−1
�̃�, 𝑺′

𝚯 = 𝑲′′ − 𝑲′⊤
(
𝑲 + 𝜎2𝑰𝑁

)−1
𝑲′. (10)

The notation with a prime refers to new, unseen points with the corresponding energies predicted
by the GP. Here, 𝑲 = 𝑘 (𝚯,𝚯) ∈ R𝑁×𝑁 , 𝑲′ = 𝑘 (𝚯,𝚯′) ∈ R𝑁×𝑀 , and 𝑲′′ = 𝑘 (𝚯′,𝚯′) ∈ R𝑀×𝑀

are the train, train-test, and test kernel matrices, respectively, where 𝑘 (𝚯,𝚯′) denotes the kernel
matrix evaluated at each column of 𝚯 and 𝚯′, such that (𝑘 (𝚯,𝚯′))𝑛,𝑚 = 𝑘 (𝜽𝑛, 𝜽′𝑚). Moreover,
𝑰𝑁 ∈ R𝑁×𝑁 denotes the identity matrix. The subscript 𝚯 in Eq. (9) denotes which input points
were used to train the GP. Note that the predictive mean and covariance are given in their vector

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
1
7

Machine-Learning-Enhanced Optimization of Noise-Resilient VQEs Kim A. Nicoli and Luca J. Wagner

and matrix form, respectively. The predictive mean can be computed as a function of one arbitrary
test point 𝜽 ′, i.e., 𝜇𝚯(𝜽 ′) = 𝑲′⊤ (

𝑲 + 𝜎2𝑰𝑁
)−1

�̃� with 𝑲′ = 𝑘 (𝚯, 𝜽 ′) ∈ R𝑁 . The computation of
a single predictive covariance 𝑠𝚯(·, ·) with 𝑺′

𝚯 = 𝑠𝚯 (𝚯′,𝚯′) ∈ R𝑀×𝑀 follows analogously. For
more details on how to compute the predictive mean and variance, we refer to Ref. [9].

As the number of measurements increases, the knowledge gained by the GP during optimization
can be used not only for regression but also to choose the next points to observe. This is achieved
by combining GPR and BO and solving the following maximization problem:

max
𝚯′

𝑎𝚯(𝑡−1) (𝚯′) ,

where 𝑎𝚯(𝑡−1) (·) is the so-called acquisition function. This function uses a GP model trained on
previously observed data pairs {𝚯(𝑡−1) , �̃�}, collected over the prior (𝑡 − 1) iterations, to assess how
promising a set of new input points 𝚯′ may be. The points that maximize the acquisition function
are likely to be the most informative for the next iteration.

3. Method

In Section 3.1, we leverage the functional form of the VQE objective [7] to construct a physics-
informed kernel suited for GPR [9]. In Section 3.2, we introduce a novel type of acquisition function
called Expected Maximum Improvement over Confident Regions (EMICoRe) [9]. In Section 3.2.1,
we combine these concepts and present the NFT-with-EMICoRe algorithm, called EMICoRe algo-
rithm for short [9]. This algorithm demonstrates how the NFT baseline algorithm can be improved
to achieve a more flexible and noise-resilient algorithm when combined with BO and GPR.

3.1 VQE Kernel

A GP needs to be equipped with a kernel (covariance) function. While there are many types
of such functions, one popular example is the Gaussian-RBF kernel [15]. This kernel encodes the
assumption that input vectors that are close in the input space exhibit stronger correlations compared
to those that are distant, with the correlation strength decaying exponentially as a function of the
distance. While this may be a reasonable assumption, an exponential decay in correlation, as seen
in the Gaussian-RBF kernel, may not accurately reflect the underlying features of every problem.
For this reason, the choice of kernel in a GPR task can significantly affect performance. In Ref. [9]
the authors proposed the so-called VQE kernel:

𝑘VQE (𝜽 , 𝜽 ′) = 𝜎2
0

𝐷∏
𝑑=1

(
𝛾2 + cos

(
𝜃𝑑 − 𝜃′

𝑑

)
1 + 𝛾2

)
, (11)

where 𝐷 is the number of angular parameters of the parametrized quantum circuit, 𝜎0 corresponds
to the prior variance, and 𝛾2 ≥ 1 controls the smoothness of the kernel. Both 𝜎0 and 𝛾2 are
hyperparameters of the kernel.

In [9], it was shown that the VQE kernel can be decomposed as

𝑘VQE (𝜽 , 𝜽 ′) = 𝝓(𝜽)⊤𝝓(𝜽 ′), with 𝝓(𝜽) = 𝜎0

(
1 + 𝛾2

)−𝐷/2 [
⊗𝐷𝑑=1 (𝛾, cos 𝜃𝑑 , sin 𝜃𝑑)⊤

]
, (12)

6
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where the feature maps 𝝓(𝜽) fulfill the same VQE functional form as derived in Eq. (4). Since a GP
regression model is only defined in terms of inner products of the feature maps, one just requires
access to the kernel form without explicitly specifying 𝝓 —a procedure known as kernel trick [15].

By using the VQE kernel instead of, for example, the Gaussian-RBF kernel, the GP is ensured
to sample functions that align with the required functional form from Eq. (4). Consequently, as
described in Eq. (6), when optimizing over a one-dimensional subspace—i.e., varying only one
parameter at a time—three noiseless observed points are sufficient to uniquely identify the target
function [7] across the entire subspace. However, in the presence of measurement shot noise, the
target function in the subspace can only be identified up to some statistical uncertainty. Therefore,
the GP provides not only energy estimates but also their corresponding uncertainties for new
measurements in the subspace.

Furthermore, it has been shown that the decomposition of the VQE kernel in Eq. (12) can
be generalized so that each entry of 𝜽 may parametrize multiple gates at once [9]. This property
becomes crucial if the Hamiltonian is invariant under specific symmetries, leading to multiple
parameters being identical and requiring simultaneous updates.

3.2 Expected Maximum Improvement over Confident Regions

To perform BO in combination with GPR, one should pick a suitable acquisition function to
identify the most promising points to measure at each optimization step. A novel acquisition function
termed Expected Maximum Improvement over Confident Regions (EMICoRe) was introduced in
the context of GPR for VQEs [9]. This acquisition function relies on the idea of Confident Region
(CoRe) mathematically defined as

Z𝚯 =
{
𝜽 ∈ X; 𝑠𝚯(𝜽 , 𝜽) ≤ 𝜅2} . (13)

The CoRe describes all points for which the predictive covariance 𝑠𝚯(·, ·) is smaller than or equal
to a threshold 𝜅2, which is a hyperparameter of the model. For sufficiently small 𝜅, an appropriate
kernel function, and a weak prior—i.e., enough previously observed points—every point in the
CoRe can be regarded as “already observed” due to the sufficiently small uncertainty of the GP.
Leveraging the concept of CoRe, Nicoli et al. [9] proposed the following acquisition function:

𝑎EMICoRe (𝚯′) = 1
𝑀

〈
max

(
0, min

𝜽∈Z𝚯

𝐸 (𝜽) − min
𝜽∈Z�̃�

𝐸 (𝜽)
)〉
𝑝 (𝐸 ( ·) |𝚯,�̃� )

, (14)

where �̃� = (𝚯,𝚯′) ∈ X𝑁+𝑀 denotes the augmented training set with the new input points𝚯′ ∈ X𝑀

and the previously observed ones 𝚯 ∈ X𝑁 .
The term min𝜽∈Z𝚯 𝐸 (𝜽) in Eq. (14) corresponds to the estimated minimum of the CoRe, identified
by all previously observed points 𝚯. This value is drawn from the GP’s posterior distribution and
identifies the estimated minimum energy for any choice of circuit parameters previously observed.
The other term in Eq. (14), min𝜽∈Z�̃�

𝐸 (𝜽), is the estimated minimum over the augmented training
set �̃� = (𝚯,𝚯′). Note that within this augmented set, the new input points 𝚯′ ∈ X𝑀 can be treated
as if they had already been observed. This is because, if a new input point lies within the CoRe,
the GP’s uncertainty is below a given threshold, allowing the reasonable assumption that the GP is
highly confident close to that point. Consequently, this point can be implicitly considered known,
i.e., as if it has been observed, despite no measurement being performed on the quantum computer.

7



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
1
7

Machine-Learning-Enhanced Optimization of Noise-Resilient VQEs Kim A. Nicoli and Luca J. Wagner

3.2.1 The EMICoRe algorithm

To address the challenges posed by noisy measurements on quantum hardware, Nicoli et al. [9]
proposed to combine NFT with GP regression and BO, thus merging all the tools previously
introduced in Sections 2.2, 3.1 and 3.2.

The proposed EMICoRe algorithm builds upon the structure of the NFT algorithm, incorpo-
rating two key modifications:

1. Learnable shifts: Instead of taking a fixed shift 𝛼 to identify two new (equidistant) can-
didate points, see Eq. (7), the EMICoRe algorithm uses the EMICoRe acquisition function
from Section 3.2 to identify the most informative points to measure next.

2. Re-use of previous measurements: At each iteration, the minimum on the one-dimensional
subspace is estimated using Least Square Regression with the posterior mean of the GP. This
implies that as more measurements are made on the quantum computer and incorporated into
the surrogate model, the GP will provide increasingly accurate estimates.

These modifications distinguish the proposed algorithm from NFT, where the minimum estimation
on the subspace depends solely on the previous best point and the fixed shifts for the new mea-
surements. Both modifications aim to make EMICoRe a more flexible and resilient algorithm in
the presence of quantum noise. The EMICoRe algorithm starts with 𝑇NFT steps of the baseline
NFT algorithm to gather sufficient measurements for instantiating an informative GP that can make
predictions. After this initial phase, the EMICoRe algorithm begins learning the shifts at each step,
using the previous measurements and storing the new measurements for future predictions. For a
detailed description of the EMICoRe algorithm and its subroutine, we refer to the original paper [9].

Figure 2 visualizes the algorithmic procedure of the full EMICoRe algorithm. The objective
function 𝐸∗(𝜽) (true energy) is represented by the red lines, while the red shaded area indicates
the standard deviation of a measurement on the quantum computer. The blue lines indicate the
predictive mean of the GP 𝜇𝚯(·), while the shaded area denotes its predictive uncertainty

√︁
𝑠𝚯(·, ·),

i.e., one standard deviation. The figure should be read from top left to bottom right following the
black arrow.

The top left plot shows the optimization in the direction 𝜃𝑑 for 𝑑 ∈ {1, . . . , 𝐷}2. The quantity
𝜽
(𝑡 ) denotes the set of parameters which give the lowest energy 𝐸 (𝜽 (𝑡 ) ) from the GP after the 𝑡-th

optimization step. Note that at this point, the GP has access to a dataset of previous measurements
{𝚯(𝑡 ) , �̃�

(𝑡 ) }. This explains why the blue line, along with the corresponding uncertainty, provides a
good prediction of the red curve along direction 𝑑, even before any optimization has been performed.

The EMICoRe subroutine is now responsible for finding the promising points to be measured
next, i.e., 𝚯′ in Eq. (7) with the shifts 𝛼 being different for 𝜃′1 and 𝜃′2. First, the subroutine divides
the subspace into a grid of equally spaced points, as represented by the grid lines at the bottom
of the second plot. Second, the subroutine prepares all possible combinations of candidate pairs
𝚯′
𝑘 = {𝜽 ′

𝑘,2, 𝜽
′
𝑘,2}. These points are added to the base-GP in pairs, allowing a discretized CoRe

to be computed for each pair (orange vertical lines). The subroutine then computes the acquisition
function for each candidate pair 𝚯′

𝑘 using the respective CoRe. The pair that maximizes the

2Note the direction to be optimized is chosen sequentially until 𝑑 = 𝐷, after which the algorithm restarts from 𝑑 = 0.

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
1
7

Machine-Learning-Enhanced Optimization of Noise-Resilient VQEs Kim A. Nicoli and Luca J. Wagner

Gaussian Process
Objective Function
Discrete CoRe

 ̂θ(t)  ̂θ(t)

 ̂θ(t)  ̂θ(t)

 ̂θ(t)  ̂θ(t)

En
er

gy
En

er
gy

En
er

gy

En
er

gy
En

er
gy

En
er

gy

Grid search

Maximize 
EMICoR 
acquisition 
function

Fit cos, find 
minimum

 ̂θ(t+1)

 θ′ k,1  θ′ k,2  θ′ k,1  θ′ k,2

 θ′ 1  θ′ 2

Compute CoRe   
for each candidate 
pair  

ZΘ′ k

Θ′ k = {θ′ k,1, θ′ k,2}

Measure at  
optimal points   
and update GP

Θ′ 

Figure 2: Visualization of the EMICoRe algorithm. We refer to the main text for more details.

acquisition function, as described in Eq. (14), is returned as 𝚯′. According to the algorithm, this
pair represents the points that are the most promising to be observed next. The fifth plot displays
the measurements on the quantum computer at the suggested points, indicated by the blue crosses.
The GP is finally updated using the new measurements—note the change of the blue curve and the
shaded area in the plot. Finally, the GP’s posterior mean is computed for three equidistant points on
the one-dimensional subspace. These points are then used to fit a cosine function, according to the
functional form of the subspace given by Eq. (6). This fitted cosine function is then used to obtain
the analytic minimum of the one-dimensional subspace.

We recall that, due to the special form of the VQE-kernel and the design of the EMICoRe
algorithm, the function sampled from the GP—i.e, the posterior mean—follows the same functional
form as in Eq. (4). Therefore, fitting a sinusoidal function to the GP’s posterior is a valid assumption.

4. Numerical Experiments

In the following, we perform numerical experiments to demonstrate the performance of EMI-
CoRe in the presence of simulated hardware noise. Our experiments focus on the quantum Heisen-
berg Hamiltonian, a typical Hamiltonian for benchmarking the performance of VQEs,

𝐻 = −

𝑄−1∑︁
𝑗=1

(
𝐽𝑋𝑋 𝑗𝑋 𝑗+1 + 𝐽𝑌𝑌 𝑗𝑌 𝑗+1 + 𝐽𝑍𝑍 𝑗𝑍 𝑗+1

)
+

𝑄∑︁
𝑗=1

(
ℎ𝑋𝑋 𝑗 + ℎ𝑌𝑌 𝑗 + ℎ𝑍𝑍 𝑗

) , (15)
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where the index of the Pauli matrices {𝑋 𝑗 , 𝑌 𝑗 , 𝑍 𝑗} refers to the qubit that the Pauli gate is applied
to, and open boundary conditions are considered. In this work, we choose the couplings to be
at the critical point with (𝐽𝑋, 𝐽𝑌 , 𝐽𝑍 ) = (−1, 0, 0) and (ℎ𝑋, ℎ𝑌 , ℎ𝑍 ) = (0, 0,−1). The resulting
Hamiltonian is also known as the Ising Hamiltonian at criticality.

In order to assess the performance of the VQE during optimization, we mainly consider two
metrics: energy and fidelity. The former is the lowest energy reached by the VQE during the
optimization process, i.e., the expectation value of the Hamiltonian with respect to the variational
state. The latter measures the overlap between the variational state and the true ground state obtained
with exact diagonalization. We note that the true ground-state energy 𝐸∗ = ⟨𝜓GS |𝐻 |𝜓GS⟩, along
with with the corresponding true ground-state wave function |𝜓GS⟩, can be obtained in our case,
as the size of the systems we address is sufficiently small. This is important as it provides access
to a ground truth for benchmarking different algorithms, such as NFT versus EMICoRe. We refer
to [9] for more details on the metrics we used. To test the stability of the optimization with respect
to initialization, we initialize several independent runs with different seeds. Specifically, we use 50
runs for the experiments without hardware noise and 10 runs for the experiments with hardware
noise, see Section 4.1 for more details. In all plots, we report the median (50th percentile) as a solid
line, with the 25th and 75th percentiles as the lower and upper bounds, respectively, represented by
shaded regions around the solid line. The results are plotted as a function of the total number of
measurements performed on the quantum computer.

For all simulations, we use an 𝐿-layered and fully connected Efficient SU(2) circuit with
𝐷 = 2(𝐿 + 1) · 𝑄 total angular parameters. The classical simulations of the quantum hardware are
performed with the Qiskit [16] library, while the Python implementation of the EMICoRe algorithm
has been adapted from the original code available on GitHub [17].

All the parameters for EMICoRe are identical to those chosen for the simulation in Fig. 7 of
the original paper [9]. As noted in Footnote 1, we used 𝛼 = 𝜋/3 as the shift for NFT. Moreover,
in contrast to the original NFT paper [7], we did not include a stabilization step, as our results
indicated that its use often led to poorer performance. Further investigation of this phenomenon is
left to future work.

4.1 Hardware Noise Analysis of EMICoRe

Previous work [9] analyzed EMICoRe’s performance in the presence of measurement shot
noise, showing that EMICoRe outperforms NFT more significantly at higher noise levels, i.e., with
fewer shots. In these proceedings, we extend the analysis to include hardware noise as well.

In the following experiments, the setup remains constant: we consider a 5-qubit system with
3-layers of the EfficientSU2 circuit and the Ising Hamiltonian with open boundary conditions.
All simulations are conducted with a total of 600 measurements 3, using 𝑁 = 1024 shots per
measurement.

In Fig. 3a, we conduct experiments with simulated hardware noise and no error mitigation.
In Fig. 3b and Fig. 3c, we apply twisted readout error extinction (TREX) [18] and zero noise ex-
trapolation (ZNE) [19, 20] as error mitigation strategies, respectively. Hardware noise is simulated

3Note that two measurements are performed at each step, meaning that 600 measurements correspond to 300
optimization steps.
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(a) Classical simulation of noisy quantum hardware without error mitigation.
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(b) Classical simulation of noisy quantum hardware with TREX error mitigation.
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(c) Classical simulation of noisy quantum hardware with ZNE error mitigation.

Figure 3: Energy (left) and fidelity (right) for NFT (green) and EMICoRe (red). We show results for the
critical Ising Hamiltonian using 𝑄 = 5 qubits and 𝐿 = 3 layers, for an Efficient SU(2) quantum circuit,
and 𝑁shots = 1024 measurement shots. The top row displays runs with simulated hardware noise and no
error mitigation, while the second and third rows present results with TREX and ZNE error mitigation
schemes, respectively. The median (solid line) and the 25th and 75th percentiles (colored regions surrounding
the median) are obtained with 50 independent seeded runs for experiments in Fig. 3a and with 10 runs
for Figs. 3b and 3c. A density of the trial distribution at the end of the optimization is shown right next to
each plot.

with the Fake5QV1 backend. The results in Fig. 3a are obtained by aggregating 50 independent
runs, whereas Figs. 3b and 3c include only 10 runs, as the feature was deprecated before further data
could be collected. Table 1 summarizes the results from Fig. 3, reporting the mean and standard
deviation computed over multiple seeded trials for simulations with and without error mitigation.

When hardware noise is taken into account, EMICoRe significantly outperforms NFT, as
shown in Fig. 3a, demonstrating faster and more reliable convergence. For instance, the trial
density on the right-hand-side is more peaked around the median. These empirical results indicate
that NFT is considerably more affected by hardware noise compared to EMICoRe. While neither
algorithm reaches the ground-state energy, EMICoRe achieves a fidelity of nearly 80%. With error
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Table 1: Mean and standard deviation of the energy and fidelity at the final optimization step for all
simulations presented in Fig. 3. For the energy, lower values are better; for the fidelity, higher values are
better.

EMICoRe NFT
Energy 𝐸∗(𝜽) Fidelity Energy 𝐸∗(𝜽) Fidelity

noise (−5.472 ± 0.119) (0.782 ± 0.04) (−4.972 ± 0.821) (0.641 ± 0.214)
noise, TREX (−5.624 ± 0.122) (0.854 ± 0.051) (−5.173 ± 0.543) (0.622 ± 0.245)
noise, ZNE (−5.611 ± 0.059) (0.814 ± 0.037) (−5.03 ± 0.841) (0.653 ± 0.226)

mitigation, EMICoRe outperforms NFT in both energy minimization and fidelity, demonstrating
greater stability across different initializations and achieving lower energies as well as higher
fidelities.

5. Conclusion

In these proceedings, we presented a novel machine-learning-enhanced optimization approach
for VQE algorithms to find the ground state of the quantum Ising Hamiltonian in the presence
of simulated hardware noise. This algorithm, called EMICoRe [9], combines Gaussian Process
Regression for noise-resilient energy estimation and Bayesian Optimization to predict new candidate
points for measurement at each step of the optimization.

Our numerical experiments demonstrated that EMICoRe outperforms the state-of-the-art base-
line, the NFT algorithm [7], in the presence of simulated hardware noise. EMICoRe converges
to lower energies than NFT and shows greater robustness across different initializations. This ro-
bustness underscores the potential of the proposed method for future applications to more complex
quantum systems and under the challenging conditions of real NISQ devices.

Acknowledgments

The authors thank Christopher J. Anders and Shinichi Nakajima for insightful discussions. This
project was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) as part of the CRC 1639 NuMeriQS – project no. 511713970.

References

[1] A. Morvan et al., Phase transitions in random circuit sampling, Nature 634 (2024) 328
[2304.11119].

[2] A.J. McCaskey, Z.P. Parks, J. Jakowski, S.V. Moore, T.D. Morris, T.S. Humble et al.,
Quantum chemistry as a benchmark for near-term quantum computers, npj Quantum
Information 5 (2019) 99 [1905.01534].

[3] A. Di Meglio et al., Quantum computing for high-energy physics: State of the art and
challenges, PRX Quantum 5 (2024) 037001 [2307.03236].

12

https://doi.org/10.1038/s41586-024-07998-6
https://arxiv.org/abs/2304.11119
https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1038/s41534-019-0209-0
https://arxiv.org/abs/1905.01534
https://doi.org/10.1103/PRXQuantum.5.037001
https://arxiv.org/abs/2307.03236


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
1
7

Machine-Learning-Enhanced Optimization of Noise-Resilient VQEs Kim A. Nicoli and Luca J. Wagner

[4] L. Funcke, T. Hartung, K. Jansen and S. Kühn, Review on quantum computing for lattice
field theory, PoS LATTICE2022 (2023) 228 [2302.00467].

[5] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P.J. Love et al., A variational
eigenvalue solver on a photonic quantum processor, Nature Commun. 5 (2014) 4213
[1304.3061].

[6] J.R. McClean, J. Romero, R. Babbush and A. Aspuru-Guzik, The theory of variational
hybrid quantum-classical algorithms, New J. Phys. 18 (2016) 023023 [1509.04279].

[7] K.M. Nakanishi, K. Fujii and S. Todo, Sequential minimal optimization for
quantum-classical hybrid algorithms, Phys. Rev. Res. 2 (2020) 043158 [1903.12166].

[8] C.P. John, Sequential minimal optimization: a fast algorithm for training support vector
machines, MSRTR: Microsoft Research 3 (1998) 88.

[9] K.A. Nicoli, C.J. Anders, L. Funcke, T. Hartung, K. Jansen, S. Kühn et al., Physics-informed
bayesian optimization of variational quantum circuits, Advances in Neural Information
Processing Systems 36 (2024) 18341 [2406.06150].

[10] K. Georgopoulos, C. Emary and P. Zuliani, Modeling and simulating the noisy behavior of
near-term quantum computers, Phys. Rev. A 104 (2021) 062432 [2102.02109].

[11] C.J. Anders, K.A. Nicoli, B. Wu, N. Elosegui, S. Pedrielli, L. Funcke et al., Adaptive
observation cost control for variational quantum eigensolvers, Proceedings of the 41st
International Conference on Machine Learning 235 (2024) 1557 [2502.01704].

[12] J. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation, IEEE Transactions on Automatic Control 37 (1992) 332.

[13] S. Finck and H.-G. Beyer, Performance analysis of the simultaneous perturbation stochastic
approximation algorithm on the noisy sphere model, Theor. Comp. Sci. 419 (2012) 50.

[14] P.I. Frazier, A tutorial on bayesian optimization, 1807.02811.

[15] C.E. Rasmussen and C.K.I. Williams, Gaussian Processes for Machine Learning, The MIT
Press (2005), 10.7551/mitpress/3206.001.0001.

[16] A. Javadi-Abhari, M. Treinish, K. Krsulich, C.J. Wood, J. Lishman, J. Gacon et al., Quantum
computing with Qiskit, 2405.08810.

[17] K.A. Nicoli, C.J. Anders et al., Emicore: Expected maximum improvement over confident
regions, GitHub repository (2023) .

[18] E. van den Berg, Z.K. Minev and K. Temme, Model-free readout-error mitigation for
quantum expectation values, Phys. Rev. A 105 (2022) 032620 [2012.09738].

[19] K. Temme, S. Bravyi and J.M. Gambetta, Error mitigation for short-depth quantum circuits,
Phys. Rev. Lett. 119 (2017) 180509 [1612.02058].

13

https://doi.org/10.22323/1.430.0228
https://arxiv.org/abs/2302.00467
https://doi.org/10.1038/ncomms5213
https://arxiv.org/abs/1304.3061
https://doi.org/10.1088/1367-2630/18/2/023023
https://arxiv.org/abs/1509.04279
https://doi.org/10.1103/physrevresearch.2.043158
https://arxiv.org/abs/1903.12166
https://papers.nips.cc/paper_files/paper/2023/hash/3adb85a348a18cdd74ce99fbbab20301-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2023/hash/3adb85a348a18cdd74ce99fbbab20301-Abstract-Conference.html
https://arxiv.org/abs/2406.06150
https://doi.org/10.1103/physreva.104.062432
https://arxiv.org/abs/2102.02109
https://proceedings.mlr.press/v235/anders24a.html
https://proceedings.mlr.press/v235/anders24a.html
https://arxiv.org/abs/2502.01704
https://doi.org/10.1109/9.119632
https://doi.org/10.1016/j.tcs.2011.11.015
https://arxiv.org/abs/1807.02811
https://doi.org/10.7551/mitpress/3206.001.0001
https://arxiv.org/abs/2405.08810
https://github.com/angler-vqe/emicore
https://doi.org/10.1103/PhysRevA.105.032620
https://arxiv.org/abs/2012.09738
https://doi.org/10.1103/physrevlett.119.180509
https://arxiv.org/abs/1612.02058


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
1
7

Machine-Learning-Enhanced Optimization of Noise-Resilient VQEs Kim A. Nicoli and Luca J. Wagner

[20] Y. Li and S.C. Benjamin, Efficient variational quantum simulator incorporating active error
minimization, Phys. Rev. X 7 (2017) 021050 [1611.09301].

14

https://doi.org/10.1103/physrevx.7.021050
https://arxiv.org/abs/1611.09301

	Introduction
	Theoretical Foundations
	Variational Quantum Eigensolver (VQE)
	Gaussian Processes and Bayesian Optimization

	Method
	VQE Kernel
	Expected Maximum Improvement over Confident Regions
	The EMICoRe algorithm


	Numerical Experiments
	Hardware Noise Analysis of EMICoRe

	Conclusion

