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The convergence property of iterative solvers strongly depends on the spectrum of the Dirac oper-
ator. For most standard algorithms to work, the real part of the spectrum should be positive. The
domain-wall operator does not satisfy this condition, which is one of the reasons for the difficulty
in applying the multi-grid algorithms. In this presentation, we examine several preconditioning
operators for the Möbius domain-wall operator and investigate their spectra.
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1. Introduction

Among major fermion operators, the domain-wall operator belongs to a difficult class to solve.
The real part of the spectrum is negative due to the large negative mass called the domain-wall
height. In Fig. 1, we plot the eigenvalues of a free Möbius domain-wall operator [1] with the scale
factor, 𝑏𝑠 + 𝑐𝑠 in eq. (2) below, set to 2. Because of this feature, standard iterative methods like
Conjugate Gradient (CG) or BiCGstab for the operator itself, 𝐷, do not work. We therefore usually
apply the CG method to positive definite operators, such as 𝐷†𝐷. As 𝐷†𝐷 has a larger condition
number than the original 𝐷, however, this algorithm is not an ideal one.

A standard recipe to accelerate the solver is to apply a preconditioner. The multigrid precon-
ditioner is very successful for Wilson fermion. A lot of efforts have also been made to multigrid
algorithms for the domain-wall fermion [2–6]. Compared with the Wilson fermion case, how-
ever, it is still developing and sub-optimal. Among the works mentioned above, Brower et al.
[4] noted the fact that it is not the operator 𝐷 but a one divided by the Pauli-Villars operator,
𝐷 (𝑚 = 𝑀PV)−1𝐷 (𝑚 = 𝑚𝑞), represents the physical degrees of freedom. Here, 𝑀PV is the
Pauli-Villars’ mass which is taken unity in the lattice unit, and 𝑚𝑞 is the target quark mass. It
is an approximate operator of the overlap operator and gives a positive definite spectrum. As
𝐷 (𝑚 = 𝑀PV)−1 is a rather expensive operator, they instead used 𝐷 (𝑚 = 𝑀PV)† to build their
multigrid preconditioner.

Inspired by their work, in this work, we apply several preconditioners to the Möbius domain-
wall operators and investigate the spectra.

Because we are motivated by an application to the multigrid algorithm, we investigate local
preconditioners that avoid complicated coarse operators. We introduce a domain decomposed
operator whose domain would correspond to a site on the coarse grid. Such an operator and domain
decomposed preconditioner are also beneficial in the performance on parallel computers as they
can reduce the neighboring communication.

We describe our preconditioning in the next section. Section 3 shows the result of the spectra.
The last section is for summary.

2. Preconditioned Operators

We start with the following domain-wall operator [1]:

𝐷 (𝑚) =

©«
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, (1)

where

𝐷
(𝑠)
+ = 𝑏𝑠𝐷W(−𝑀0) + 1, 𝐷 (𝑠)

− = 𝑐𝑠𝐷W(−𝑀0) − 1. (2)
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Figure 1: Spectrum of a free Möbius domain-wall operator. The lattice size is 164 × 8 and the quark mass
is 0.01. We set parameters 𝑏 = 1.5 and 𝑐 = 0.5, and the domain-wall height 𝑀0 = −1 (see eqs. (1), (2), and
the explanation there).

𝐷W is the Wilson Dirac operator of which mass is set to −𝑀0, where 𝑀0 > 0 is the domain-wall
height. 𝑚 is the quark mass, 𝑁𝑠 the extent of the fifth coordinate, and 𝑃± = 1

2 (1 ± 𝛾5). We adopt
the Möbius domain-wall setup, 𝑏𝑠 and 𝑐𝑠 independent of the “fifth” coordinate 𝑠, and thus denote
𝑏 = 𝑏𝑠 and 𝑐 = 𝑐𝑠 in the following.

We first factor out the diagonal part with respect to the four-dimensional sites. By using the
even-odd decomposition of 4D sites, the Dirac operator can be written as

𝐷 =

(
𝐷ee 𝐷eo

𝐷oe 𝐷oo

)
= 𝐶

(
1 𝐷−1

ee 𝐷eo

𝐷−1
oo 𝐷oe 1

)
=

(
1 𝐷eo𝐷

−1
ee

𝐷oe𝐷
−1
oo 1

)
𝐶. (3)

Here, the diagonal part,

𝐶 ≡
(
𝐷ee 0
0 𝐷oo

)
, (4)

is easy to invert and 𝐶−1 can be calculated site-by-site. In fact, as it does not depend on the gauge
field so it is a constant matrix over the lattice sites. We use 𝐶−1 as a preconditioner. Note that
solving an even-odd preconditioned system, 1 − 𝐷−1

ee 𝐷eo𝐷
−1
oo 𝐷oe, is equivalent to apply 𝐶−1. As

emphasized in [5], even-odd preconditioning accelerates the solver significantly for the domain-wall
operator1, we expect that 𝐶−1 can be a good preconditioner even without even-odd decomposition.

Next, we consider a domain decomposed operator, which uses even-odd decomposition against
the blocks of sites [7]. Applying a multigrid method, we assume each block corresponds to a site
on the coarse grid. In practice we choose the size of each block 44 as displayed in Fig. 2. They are
divided into even blocks (E) and odd blocks (O). We denote the decomposed operator as

𝐷 =

(
𝐷EE 𝐷EO

𝐷OE 𝐷OO

)
= 𝐵

(
1 𝐷−1

EE𝐷EO

𝐷−1
OO𝐷OE 1

)
, 𝐵 ≡

(
𝐷EE 0

0 𝐷OO

)
. (5)

1Ref. [5] also mentions that 𝐷ee − 𝐷eo𝐷−1
oo 𝐷oe is better than 1 − 𝐷−1

ee 𝐷eo𝐷−1
oo 𝐷oe.
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Figure 2: Two-dimensional sketch of even-odd block decomposition. 𝐷EE operates on only “E” region,
𝐷OO on “O” region, and 𝐷EO and 𝐷OE connect these two regions.

The matrix 𝐷EE and 𝐷OO do not have hops between the blocks. 𝐷EO and 𝐷OE contain only the
hops between the nearest neighbor blocks.

We note that the Pauli-Villars operator has a mass of the cutoff scale and expect that the low
frequency modes which spread over several blocks would be suppressed. We therefore use 𝐵 as an
approximation of the Pauli-Villars operator.

3. Spectrum of the Preconditioned Operators

We use Bridge++ code set [8–10] to measure the spectra of the domain-wall operator and
various preconditioned operators. For each operator, we calculate low- and high- end of the
spectrum, by using the implicitly restarted Arnoldi method [11]. The measurement is performed on
the Supercomputer Fugaku at RIKEN R-CCS. Bridge++ contains a branch that is well-optimized
to the Fugaku’s architecture, A64FX [12].

The configuration is provided by JLQCD collaboration, which is a 2+1 flavor finite temperature
configuration in the confined phase. The lattice size is 483 × 16 and 𝑁𝑠 = 12 and the quark masses
are set to the physical point.

Let us start with the spectrum without preconditioning. Figure 3 shows the spectrum of the
Möbius domain-wall operator combined with various preconditioners. The original operator is
displayed in the top-left panel. The real part is not positive definite. Its preconditioned version with
𝐶−1 (middle-left) is not positive definite either, while the extent of the spectrum becomes smaller.
The bottom-left panel in Fig. 3 is a positive definite squared version, (𝐶−1𝐷)†𝐶−1𝐷.

Next, we examine the preconditioning with the Pauli-Villars operator. The top-right panel of
Fig. 3 shows that preconditioning with 𝐷

†
PV = 𝐷 (𝑚 = 𝑀PV)† provides a positive spectrum. The

low modes almost align along the imaginary axis with a positive shift of order of the quark mass.
It implies that 𝐷†

PV𝐷 is a good approximation of 𝐷−1
PV𝐷 and overlap operator for small eigenmodes

as pointed out in [4]. The figure shows that the high-end of the spectrum of this operator is rather
different from the expected behavior for the approximate overlap operator that would not develop
such large eigenvalues. Changing 𝐷PV to the block diagonal operator 𝐵PV affects the spectrum
drastically as in the middle-right panel. The real part of the low-lying eigenvalues spread to the
negative region. We also examine 𝐵−1

PV as a preconditioner in the bottom-right panel of Fig. 3. We
invert 𝐵PV loosely by applying a fixed number of iterations of the minimal residual algorithm in
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Figure 3: Spectrum of the domain-wall operators: the left panels displays the original operator and precondi-
tioned ones with its diagonal preconditioner,𝐶. The right panels are those preconditioned by the Pauli-Villars
operator 𝐷PV or its approximation 𝐵PV. Explicitly, 𝐷 (top-left), 𝐷𝐶−1 (middle-left), (𝐶−1𝐷)†𝐶−1𝐷 (bottom-
left), 𝐷†

PV𝐷 (top-right), 𝐵†
PV𝐷 (middle-right), and 𝐵−1

PV𝐷 (bottom-right).

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
4
1
4

Spectrum of Preconditioned Moebius Domain-wall Operators Issaku Kanamori

-0.1

-0.05

 0

 0.05

 0.1

 0  1  2  3  4  5

real part is positive: [2.67e-4, 5.22]

Im

Re

( DPV (CPV)
-1

)
†
 D C

-1

spectrum of Moebuis domainwall operator (low and high ends): 32
3
x16x12

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0  0.001  5.2  5.21 5.22
-5x10

-11
-4x10

-11
-3x10

-11
-2x10

-11
-1x10

-11
 0
 1x10

-11
 2x10

-11
 3x10

-11
 4x10

-11
 5x10

-11
 6x10

-11

-0.1

-0.05

 0

 0.05

 0.1

 0  1  2  3  4  5

real part: [-3.74e-3, 4.48]

Im

Re

(CPV)
†
)
-1

 C
-1

  D (BPV)
†

spectrum of Moebuis domainwall operator (low and high ends): 32
3
x16x12

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

-0.038 -0.036  4.472  4.476
-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Figure 4: Spectrum of the domain-wall operators: preconditioned with the site-diagonal operator 𝐶−1 and
the Pauli-Villars operator 𝐷PV or its approximation 𝐵PV.

each block. The residual norms squared are typically of the order of 10−3. The real part of the
eigenvalues again spread to the negative values, while the largest eigenvalues are much reduced.

We finally combine the Pauli-Villars operator and the site diagonal operator to precondition 𝐷.
In Fig. 4, the left panel is the spectrum of

(
𝐷PV𝐶

−1
PV

)†
𝐷𝐶−1. Here 𝐶PV is the site diagonal part

of the Pauli-Villas operator, diag((𝐷PV)ee, (𝐷PV)oo). Similar to 𝐷
†
PV𝐷 in Fig. 3, the real part of

the spectrum is positive. In addition, the largest eigenvalue is smaller than that with 𝐷PV, which
reduces the condition number from 2.34× 104 for 𝐷†

PV𝐷 to 1.96× 104 for this operator. Replacing
𝐷PV with a block diagonal operator 𝐵PV gives eigenvalues again with the negative real part as in
the right panel. This situation is similarly to 𝐵

†
PV𝐷 in Fig.3.

4. Summary and Outlooks

We investigated the spectrum of several preconditioned Möbius domain-wall operators. By
using 𝐷

†
PV, the Hermitian conjugate of the Pauli-Villars operator, we obtain spectra with the positive

real part. However, an approximate operator 𝐵
†
PV, which is obtained from 𝐷

†
PV by truncating

connections between neighboring blocks, develops the negative real part of the eigenvalues.
Among our trails, a combination of the site diagonal preconditioning and the Pauli-Villars

operator gave the smallest condition number. Using this preconditioner may help to develop a faster
solver for the domain-wall fermion.
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