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We present preliminary results obtained using a new code for 𝑆𝑈 (𝑁𝑐) Yang-Mills theory which
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1. Introduction

The low-lying spectrum of SU(𝑁𝑐) Yang-Mills (YM) theory is populated by glueball states
i.e. bound states composed only of gluons [4]. A comprehensive understanding of the glueball
spectrum could provide insights into the confinement mechanism and its relation to the mass gap
problem. Moreover, any proposed solution of Yang-Mills (YM) theory must reproduce its infrared
phenomenology.
Physical particles of YM theory are created by gauge invariant composite operators and correspond
to glueballs. Experimental efforts to detect a glueball have not managed to produce direct observa-
tional evidence of their existence yet [2, 3].
Though YM perturbation theory is successfully applied in the high-energy regime thanks to the
asymptotic freedom, the appearance in YM theory of the renormalization-group (RG) invariant
mass scale Λ𝑌𝑀 , which is not analytic in the gauge coupling 𝑔𝑌𝑀 , implies that perturbation theory
is unable to compute physical quantities – such as the glueball masses – that are proportional to
Λ𝑌𝑀 .
Lattice discretization is thus an appropriate choice for these types of problems, as it offers a non-
perturbative method that is solidly grounded in first principles.
For these reasons, the preferred method to study the glueball spectrum is to extract the masses from
the long-distance behaviour of correlators computed on the lattice using a Markov Chain Monte
Carlo (MCMC) approach.
However, this approach poses significant numerical challenges; this is because Euclidean correla-
tors vanish exponentially with the time separation between sink and source while the uncertainty
remains constant. Thus, the signal-to-noise ratio decreases exponentially in the long-distance limit
[5, 6].
Several numerical techniques have been designed to mitigate this problem, either by increasing the
operator’s overlap with the lightest states in order to improve the signal (e.g. smearing) [7, 8] or
by mitigating the statistical noise in the correlator’s measurements such as the multi-hit [9] and
multilevel [10, 11] algorithms.
In particular, the multilevel algorithm exploits the locality of the Wilson plaquette action to factorize
the path integral into contributions coming from spacetime regions separated by a fixed boundary.
By performing repeated submeasurements of the operators in these subregions, we can estimate
the correlator by computing a nested average of our measurements, achieving an exponential error
suppression in time separation.
In this contribution, we discuss the structure of the algorithm and present preliminary results on the
error-suppression properties of this approach for 𝑁𝑐 = 3 on 2 different lattices. We also provide
estimates of the lowest-lying glueball states in order to validate our algorithm by comparing our
results with the literature.

2. The Multilevel algorithm

The Wilson plaquette action [13]

𝑆[𝑈] =
∑︁
𝑝

1
𝑁𝑐

Re Tr
(
1 −𝑈𝑝

)
(1)
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is local i.e. each link variable 𝑈𝜇 (𝑥) is only coupled to the links that live in a finite radius from 𝑥.
This is more easily understood by examining the local contribution of each link to the action:

𝑆(𝑈) = − 1
𝑁𝑐

Re Tr
(
𝑈𝜇 (𝑥) · 𝑉𝜇 (𝑥)†

)
(2)

Where 𝑉 is the sum of all the staples that one can build around the link 𝑈𝜇 (𝑥).

If we divide our lattice into two distinct regions, Λ1 and Λ2, separated by a fixed boundaries
𝜕Λ in such a way that for each𝑈𝜇 (𝑥) the corresponding 𝑉𝜇 (𝑥) only involves link variables residing
in Λ1 or on the boundary1, and vice versa for Λ2, then the evolution in Monte Carlo time of the Λ1
configuration will be completely independent from the Λ2 configuration.
If we want to compute a matrix of euclidean correlators between two different spatial Wilson loops
O𝑖 (𝑡1) and O 𝑗 (𝑡2)2 belonging to some operator basis, such that 𝑡1 ∈ Λ1 and 𝑡2 ∈ Λ2 the path integral
expression reads:〈

O𝑖 (𝑡1)O 𝑗 (𝑡2)
〉
=

1
𝑍

∫
Λ1∪Λ2∪𝜕Λ

𝑑 [𝑈]𝑒−𝛽𝑆 [𝑈 ]O𝑖 (𝑡1)O 𝑗 (𝑡2)

=
1
𝑍

∫
𝜕Λ

𝑑 [𝑈]𝜕Λ 𝑒−𝛽𝑆 [𝑈 ]𝜕Λ
(∫

Λ1

𝑑 [𝑈]Λ1 𝑒
−𝛽𝑆 [𝑈 ]Λ1O𝑖 (𝑡1)

) (∫
Λ2

𝑑 [𝑈]Λ2 𝑒
−𝛽𝑆 [𝑈 ]Λ2O 𝑗 (𝑡2)

)
≡

〈
⟨O𝑖 (𝑡1)⟩Λ1

〈
O 𝑗 (𝑡2)

〉
Λ2

〉
𝜕Λ

(3)

The path integral factorizes into two independent path integrals, one for each region, combined
into an overall average over the different gauge configurations we can have on the boundary. If we
translate this into our Monte Carlo averages

𝐶𝑖 𝑗 (𝑡, 𝑡0) ≡
〈
O𝑖 (𝑡)O 𝑗 (𝑡0)

〉
=

1
𝑁conf

𝑁conf∑︁
ℓ=1

O𝑖 (𝑡) ( [𝑈]ℓ)O 𝑗 (𝑡0) ( [𝑈]ℓ) (4)

the matrix of correlators becomes a nested average as we explain below.
On the lattice this is obtained by performing a cycle of sub-updates and sub-measurements as

depicted in the diagram in figure 1. Thus, for each boundary configuration [𝑈]𝜕Λ we generate 𝑁1
sub-configurations of the two regions Λ1 and Λ2 on which we measure and average our operators.
We repeat this process on 𝑁0 different boundary configurations in order to accurately sample the
whole phase space. The result is a dataset composed of 𝑁0 · 𝑁1 measurements for each operator
O (𝑏,ℓ )
𝑖

(𝑡) with 𝑏 = 1, ..., 𝑁0 and ℓ = 1, ..., 𝑁1; the correlator can now be measured on the lattice
with the nested average:

𝐶𝑖 𝑗 (𝑡, 𝑡0) ≡
〈
O𝑖 (𝑡)O 𝑗 (𝑡0)

〉
=

1
𝑁0 · 𝑁2

1
·

𝑁0∑︁
𝑏=1

(
𝑁1∑︁
ℓ=1

O (𝑏,ℓ )
𝑖

(𝑡)
) (

𝑁1∑︁
𝜅=1

O (𝑏,𝜅 )
𝑗

(𝑡0)
)

(5)

1For the Wilson simple plaquette action we can obtain this by choosing as boundary the spatial link variables residing
on two separate timeslices. For improved actions involving bigger Wilson loops it can be necessary to widen the
boundaries between the two regions to ensure separation between the two regions.

2Considering that we want to compute the spectrum we will only be interested in the 𝑝 = 0 projection of these
operators which amounts to summing the value of the loop over all sites in a timeslice. Thus our operators only depend
on the euclidean time variable.
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Figure 1: Flow diagram describing the 2-level algorithm used to compute gluonic observables. The image
above is a pictorial representation of the partitioning of the lattice implied by the use of the algorithm.

Where we assume that 𝑡 and 𝑡0 are separated by at least one frozen timeslice.
Effectively, we only performed 𝑁0 · 𝑁1 updates. However, due to the factorization of the sums
in equation (5) we have produced 𝑁0 · 𝑁2

1 measurements of the correlator. This implies an error
suppression of order 1

𝑁1
rather than 1√

𝑁1
as one would naively expect when performing 𝑁0 · 𝑁1

updates.

2.1 The algorithm in practice

When implementing the algorithm on the lattice, some considerations must be made to ensure
its effectiveness.
Firstly, the algorithm relies on the spacetime factorization in the path-integral, as described in the
preceding paragraph; thus it can only be applied to 2-point correlators where the sink and the source
are located in different regions, separated by one, or more, frozen timeslices. Furthermore, the fixed
boundaries enclosing each region turn out to be a consistent noise source for the correlators, thus
the best performance is obtained when sink and source are placed as far away from the boundaries
as possible [12].
In order to extract the spectrum of the theory we need an accurate estimate of the correlators in
the large time-separation limit, when the effective mass (or the GEVP mass if one is using a varia-
tional technique) approaches a plateaux. These considerations should always be kept in mind when
choosing the spacing between the different multilevel boundaries since we want the performance of
the algorithm to be as effective as possible in the time region where the noise becomes relevant, so
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that the plateau becomes longer and more easily identifiable.

Furthermore, if we only rely on measurements obtained through multilevel averaging, we
have no hope of ever measuring the correlator when |𝑡1 − 𝑡0 | < 2𝑎 since in this case source and
sink will always be in the same region or on the boundaries. This means we won’t be able to
compute the 2-point correlator 𝐶 (Δ𝑡) for Δ𝑡 = 0, 𝑎3. This is problematic, especially when trying
to combine this algorithm with the GEVP technique, as one might want to use those points as
the pivot 𝐶 (𝑡0). To solve this issue, we employ a "multilevel agnostic" approach as was done
in [1]: for each couple of values 𝑡0, 𝑡1, if sink and source are in two different regions we utilize
the multilevel nested averaging exploiting the factorization, if they are not we simply treat them
as independent measurements of the operator and measure the correlator in the naive way. After
assigning an error to each 𝐶 (𝑡0, 𝑡1) we compute the 2-point correlator 𝐶 (Δ𝑡) with a weighted av-
erage over all𝐶 (𝑡0, 𝑡1) such that |𝑡1−𝑡0 | = Δ𝑡 using the inverse variances on the correlator as weights.

3. Operator basis

We have chosen the operator basis to be a selection of Wilson loops computed at several
smearing levels. We picked our operators in order to maximize the number of independent operators
in the 𝐴++

1 and 𝐸++ representations, containing the Spin 0++ and Spin 2++ glueballs respectively,
which are the most studied in literature, while keeping the computational cost of the simulation at
a reasonable level.
In our code, once the user selects the loop shapes to be included in the measurements, the program
automatically applies all cubic group rotations to the selected shapes and then builds the correct
linear combinations which transform according to the irreducible representations of 𝑂ℎ.
The smearing procedure is implemented according to the APE scheme [7], and tuned differently
with respect to the lattice size as to avoid back-propagation of the smeared links along the periodic
boundaries. The decomposition of the operator basis in terms of irreducible representations of the
cubic group is depicted in figure 2, while figure 3 contains a pictorial representation of all the loop
shapes we have measured.

4. Results

The simulations are performed on two different 4-dimensional lattices with periodic boundary
conditions, the details of the lattices with the amount of statistics collected on each are depicted in
table 1. The first indication that the algorithm effectively suppresses the error of the correlator in
the Δ𝑡 >> 𝑎 region is the fact that when we perform the weighted average over the source positions,
combinations of 𝑡, 𝑡0 referring to timeslices in different dynamical regions tend to have a dispro-
portionately large weight as depicted by figures 4. The heat maps reveal that the analysis strongly
favours source-sink combinations that leverage the previously described path-integral factorization.

3And its symmetric twins at Δ𝑡 = 𝐿0, 𝐿0 − 𝑎 where 𝐿0 is the temporal extension of the lattice.
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𝐽𝑃𝐶 𝑁ops

𝐴++
1 7

𝐴++
2 2

𝐸++ 18
𝑇++

1 3
𝑇++

2 6
𝑇−+

1 9
𝑇−+

2 12

Figure 2: Irreducible representations content of
our operator basis. Figure 3: Pictorial representation of the Wilson

loops composing our operator basis.

Lattice n. 𝐿0 𝐿𝑖 𝛽 ΔMultilevel 𝑁0 𝑁1 𝑎[ 𝑓 𝑚]
1 32 24 6.2 8 160 500 0.068
2 16 16 5.95 8 160 500 0.102

Table 1: Summary of the lattice setups used in this work. The meaning and relevance of the ΔMultilevel, 𝑁0
and 𝑁1 parameters are explained in section 2

In table 2 we list the ground states in the symmetry channels for which it was possible to extract
a non-ambiguous plateau using the GEVP method.

Lat. 1
(𝛽 = 6.2)

Lat. 2
(𝛽 = 5.95)

𝑎 · 𝑚0 [14] 𝑎 · 𝑚0 [15]
𝐴++

1 0.525 (12) 0.5197 (51) 0.752 (4) 0.7510 (15)
𝐸++ 0.776 (25) 0.7784 (79) 0.951 (40) 0.938 (17)

Table 2: Ground state masses of glueballs in the scalar (𝐴++
1 ) and spin 2 channel (𝐸++). In the first columns

of each lattice we show our results while in the second columns we compare with [14] and [15] respectively

We start by checking that the algorithm achieves error suppression on the correlator entries,
in figure 5 we compare the squared relative variance on correlators in the 𝐸++ channel with data
from an independent run with equivalent statistics computed without using multilevel techniques.
The data shows substantial equivalence for values of Δ𝑡

𝑎
< 2 as there is no way to have a (𝑡, 𝑡 + 1)

combination with both timeslices sitting in different dynamical regions, then as the multilevel
correlators start dominating the average the data shows a much slower signal-to-noise ratio decay.

Next we would like to investigate the performance’s dependence on the 𝑁1 parameter which
regulates the amount of submeasurements performed at each fixed boundary configuration. To do
this we have taken all correlators of the type𝐶𝑖𝑖 (𝑡)4 in the 𝐴++

1 channel and plotted the average signal
to noise ratio at different values of Δ𝑡. This quantity is expected to vanish exponentially for large
times, from the usual Lepage-Parisi argument [5, 6]. Looking at the data in figure 6 we see that after

4The choice to only use the diagonal entries is dictated by readability and the fact that these tend to be less noisy
overall

6
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Figure 4: Heat map of the weights in the source position average for the two different lattices. The weights
are proportional to 𝜎−2 (𝐶 (𝑡, 𝑡0)). As we can see the geometry of the multilevel setup is clearly visible in the
weights behaviour.

Figure 5: Comparison between the squared relative variance
(

𝜎2

𝐶 (Δ𝑡 )

)2
in runs with or without multilevel at

equivalent statistics

the first few timeslices, when the multilevel data start dominating the average, the decay behaviour
of the signal-to-noise ratio slows down dramatically and a new exponential regime is observed.
Finally, we want to check the algorithm’s performance in improving the mass measurements. The
statistics of the ensembles are not large enough to directly confront the GEVP eigenvalues results.
If we compute the effective mass for all correlators in the 𝐴++

1 representation and analyse the error
in 𝑚𝑒 𝑓 𝑓 (𝑡) we can see in Figure 7 that as we move towards a bigger time separation, the multilevel
data become predominant in the average and the error is suppressed.

7
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Figure 6: Exponential decay of the signal to noise ratio for correlators in the 𝐴++
1 channel for different values

of 𝑁1. The dashed line is used to illustrate the change in the rate of exponential decay when multi-level
averaging takes effect.

Figure 7: Error in the effective mass for the correlators in the 𝐴++
1 representation overlapped with a bar plot

of the average weight contribution of multilevel data. The points at each 𝑡 represent the errors on the effective
mass of the diagonal entries of the matrix of correlators. The bar chart is generated from averaging the
weights of all entries of the correlator in the moving-sink average and computing the percentage contribution
of each type of 𝑡, 𝑡0 combination: "Border" represents correlators for which either 𝑡 or 𝑡0 or both stand
on the frozen timeslices, "No multi" indicates those cases where 𝑡 and 𝑡0 are in the same active region,
"Multi" indicates those combinations where 𝑡 and 𝑡0 are separated by a frozen timeslice and thus exploit the
path-integral factorization. The dashed line is a smoothed spline interpolation of the average data to guide
the eye.
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