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Motivated by recent literature on the possible existence of a second higher-temperature phase
transition in Quantum Chromodynamics, we revisit the proposal that colour confinement is related
to the dynamics of magnetic monopoles using methods of Topological Data Analysis, which
provides a mathematically rigorous characterisation of topological properties of quantities defined
on a lattice. After introducing persistent homology, one of the main tools in Topological Data
Analysis, we shall discuss how this concept can be used to quantitatively analyse the behaviour
of monopoles across the deconfinement phase transition. Our approach is first demonstrated for
Compact 𝑈 (1) Lattice Gauge Theory, which is known to have a zero-temperature deconfinement
phase transition driven by the restoration of the symmetry associated with the conservation of the
magnetic charge. For this system, we perform a finite-size scaling analysis of observables capturing
the homology of magnetic current loops, showing that the expected value of the deconfinement
critical coupling is reproduced by our analysis. We then extend our method to 𝑆𝑈 (3) gauge
theory, in which Abelian magnetic monopoles are identified after projection in the Maximal
Abelian Gauge. A finite-size scaling of our homological observables of Abelian magnetic current
loops at temporal size 𝑁𝑡 = 4 provides the expected value of the critical coupling with an
accuracy that is generally higher than that obtained with conventional thermodynamic approaches
at comparable statistics, hinting towards the relevance of topological properties of monopole
currents for confinement.
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1. Introduction

The phase structure of Quantum Chromodynamics (QCD) continues to be the focus of intense
scrutiny (for a recent review, see, e.g., Ref. [1]). The conventional picture is that at low temperatures
quarks and gluons are confined into hadrons, while at higher temperatures a plasma of quarks and
gluons characterises the physics at equilibrium. Recently, it has been suggested that a third regime
opens between the latter two. This new stringy fluid regime is characterised by partial deconfinement
(see Ref. [2] and references therein for an analysis based on emerging symmetries, and Ref. [3] for
an approach based on the Polyakov loop).

Two quantities that have been used prominently in the lattice literature to characterise the phase
structure of QCD are the chiral condensate and the Polyakov loop. However, neither is a strict order
parameter in the presence of quarks with a finite mass. Significant progress could be made if the
dynamics responsibile for colour confinement were exposed, since this would enable us to build
bona fide order parameters. An intriguing suggestion is that the relevant degrees of freedom are of a
topological nature. Appealing proposals identify those topological objects with field configurations
carrying a non-trivial centre charge [4] or a non-zero (Abelian) magnetic charge [5]. Attempts
to characterise the phase structure of QCD and Yang-Mills theories in terms of symmetries of a
topological nature have led to the construction of disorder parameters detecting the condensation of
Abelian magnetic monopoles [6–11] and center vortices [12, 13]. In the case of Abelian monopoles,
these observables have been found to be dominated by lattice artefacts [14]. A potential issue that
could have led to this non-negligible coupling with lattice artefacts is the reliance on semiclassical
intuition for the construction of the dual order parameters.

To shed more light on the problem of colour confinement in connection with the topology
of gauge fields, in this work we employ Topological Data Analysis (TDA). TDA is a powerful
and flexible data analysis toolset that provides robust computational methods for extracting and
quantifying non-local topological features in data. TDA has a broad spectrum of applications.
Recently, TDA approaches have been devised for specific investigations in Lattice Field Theories
and Statistical Mechanics (for a non-exhaustive list of relevant studies, see Refs. [15–23]).

In this contribution, we shall use TDA methods to construct observables that capture the
features of Abelian magnetic monopoles. After briefly introducing TDA from the perspective of
our investigation (in Sect. 2), we define the relevant observables and study their behaviour across
the deconfinement transition in Compact U(1) Lattice Gauge Theory in Sect. 3. In Sect. 4, this
approach is then extended to monopoles in the Maximal Abelian Gauge in 𝑆𝑈 (3) Yang-Mills, for
which a study of the TDA observables is performed across the deconfinement phase transition.
Finally, we summarise our findings and possible future directions in Sect. 5.

2. Essential Topological Data Analysis for Lattice Gauge Theory

A lattice gauge theory is a special case of a general setup: we have a probability distribution
𝑃 on a complicated and high-dimensional configuration space 𝑋 . The distribution will depend on
parameters such as a coupling constant or temperature, and we are interested in how 𝑃 changes with
the parameters, with particular attention on phase transitions. Our point in this paper is that TDA
has a useful role to play in this.
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TDA is a set of computational tools that provide numerical summaries of the shape of geometric
objects. There are two primary ways it can be used in studying statistical systems. Methodology A:
The geometric object that is fed to TDA could be a subspace of 𝑋 constructed from a set of samples,
(e.g., the region where the density of 𝑃 is above some threshold), and TDA then tells us something
about the shape of 𝑃. Methodology B: Each configuration might itself be a geometric object, or
have content that can be represented by a geometric object, and so TDA-based invariants of these
provide an interesting and useful class of observables through which the statistical behaviour of the
system can be studied. We explain each of these approaches in more detail below.

2.1 Methodology A: the shape of a probability distribution

The topology hypothesis says that phase transitions of a system are closely related to changes in
the topology of energy level sets of the configuration space, as explained in [24–26]. TDA methods
can allow one to capture a signal from these topology changes, as in [27]. We can use Markov Chain
Monte Carlo (MCMC) to draw a large number of samples 𝑥1, 𝑥2, · · · ∈ 𝑋 from the distribution 𝑃. A
finite set of points in 𝑋 will of course be discrete, so there is not yet any interesting topology, but if
we have a way of quantifying how similar two configurations are (a metric on 𝑋), then we can start
to fill in some connective tissue between points that are close to one another to build something
more interesting. This process is a generalisation of reconstructing a circle from a finite number of
points distributed around the circle by joining neighbours. The basic methods for accomplishing
this are the Vietoris-Rips complex (described below in Sect. 2.3) and the 𝛼-complex. When applied
to the sampled points, this produces a model approximating the topology of the region where the
distribution 𝑃 is sufficiently dense. Topological invariants of this model then encode information
about the shape of the distribution.

2.2 Methodology B: TDA-based observables

In this mode, which is the one employed in our work, we first choose an algorithm 𝒜 that
takes a configuration 𝑥 ∈ 𝑋 as input and outputs a geometric object. TDA then provides numerical
invariants of these geometric objects that describe their topology, and one examines the distribution
of their values. The most common invariants are homology and persistent homology, which we
explain below. The pipeline is: (1) Sample points 𝑥1, 𝑥2, . . . from 𝑋 . (2) Use the chosen algorithm
to construct a geometric object 𝒜(𝑥𝑖) for each sample. (3) Compute topological invariants of
each of these objects. (4) Do statistical analysis with these invariants. This methodology has been
employed in [15, 16, 28–31].

To illustrate this with an example (from [19]), let us consider the the 2d XY-model on an 𝑛 × 𝑛

lattice with periodic boundary conditions. A configuration of this system consists of an element
of the circle 𝑆1 at each lattice site, and so the configuration space 𝑋 is a torus of dimension 𝑛2.
The relevant topological structures in this system are vortices, so we might want to choose 𝒜 to
illuminate the vortices in a configuration. The lattice partitions the 2d space on which the model
lives into a toroidal chess board consisting of 𝑛2 vertices, 2𝑛2 edges, and 𝑛2 plaquettes. We build a
subcomplex of this chessboard as follows. We choose a threshold 𝜖 ∈ (0, 𝜋) and then fill in each
edge if the spins at its two ends are aligned to within 𝜖 . For lack of anything better to do with the
plaquettes, we fill in a plaquette if all 4 of its edges are filled in. As in Fig. 1, this will tend to fill in

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
9
5

TDA of Abelian Magnetic Monopoles Xavier Crean, Jeffrey Giansiracusa and Biagio Lucini

Figure 1: In the 2d XY model, filling in plaquettes whose corners are nearly aligned will leave a hole around
each (anti-)vortex.

Figure 2: The Vietoris-Rips simplicial complex built from 6 points in the plane.

everything except for a hole around the location of each vortex or anti-vortex. Counting holes with
homology (see below in Sect. 2.4) then amounts to counting vortices!

2.3 Simplicial complexes, cubical complexes, and filtrations

Methodology A requires a way of approximately reconstructing a shape from a finite set of
samples. There are a few methods for achieving this, such as the Čech complex and the 𝛼-complex,
but the most common is the Vietoris-Rips construction. It produces a simplicial complex, which is
a set of vertices together with the data of which collections of vertices span a simplex. Two vertices
might be connected by an edge, 3 might span a triangle, and so on. Simplicial complexes are a
standard data structure in computational topology software, such as GUDHI [32].

The set of vertices is simply our set of sampled points, and then a finite subset {𝑦0, ...𝑦𝑑}
spans a 𝑑-simplex if the distance between each pair is smaller than some chosen threshold 𝑡. This
is roughly equivalent to placing a ball of radius 𝑟 around each sampled point and then taking the
union of these balls (Fig. 2). The Vietoris-Rips complex 𝑉𝑅𝑟 is then a model approximating the
topology of the region where the distribution 𝑃 is sufficiently dense.

One can fix a single value of 𝑟 , but it is often useful to think about how the topology evolves as 𝑟
sweeps across a range. Increasing 𝑟 can add some additional simplices, but it clearly cannot take any
away, so as 𝑟 increases we have an increasing sequence of simplicial complexes𝑉𝑅𝑟1 ⊂ 𝑉𝑅𝑟2 ⊂ · · · .
Such a nested sequence of subspaces is called a filtration. The idea of persistence is to examine the
homology of these complexes along the filtration.
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When applying Methodology B to systems defined on a cubical lattice, the most natural kind of
geometric object is instead a cubical complex (often equipped with a filtration). For a 𝑑-dimensional
system, the lattice partitions the underlying space into vertices (the lattice sites), edges, plaquettes,
cubes, hypercubes up to dimension 𝑑. We will refer to each of these components as a cell. A cubical
complex is simply a subset of these cells subject to the following condition: if a cell 𝐶 is present,
then all lower dimensional cells contained in its boundary are also present. (More general notions
of cubical complex, analogous to the definition of a simplicial complex above, can be found in the
literature, but we will not need them.)

2.4 Counting holes with homology

Holes come in different types. A point missing from the plane is a 1-dimensional hole in the
sense that it can be captured by a circle, which is a 1-dimensional manifold. However, the circle
cannot capture a point missing from 3-space because it could always slip off over the top or bottom;
this hole must be wrapped by a sphere, so it is a 2-dimensional hole. Homology is a tool from
algebraic topology that formalises the idea of counting the holes and voids. The input is a simplicial
or cubical complex 𝑋 , and for each natural number 𝑛 there is a vector space 𝐻𝑛 (𝑋). The dimension
of this vector space represents the count of 𝑛-dimensional holes.

Here are some useful properties of homology.

1. If 𝑋 is a point (or contractible), then 𝐻0(𝑋) is 1-dimensional, and 𝐻𝑛 (𝑋) = {0} for all 𝑛 > 0.

2. In general, 𝐻0(𝑋) has dimension equal to the number of connected components of 𝑋 .

3. Disjoint union 𝑋 ⊔ 𝑌 corresponds to direct sum of homology.

4. If 𝑛 is larger than the dimension of 𝑋 , then 𝐻𝑛 (𝑋) = {0}.

5. If 𝑋 is an 𝑛-dimensional closed and oriented manifold, then 𝐻𝑛 (𝑋) is 1-dimensional.

Implicitly, we have chosen a coefficient field to work with, so the homology is a vector space
over this field. In practice, one often uses Z/2. Note that, with Z/2 coefficients, all closed manifolds
behave as if they are oriented.

The fact that homology outputs a vector space rather than just a number is extremely important
because a continuous map 𝑋 → 𝑌 induces a linear map 𝐻𝑛 (𝑋) → 𝐻𝑛 (𝑌 ). This is essential in
defining persistent homology.

The computation of homology can be performed algorithmically. Given a simplicial or cubical
complex 𝑋 with a chosen orientation for each cell in 𝑋 , let 𝐶𝑖 be the vector space with basis given
by the set of 𝑖-dimensional cells in 𝑋 . The boundary operator is the linear map 𝜕𝑖 : 𝐶𝑖 → 𝐶𝑖−1
defined by sending each 𝑖-cell to the sum of its faces with signs determined by the orientations.
A cycle is an element 𝑧 ∈ 𝐶𝑖 such that 𝜕 (𝑧) = 0. The homology 𝐻𝑖 (𝑋) is then defined to be the
quotient of the space of cycles where two elements 𝑧, 𝑧′ are identified if the difference 𝑧 − 𝑧′ is in
the image of 𝜕𝑖+1 (see Fig. 3). Computing the dimension or finding a basis for the homology is
accomplished by standard algorithms in linear algebra.

Now suppose 𝑋 is a 1-dimensional (simplicial or cubical) complex, so it is a graph. In this case
the homology is particularly easy to describe. If 𝑋 is connected, then by contracting a spanning
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𝑤

𝑧′ 𝑧

𝑧 − 𝑧′ = 𝜕𝑤

Figure 3: The blue edges form a 1-cycle 𝑧, and the red edges form a 1-cycle 𝑧′. The difference 𝑧 − 𝑧′ is the
boundary of the sum 𝑤 of the two plaquettes in green.

tree, one sees that any connected graph is homotopy equivalent to a collection of circles joined at a
single point (one circle for each edge not contained in the spanning tree). Hence, for a general graph
𝑋 , dim 𝐻0(𝑋) is the number of connected components, and dim 𝐻1(𝑋) is the number of circles.

2.5 Persistent homology

Persistent homology is an enhancement of homology. The input is a geometric object equipped
with a filtration , 𝑋1 ⊂ 𝑋2 ⊂ · · · , and the output is a representation of how the homology 𝐻𝑛 (𝑋𝑖)
varies along this sequence.

An important property of homology is that a continuous map 𝑋 → 𝑌 induces a linear map
𝐻𝑖 (𝑋) → 𝐻𝑖 (𝑌 ). Hence, when we feed it a filtration, we get a sequence of vector spaces and linear
maps 𝐻𝑖 (𝑋1) → 𝐻𝑖 (𝑋2) → 𝐻𝑖 (𝑋3) → · · · . One can always choose a basis for a vector space, but
for a sequence of vector spaces we have a less trivial fundamental fact from linear algebra.
Proposition. Given a sequence of finite dimensional vector spaces 𝑉𝑛 connected by linear maps
𝑉𝑛 → 𝑉𝑛+1, it is always possible to choose bases for the𝑉𝑛 that are compatible with the linear maps
in the following sense: the image of each basis vector in 𝑉𝑛 is either zero or a basis vector of 𝑉𝑛+1,
and each basis vector of 𝑉𝑛 is the image of at most a single basis vector in 𝑉𝑛−1.

This means that the basis vectors link up into chains, with each chain starting in some 𝑉𝑖 and
ending at some 𝑉 𝑗 ; the index 𝑖 is the birth time, and the index 𝑗 is the death time for this chain.
The collection of these (birth, death) pairs completely determines the isomorphism class of the
sequence of vector spaces. When applied to the homology of a filtration of a geometric object 𝑋 ,
this invariant is called the persistent homology of 𝑋 .

There are two commonly used graphical representations for persistent homology (Fig. 4).

• Barcodes: Each (birth, death) is depicted as an interval from the birth time to the death time,
so a barcode is a multiset of intervals.

• Persistence diagrams: Each (birth, death) pair is depicted as a point in the plane above the
diagonal.

2.6 Stability

There is a metric on the space of persistence diagrams called the bottleneck metric. The
Stability Theorem (e.g. [33]) guarantees that a small perturbation of the entry times of cells in a
filtration leads to a corresponding small change in the resulting persistence diagram with respect to
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1 2 3 4
Barcode

1 2 3

1
2
3
4

Persistence diagram

Figure 4: A barcode representation of persistent homology on the left, and a persistence diagram represen-
tation of the same peristent homology on the right.

this metric. Note that a small perturbation of the positions of the points from which one builds a
Vietoris-Rips complex leads to such a filtration perturbation.

2.7 Vectorising persistence diagrams

The set of persistence diagrams (or barcodes) does not form a vector space, and this is
problematic if we want to do statistical analysis and machine learning on a distribution of persistence
diagrams. For example, it is not clear what the sample mean of a collection of persistence diagrams
is. To deal with this obstacle, one usually employs a map from the space of persistence diagrams
to a finite dimensional vector space. This is called vectorisation; there are by now a multitude of
methods, and they are surveyed in [34].

One of the most intuitively clear methods is persistence images, [35]. The idea is to first
take a persistence diagram and turn it into a smooth function by replacing each point with a small
Gaussian, and then turn this function into a grayscale image by setting each pixel value to be the
integral of the function over the corresponding square.

3. Topological data analysis of monopole current networks in compact 𝑈 (1) Lattice
Gauge Theory

In order to develop methods sensitive to topological defects in full QCD, our first step has been to
analyse a simple, well-understood model involving magnetic monopole current networks. We find
that these can be analysed across the deconfinement phase boundary using methods from Sect. 2.

3.1 4-dimensional 𝑈 (1) Lattice Gauge Theory at zero temperature

We consider 4-dimensional compact 𝑈 (1) Lattice Gauge Theory at zero temperature on a cubical
lattice Λ = {0, ..., 𝐿 − 1}4 with periodic boundary conditions. The lattice Λ is a discrete represen-
tation of the 4-torus 𝑇4 = 𝑆1 × 𝑆1 × 𝑆1 × 𝑆1. An edge 𝑥 → 𝑥 + 𝜇̂ (referred to as a link) is indexed by
(𝑥 ∈ Λ, 𝜇 ∈ {0, 1, 2, 3}). The gauge field is represented by link variables 𝑈𝜇 (𝑥) = 𝑒𝑖 𝜃𝜇 (𝑥 ) ∈ 𝑈 (1)
such that 𝜃𝜇 (𝑥) ∈ (−𝜋, 𝜋]. Given the plaquette indexed by (𝑥 ∈ Λ, 𝜇𝜈), the value of the Wilson
loop around this plaquette is 𝑈𝜇𝜈 (𝑥) = 𝑒𝑖 𝜃𝜇𝜈 (𝑥 ) , where we have the oriented sum

𝜃𝜇𝜈 (𝑥) ≡ 𝜃𝜇 (𝑥) + 𝜃𝜈 (𝑥 + 𝜇̂) − 𝜃𝜇 (𝑥 + 𝜈̂) − 𝜃𝜈 (𝑥) ∈ (−4𝜋, 4𝜋] . (1)
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This plaquette phase 𝜃𝜇𝜈 (𝑥) is related to the field strength tensor via 𝜃𝜇𝜈 (𝑥) = 𝑎2𝐹𝜇𝜈 (𝑥) + 𝑂 (𝑎3),
where 𝑎 is lattice spacing, and, by relation 𝐵𝑖 (𝑥) = 1

2𝜀𝑖 𝑗𝑘𝐹𝑗𝑘 (𝑥), it represents the amount of
magnetic flux through the plaquette. We take the standard Wilson action

𝑆 = 𝛽
∑︁
𝑥

∑︁
𝜇<𝜈

(1 − cos[𝜃𝜇𝜈 (𝑥)]), (2)

with inverse coupling 𝛽 ≡ 1
𝑔2 , which converges to the Maxwell action in the classical continuum

limit 𝑎 → 0.

3.2 Magnetic monopole currents

On the 𝑑 = 3 lattice Λ, since a plaquette 𝜃𝜇𝜈 (𝑥) represents the smallest area to carry magnetic flux,
a unit 3-cube, bounded by six surface plaquettes, represents the smallest volume to carry magnetic
charge. We interpret a point charge to live at the centre of a 3-cube or, conversely, on a vertex of
the dual lattice Λ∗. In 𝑑 = 4, point charges sweep-out current lines such that we have a dual picture
where magnetic currents live on links of the 4-dimensional dual lattice Λ∗. In our convention, a
current on link (𝑥 ∈ Λ∗, 𝜌) is associated to a 3-cube at lattice site 𝑥 + 𝜌̂ ∈ Λ. For 𝑥 ∈ Λ∗, magnetic
current is specified by the relation

𝑗𝜌 (𝑥) = Δ𝜎𝜃
∗
𝜌𝜎 (𝑥 + 𝜌̂), (3)

where the dual plaquette phase is defined as 𝜃∗𝜌𝜎 (𝑥) ≡ 1
2𝜀𝜌𝜎𝜇𝜈𝜃𝜇𝜈 (𝑥) and Δ𝜎 is the forward finite

difference operator. By the lattice equivalent of the Bianchi identity, the right hand side of Eq. (3)
is identically zero. Intuitively, Eq. (3) is zero since it represents a sum of the magnetic flux through
a closed surface (the six faces of a unit 3-cube).

Following De Grand and Toussaint in Ref. [36], we would like to detect magnetic monopoles
which are sources/sinks in the magnetic field. Monopoles are defined in terms of unphysical
gauge variant Dirac strings interpreted as infinitely thin solenoids. A Dirac string carries a unit
of 2𝜋 flux through the surface of a plaquette. We may remove the Dirac string content from
a plaquette phase 𝜃𝜇𝜈 (𝑥) ∈ (−4𝜋, 4𝜋] by taking the modulus with respect to 2𝜋 such that the
remaining part 𝜃𝜇𝜈 (𝑥) ∈ (−𝜋, 𝜋] is the physical flux: 𝜃𝜇𝜈 (𝑥) = 𝜃𝜇𝜈 (𝑥) + 2𝜋𝑛𝜇𝜈 (𝑥). The number
𝑛𝜇𝜈 (𝑥) ∈ {−2,−1, 0, 1, 2} counts the number of Dirac strings passing through a plaquette. By
considering the physical flux only, we now see that Eq. (3) can be non-zero when considering
a monopole. Previously, when considering the closed surface of a unit 3-cube, the outgoing
magnetic flux was counterbalanced by the incoming Dirac string(s). However, whilst unphysical
Dirac strings can be moved around by gauge transformation, the outgoing flux is gauge invariant
and thus represents a physical source of the magnetic field interpreted as a Dirac monopole. The
procedure for identifying monopole currents on Λ∗ becomes clear: ∀ 𝑥 ∈ Λ, one needs to compute
the four monopole numbers associated to 3-cubes 𝑀𝜌 (𝑥) = −1

2𝜀𝜌𝜎𝜇𝜈Δ𝜎𝑛𝜇𝜈 (𝑥) and then identify
this number with the corresponding link on Λ∗ via 𝑗𝜌 (𝑥) = 𝑀𝜌 (𝑥 + 𝜌̂). Fixing an orientation, given
link (𝑥 ∈ Λ∗, 𝜌), we interpret 𝑗𝜌 (𝑥) = 0 as no current line on the link and 𝑗𝜌 (𝑥) = ±1 (or ±2) as
one (or two) current line(s) on the link.

Monopole currents must obey current conservation Δ∗
𝜌 𝑗𝜌 (𝑥) = 0, where Δ∗

𝜌 is the backward
finite difference operator, and so they form closed loops; we will leverage this information when
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computing topological invariants of monopole currents. We refer to a connected set of monopole
current lines as a network. Since our lattice Λ is a discrete model of 𝑇4, monopole currents can
either be local current loops that do not wrap in any of the directions on 𝑇4 or global current loops
that wrap in any or all of the periodic directions of 𝑇4. Whilst the Bianchi identity of Eq. (3) is
violated locally in order to define magnetic monopoles, for the configuration as a whole, it must
still hold. Since any wrapping current loop contributes a non-zero charge to the configuration, there
must also exist an oppositely oriented partner loop.

3.3 The deconfinement phase transition

In 𝑑 = 4, there exists a weak first order phase transition that has been well studied in the literature
– see Refs. [37–58] for an incomplete history of both numerical and theoretical developments –
using various specialised numerical methods, e.g., Refs. [59, 60]. In the low-𝛽 phase, a confining
potential is caused by a magnetic monopole condensate; this has been studied in the context of
a monopole-creation order parameter in Ref. [46]. In Ref. [49], studying a lattice with periodic
boundary conditions, Kerler et al. were able to establish that the transition is of percolation-type.
In the low-𝛽 confining phase, there exists a percolating network of monopole currents that wrap in
all four directions on 𝑇4; whereas, in the high-𝛽 deconfined phase, there do not exist any wrapping
currents. The signature of the transition could be detected by looking at whether current networks
wrapped or not. To analyse whether the periodic boundary conditions of the lattice were the cause
of the phase transition, the model was studied (e.g., Ref. [56]) on a space homeomorphic to the
4-sphere 𝑆4, where wrapping currents do not exist since any loop is contractible. The transition
was still detectable indicating that monopole condensation is not a consequence of the periodic
boundary conditions.

3.4 Homological observables for current networks

We leverage Methodology B from Sect. 2.2 to construct observables that characterise the structures
formed by monopole current networks. Not only do these observables precisely reveal the signature
of the deconfinement transition but they provide an interpretable geometric picture of the current
networks. This topological characterisation of currents does not involve looking for wrapping
networks on 𝑇4 and so we expect that our analysis will be applicable in the setting of a lattice
discretisation of 𝑆4. For details on our computational pipeline, we point the reader to Refs. [23, 61].

Feom the monopole currents we produce a graph 𝑋 𝑗 . We choose arbitrary orientations for the
edges in order to define the chain complex from which homology is computed (but the resulting
homology is independent of these choices). We then compute 𝑏0(𝑋 𝑗) ≡ dim 𝐻0(𝑋 𝑗), the number
of connected components of 𝑋 𝑗 , and 𝑏1(𝑋 𝑗) ≡ dim 𝐻1(𝑋 𝑗), the number of loops of 𝑋 𝑗 , and then
estimate their expectation value by the mean of 𝑁 sample configurations. To compare across lattice
sizes, we normalise by the volume 𝑉 = 𝐿4:

𝜌0 ≡ ⟨𝑏0⟩/𝑉, 𝜌1 ≡ ⟨𝑏1⟩/𝑉. (4)

Further, we also compute the respective susceptibilities

𝜒0 ≡ (⟨𝑏2
0⟩ − ⟨𝑏0⟩2)/𝑉, 𝜒1 ≡ (⟨𝑏2

1⟩ − ⟨𝑏1⟩2)/𝑉. (5)
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𝐸 𝜌0 𝜌1

1.01071(3) 1.01076(6) 1.01076(6)

Table 1: Estimates for the critical inverse coupling 𝛽𝑐, in the infinite volume limit, obtained via finite-size
scaling analysis for the average plaquette action 𝐸 and homological observables 𝜌0 and 𝜌1.

In Sect. 3.5, we use these observables to estimate the inverse critical coupling 𝛽𝑐 in the infinite
volume limit via a finite-size scaling analysis.

3.5 Numerical set-up and results

We generate 𝑁 = 200 sample configurations via MCMC simulation where each composite sweep
consists of 1 approximate heat-bath update [62] and 5 over-relax updates. In the critical region, as
the lattice size 𝐿 increases, the simulation suffers from a very long auto-correlation time caused
by meta-stabilities formed by wrapping current networks. Therefore the probability of tunnelling
between phases is exponentially suppressed, which can introduce large systematic error. To mitigate
these effects, we measure samples infrequently – at least every 42, 000 composite sweeps. In this
respect, we are limited by our computational resources; however, in this study, our objective was
not necessarily to achieve high precision (in the same vein as other specialised numerical studies
using a large number of statistics, e.g., Refs. [59, 60]) but to design a robust computational pipeline
that gives us precise and reliable results with a modest number of statistics.

We plot the Betti number observables 𝜌0 and 𝜌1 in Fig. 5. The behaviour exhibited by 𝜌0 and
𝜌1 aligns with the accepted physical picture seen in the literature (e.g., Ref. [48]). In the low-𝛽
phase, we see a small 𝜌0 corresponding to a small number of connected components and a large 𝜌1
corresponding to large number of loops consistent with a percolating current network. Whereas, in
the high-𝛽 phase, we see a decreasing 𝜌0 ≈ 𝜌1 consistent with independent small current networks
that roughly have the same number of components as loops. Moreover, the susceptibilities 𝜒0 and
𝜒1 peak in the critical region, thus allowing us to extract the pseudo-critical 𝛽𝑐 (𝐿) for a range
of lattice sizes 𝐿 = 6, 7, ..., 12. We may extract a more precise estimate of the locations of the
peak of the respective susceptibilities via histogram reweighting (see Ref. [63]) which may then be
extrapolated to the infinite volume limit 𝐿 → ∞ via a finite-size scaling analysis using the ansatz

𝛽𝑐 (𝐿) = 𝛽𝑐 +
𝑘max∑︁
𝑘=1

𝐵𝑘𝑉
−𝑘 . (6)

We find that our results in Tab. 1, for estimating the critical inverse coupling of the transition 𝛽𝑐,
are consistent with a standard observable used to probe this transition, i.e., the average plaquette
action 𝐸 = 1

6𝑉
∑

𝑥,𝜇<𝜈 cos 𝜃𝜇𝜈 (𝑥).

3.6 Persistent homology as an encoder of current geometry

We would like to use persistent homology to further analyse the structures formed by monopole
currents. There are many choices of filtration and the challenge is finding a meaningful one that
retains sufficient, interpretable information. Inspired by the Vietoris-Rips filtration that expands
balls of radius 𝜀 ∈ R≥0 around points in a pointcloud and builds a simplicial complex 𝑉𝑅𝜀 based

10
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Figure 5: The behaviour of the Betti number observables 𝜌0 (left) and 𝜌1 (right) across the deconfinement
transition for a range of lattice sizes 𝐿 as indicated. Inset plots are zoom-ins of the critical region. Error bars
are computed by bootstrapping with 𝑁bs = 500.

on the intersection of these balls (see Sect. 2), we design a filtration that expands (in units of the
lattice spacing) a 4-dimensional tubular volume radially outwards from current lines. Topological
features will be born and die according to the geometry of the current lines in a configuration.
This filtration characterises both the intra-network and inter-network structure of currents and thus
retains more information than the homologies of the networks alone.1 Since there will be variation
across sample configurations, the aim is to average across 𝑁 sample persistence diagrams to encode
a numerical summary of the geometry of monopole current networks at a given 𝛽.

The numerical set-up is the same as in Sect. 3.5 with 𝑁 = 200 sample configurations for each
lattice size 𝐿 = 6, 7, ..., 12 respectively. After computing the persistence diagrams, we find that
there exists a significant difference in the number and spread of points in the low-𝛽 and high-𝛽
phases, which, we hypothesise, corresponds to the lower density of current loops in the high-𝛽
regime – the filtration has more space between currents to explore and thus a greater number of
topological features are constructed by the filtration. In the high-𝛽 phase, we observe that there
are no statistically significant long-lived topological features. These results and the underlying
methodology will be the subject of a forthcoming publication. Extensions to Abelian monopoles
in Yang-Mills theories are also in progress.

4. Topological data analysis of Abelian monopole current networks in 𝑆𝑈 (3)
Lattice Gauge Theory

As another step in the direction of studying the full QCD case, we generalise the homological
observables used for the analysis of the deconfinement phase transition in compact 𝑈 (1) Lattice

1If, for example, a set of current networks lived on a closed 𝑘-dimensional submanifold, with 𝑘 = 1, 2, 3, a long-lived
𝑘-dimensional feature would be detected by this filtration.

11
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Gauge Theory to 𝑆𝑈 (3) Yang-Mills theory on a lattice and provide a first set of results on the
behaviour of these observables across the deconfinement phase transition of the latter theory.

4.1 The Lattice setup

In this work, we use the Wilson action of lattice 𝑆𝑈 (3) Yang-Mills, which is given by

𝑆 = 𝛽
∑︁
𝑖,𝜇<𝜈

(
1 − 1

3
Re Tr𝑈𝜇𝜈 (𝑖)

)
, (7)

where 𝛽 = 6/𝑔2
0 (𝑔0 being the bare coupling), Re Tr𝑈𝜇𝜈 (𝑖) indicates the real part of the trace of the

plaquette𝑈𝜇𝜈 (𝑖), with the latter quantity being the ordered product of the link variables𝑈 ∈ 𝑆𝑈 (3)
along the elementary plaquette stemming from point 𝑖 and spanning the positive directions 𝜇̂ and 𝜈̂

of the lattice. More explicitly,

𝑈𝜇𝜈 (𝑖) = 𝑈𝜇 (𝑖)𝑈𝜈 (𝑖 + 𝜇̂)𝑈†
𝜇 (𝑖 + 𝜈̂)𝑈†

𝜈 (𝑖) , (8)

with 𝑈𝜇 (𝑖) being the link variable associated with the link stemming from 𝑖 in the positive 𝜇̂

direction and𝑈†
𝜇 (𝑖) its complex conjugate. The system is formulated on an 𝑆1 ×𝑇3 lattice, with the

extension of the 𝑆1 kept fixed and defining the temperature 𝑇 through the relationship

𝑇 = (𝑎𝑁𝑡 )−1 , (9)

where 𝑎 is the 𝛽-dependent lattice spacing and 𝑁𝑡 is the number of lattice sites discretising the 𝑆1.
The corresponding direction is conventionally referred to as the temporal direction. The 𝑇3 torus
identifies three spatial directions that we take of identical length 𝑁𝑠. We shall take the 𝑁𝑠 → ∞
limit to consider the system in the thermodynamic limit.

The path integral of the system

𝑍 =

∫
(D𝑈) 𝑒−𝑆 (10)

is sampled with MCMC methods using both the heat-bath and the overrelaxation algorithm in a
ratio 1:4. We define an iteration of one heat-bath step followed by four overrelaxation steps as
a composite sweep. For each studied value of 𝛽, after discarding 10000 composite sweeps for
thermalisation, we record a sample of 600 configurations, separated by 2000 composite sweeps
along the Markov chain. Observables are measured as averages over this sample as a function of 𝛽,
with the error determined by a bootstrap procedure generally consisting of 500 bootstrap steps.

4.2 Monopoles in the Maximal Abelian Gauge

Our aim is to analyse the deconfinement phase transition in 𝑆𝑈 (3) gauge theories using a TDA
applied to monopole currents following the lines of Sect. 3. Magnetic monopole configurations
appear in non-Abelian gauge theories coupled with an adjoint Higgs field, a classic example being
the ’t Hooft-Polyakov monopole in the Georgi-Glashow model [64, 65]. In Ref. [5], ’t Hooft
proposed that a field transforming in the adjoint representation of the gauge group can act as an
effective dynamical Higgs field in 𝑆𝑈 (𝑁) gauge theories. One can fix the gauge in which such
an operator is diagonal with ordered eigenvalues. The diagonal elements of the gauge field define
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Abelian projected fields. Abelian magnetic monopoles arise at spacetime points in which the
operator used to define the Abelian projection has two consecutive eigenvalues that are equal. For a
𝑆𝑈 (𝑁) gauge theory, an Abelian projection defines 𝑁 −1 species of monopoles. ’t Hooft’s proposal
was first formulated on the lattice in Refs. [66, 67], with the ’t Hooft field tensor corresponding to
the 𝑁 − 1 Abelian fields constructed explicitly in [68].

The original proposal by ’t Hooft did not specify the potential role of specific Abelian pro-
jections. A kinematically relevant gauge fixing is the Maximal Abelian Gauge (MAG), where
the adjoint operator is chosen in such a way that the off-diagonal components of the fields are
minimized. In Ref. [69], it has been shown that the MAG is a convenient gauge for detecting mag-
netic monopole singularities. Due to its phenomenological relevance (see, e.g., [70] for an early
review), we choose the MAG for our formulation of the monopole current observables, following
the approach of Ref. [71].

For the 𝑆𝑈 (3) lattice Yang-Mills theory, we define the adjoint operator 𝑋̃ (𝑖) as

𝑋̃ (𝑖) =
∑︁
𝜇

[
𝑈𝜇 (𝑖)𝜆̃𝑈†

𝜇 (𝑖) +𝑈†
𝜇 (𝑖 − 𝜇̂)𝜆̃𝑈𝜇 (𝑖 − 𝜇̂)

]
, 𝜆̃ = diag(1, 0,−1) . (11)

The MAG is defined as the gauge in which 𝑋̃ (𝑖) is diagonal. This gauge choice is equivalent to
requiring that the operator

𝐹̃MAG(𝑈, 𝑔) =
∑︁
𝜇,𝑛

Tr
(
𝑔(𝑛)𝑈𝜇 (𝑛)𝑔†(𝑛 + 𝜇̂)𝜆̃𝑔(𝑛 + 𝜇̂)𝑈†

𝜇 (𝑛)𝑔†(𝑛) 𝜆̃
)

(12)

is maximized over 𝑔, i.e., the gauge fixing transformation {𝑔} can be derived from the condition

{𝑔̃} = argmax
{𝑔}

𝐹̃MAG(𝑈, 𝑔) (13)

In the MAG, the diagonal elements of the link matrices 𝑈̃𝑖𝑖 read

𝑈̃𝑖𝑖 = 𝑟𝑖𝑒
𝑖𝜑𝑖 ,

∑︁
𝑖

𝜑𝑖 = 2𝜋𝑛 + 𝛿𝜑 , (14)

where the last condition, which violates perfect Abelianity of the links, is due to residual off-diagonal
elements. Angle variables 𝜙𝑖 are then defined through the redistribution of the excess phase as

𝜙𝑖 = 𝜑𝑖 − 𝛿𝜑

��𝑈̃𝑖𝑖

��−1∑
𝑗

��𝑈̃ 𝑗 𝑗

��−1 . (15)

We now set 𝜃1 = 𝜙1 and 𝜃2 = −𝜙3, and use the DeGrand and Toussaint prescription [36] for
identifying the monopoles associated to each Abelian field.

4.3 Numerical results

We have investigated the behaviour of the quantities 𝑏0 and 𝑏1, defined in Eqs. (4) and of their
susceptibilties 𝜒0 and 𝜒1 (see Eqs. (5)) for 𝑆𝑈 (3) Lattice Gauge Theory across the deconfinement
phase transition at 𝑁𝑡 = 4 and at spacial lattice sizes 𝑁𝑠 = 16, 20, 24, 28, 32. Our TDA observables
have been defined considering the joint set of Abelian monopole currents corresponding to the

13



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
9
5

TDA of Abelian Magnetic Monopoles Xavier Crean, Jeffrey Giansiracusa and Biagio Lucini

Figure 6: Behaviour of 𝜒0 (left) and 𝜒1 (right) in 𝑆𝑈 (3) Lattice Gauge Theory as a function of the coupling
𝛽 at 𝑁𝑡 = 4 for the indicated values of the lattice sizes. Continuous curves are obtained with a reweighting
procedure.

Figure 7: Finite-size scaling analysis for the position of the peaks of the susceptibilities 𝜒0 (left) and 𝜒1
(right) in SU(3) Lattice Gauge Theory as a function of the inverse spatial volume at 𝑁𝑡 = 4. Fits results are
indicated for various choices of included lattices as the intercept with the vertical axis. The horizontal band
represents the literature value of the critical coupling in the thermodynamic limit (see text for details).

angles 𝜃1 and 𝜃2 extracted after MAG fixing and Abelian projection, as described in the previous
subsection. We have verified that considering the network of each Abelian monopole current
separately we obtain compatible results. No statistically significant difference have been observed
between the networks of the two Abelian monopole currents.

We report the behaviour of 𝜒0 and 𝜒1 in Fig 6. Like in the Compact 𝑈 (1) case, in both
quantities we observe a peak of increasing height and shrinking width as the volume increases. The
quantities 𝑏0 and 𝑏1 also behave similarly to the Compact 𝑈 (1) case.
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To confirm that these peaks scale with the expected behaviour at a first order phase transition,
we fit their position 𝛽𝑐 (𝑁𝑠) with the finite size linear ansätz

𝛽𝑐 (𝑁𝑠) = 𝛽𝑐 +
𝑎

𝑁3
𝑠

, (16)

where 𝛽𝑐 is the deconfinement critical 𝛽 at 𝑁𝑡 = 4 and 𝑎 parametrises the finite-size corrections. Our
results are presented in Fig. 7. Different fits excluding in turn smaller lattice sizes are shown. We note
a very good quality of the fits and an excellent agreement with the literature value 𝛽𝑐 = 5.69236(15)
(see, e.g., Ref. [72]), with a significant reduction of the error bars for our indicated fit results.

Our findings suggest that the features exposed by a TDA analysis of Abelian monopole currents
defined in the MAG capture the salient physical properties of the deconfinement phase transition.

5. Conclusions

In this contribution, we have developed a TDA approach to the study of monopole current networks
in Abelian and non-Abelian gauge theories. We have shown that our observables precisely capture
the quantitative features of the deconfinement phase transitions in Compact U(1) Lattice Gauge
Theory at zero temperature and in 𝑆𝑈 (3) Yang-Mills, using in the latter case four lattice sites in the
time direction. For 𝑆𝑈 (3) Yang-Mills, our approach provides noticeably better precision than the
conventional analysis based on the study of the Polyakov loop and of its susceptibility. This gives
reassuring indication that our observables are coupled to the degrees of freedom that are relevant
for the deconfinement phase transition. If this is indeed the case, TDA observables are expected to
be sensitive to the transition (or cross-over) from the stringy fluid phase to the deconfinement phase
in full QCD. In the next stages of our investigation, we will first extend our 𝑆𝑈 (3) Yang-Mills study
to finer lattice spacings, in order to ascertain that our approach is not significantly affected by lattice
artefacts, and then apply our methodology to full QCD, with the goal of verifying the existence of
the stringy fluid regime.
Note Added: After this work was presented at the Lattice conference, the publications [73] and [74]
appeared, reporting related complementary investigations of the phase structure in QCD and in
𝑆𝑈 (3) Yang-Mills, with the same goal to understand whether a stringy fluid regime exists.

Acknowledgments

XC was supported by the Additional Funding Programme for Mathematical Sciences, delivered by
EPSRC (EP/V521917/1) and the Heilbronn Institute for Mathematical Research. JG was supported
by EPSRC grant EP/R018472/1 through the Centre for TDA and the Erlangen Hub for AI through
EPSRC grant EP/Y028872/1. The work of BL was partly supported by the EPSRC ExCALIBUR
ExaTEPP project EP/X017168/1 and by the STFC Consolidated Grants No. ST/T000813/1 and
ST/X000648/1. Numerical simulations have been performed on the Swansea SUNBIRD cluster,
part of the Supercomputing Wales project. Supercomputing Wales is part funded by the European
Regional Development Fund (ERDF) via Welsh Government.
Data and Code – The data and code used in this manuscript are avaialble from the authors.
Open Access Statement – For the purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence to any Author Accepted Manuscript version arising.

15



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
9
5

TDA of Abelian Magnetic Monopoles Xavier Crean, Jeffrey Giansiracusa and Biagio Lucini

References

[1] G. Aarts et al., Phase Transitions in Particle Physics: Results and Perspectives from Lattice
Quantum Chromo-Dynamics, Prog. Part. Nucl. Phys. 133 (2023) 104070 [2301.04382].

[2] L. Glozman, Chiral spin symmetry and hot/dense QCD, Prog. Part. Nucl. Phys. 131 (2023)
104049 [2404.02606].

[3] M. Hanada, H. Ohata, H. Shimada and H. Watanabe, A New Perspective on Thermal
Transition in QCD, PTEP 2024 (2024) 041B02 [2310.01940].

[4] G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B
138 (1978) 1.

[5] G. ’t Hooft, Topology of the Gauge Condition and New Confinement Phases in Nonabelian
Gauge Theories, Nucl. Phys. B 190 (1981) 455.

[6] A. Di Giacomo, B. Lucini, L. Montesi and G. Paffuti, Color confinement and dual
superconductivity of the vacuum. 2., Phys. Rev. D 61 (2000) 034504 [hep-lat/9906025].

[7] A. Di Giacomo, B. Lucini, L. Montesi and G. Paffuti, Color confinement and dual
superconductivity of the vacuum. 1., Phys. Rev. D 61 (2000) 034503 [hep-lat/9906024].

[8] J.M. Carmona, M. D’Elia, A. Di Giacomo, B. Lucini and G. Paffuti, Color confinement and
dual superconductivity of the vacuum. 3., Phys. Rev. D 64 (2001) 114507
[hep-lat/0103005].

[9] J.M. Carmona, M. D’Elia, L. Del Debbio, A. Di Giacomo, B. Lucini and G. Paffuti, Color
confinement and dual superconductivity in full QCD, Phys. Rev. D 66 (2002) 011503
[hep-lat/0205025].

[10] J.M. Carmona, M. D’Elia, L. Del Debbio, A. Di Giacomo, B. Lucini, G. Paffuti et al., Color
confinement and dual superconductivity in unquenched QCD, Nucl. Phys. A 715 (2003) 883
[hep-lat/0209080].

[11] M. D’Elia, A. Di Giacomo, B. Lucini, G. Paffuti and C. Pica, Color confinement and dual
superconductivity of the vacuum. IV., Phys. Rev. D 71 (2005) 114502 [hep-lat/0503035].

[12] L. Del Debbio, A. Di Giacomo and B. Lucini, Vortices, monopoles and confinement, Nucl.
Phys. B 594 (2001) 287 [hep-lat/0006028].

[13] L. Del Debbio, A. Di Giacomo and B. Lucini, Monopoles, vortices and confinement in SU(3)
gauge theory, Phys. Lett. B 500 (2001) 326 [hep-lat/0011048].

[14] J. Greensite and B. Lucini, Is Confinement a Phase of Broken Dual Gauge Symmetry?, Phys.
Rev. D 78 (2008) 085004 [0806.2117].

[15] B. Olsthoorn, J. Hellsvik and A.V. Balatsky, Finding hidden order in spin models with
persistent homology, Phys. Rev. Res. 2 (2020) 043308 [2009.05141].

16

https://doi.org/10.1016/j.ppnp.2023.104070
https://arxiv.org/abs/2301.04382
https://doi.org/https://doi.org/10.1016/j.ppnp.2023.104049
https://doi.org/https://doi.org/10.1016/j.ppnp.2023.104049
https://arxiv.org/abs/2404.02606
https://doi.org/10.1093/ptep/ptae044
https://arxiv.org/abs/2310.01940
https://doi.org/10.1016/0550-3213(78)90153-0
https://doi.org/10.1016/0550-3213(78)90153-0
https://doi.org/10.1016/0550-3213(81)90442-9
https://doi.org/10.1103/PhysRevD.61.034504
https://arxiv.org/abs/hep-lat/9906025
https://doi.org/10.1103/PhysRevD.61.034503
https://arxiv.org/abs/hep-lat/9906024
https://doi.org/10.1103/PhysRevD.64.114507
https://arxiv.org/abs/hep-lat/0103005
https://doi.org/10.1103/PhysRevD.66.011503
https://arxiv.org/abs/hep-lat/0205025
https://doi.org/10.1016/S0375-9474(02)01533-6
https://arxiv.org/abs/hep-lat/0209080
https://doi.org/10.1103/PhysRevD.71.114502
https://arxiv.org/abs/hep-lat/0503035
https://doi.org/10.1016/S0550-3213(00)00651-9
https://doi.org/10.1016/S0550-3213(00)00651-9
https://arxiv.org/abs/hep-lat/0006028
https://doi.org/10.1016/S0370-2693(01)00091-0
https://arxiv.org/abs/hep-lat/0011048
https://doi.org/10.1103/PhysRevD.78.085004
https://doi.org/10.1103/PhysRevD.78.085004
https://arxiv.org/abs/0806.2117
https://doi.org/10.1103/PhysRevResearch.2.043308
https://arxiv.org/abs/2009.05141


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
9
5

TDA of Abelian Magnetic Monopoles Xavier Crean, Jeffrey Giansiracusa and Biagio Lucini

[16] A. Cole, G.J. Loges and G. Shiu, Quantitative and interpretable order parameters for phase
transitions from persistent homology, Phys. Rev. B 104 (2021) 104426 [2009.14231].

[17] N. Sale, B. Lucini and J. Giansiracusa, Probing center vortices and deconfinement in su(2)
lattice gauge theory with persistent homology, Phys. Rev. D 107 (2023) 034501
[2207.13392].

[18] A. Tirelli and N.C. Costa, Learning quantum phase transitions through topological data
analysis, Phys. Rev. B 104 (2021) 235146 [2109.09555].

[19] N. Sale, J. Giansiracusa and B. Lucini, Quantitative analysis of phase transitions in
two-dimensional 𝑥𝑦 models using persistent homology, Phys. Rev. E 105 (2022) 024121
[2109.10960].

[20] D. Sehayek and R.G. Melko, Persistent homology of Z2 gauge theories, Phys. Rev. B 106
(2022) 085111 [2201.09856].

[21] T. Hirakida, K. Kashiwa, J. Sugano, J. Takahashi, H. Kouno and M. Yahiro, Persistent
homology analysis of deconfinement transition in effective polyakov-line model, Int. J. Mod.
Phys. A 35 (2020) 2050049 [1810.07635].

[22] D. Spitz, K. Boguslavski and J. Berges, Probing universal dynamics with topological data
analysis in a gluonic plasma, Phys. Rev. D 108 (2023) 056016 [2303.08618].

[23] X. Crean, J. Giansiracusa and B. Lucini, Topological data analysis of monopole current
networks in 𝑢(1) lattice gauge theory, SciPost Physics 17 (2024) 100 [2403.07739].

[24] L. Caiani, L. Casetti, C. Clementi and M. Pettini, Geometry of Dynamics, Lyapunov
Exponents, and Phase Transitions, Phys. Rev. Lett. 79 (1997) 4361 [chao-dyn/9702011].

[25] M. Kastner, Phase transitions and configuration space topology, Rev. Mod. Phys. 80 (2008)
167 [cond-mat/0703401].

[26] R. Franzosi and M. Pettini, Theorem on the origin of phase transitions, Phys. Rev. Lett. 92
(2004) 060601.

[27] I. Donato, M. Gori, M. Pettini, G. Petri, S. De Nigris, R. Franzosi et al., Persistent homology
analysis of phase transitions, Phys. Rev. E 93 (2016) 052138 [1601.03641].

[28] L. Speidel, H.A. Harrington, S.J. Chapman and M.A. Porter, Topological data analysis of
continuum percolation with disks, Phys. Rev. E 98 (2018) 012318 [1804.07733].

[29] Q.H. Tran, M. Chen and Y. Hasegawa, Topological persistence machine of phase transitions,
Phys. Rev. E 103 (2021) 052127 [2004.03169].

[30] K. Kashiwa, T. Hirakida and H. Kouno, Persistent homology analysis for dense qcd effective
model with heavy quarks, Symmetry 14 (2022) [2103.12554].

17

https://doi.org/10.1103/PhysRevB.104.104426
https://arxiv.org/abs/2009.14231
https://doi.org/10.1103/PhysRevD.107.034501
https://arxiv.org/abs/2207.13392
https://doi.org/10.1103/PhysRevB.104.235146
https://arxiv.org/abs/2109.09555
https://doi.org/10.1103/PhysRevE.105.024121
https://arxiv.org/abs/2109.10960
https://doi.org/10.1103/PhysRevB.106.085111
https://doi.org/10.1103/PhysRevB.106.085111
https://arxiv.org/abs/2201.09856
https://doi.org/10.1142/S0217751X20500499
https://doi.org/10.1142/S0217751X20500499
https://arxiv.org/abs/1810.07635
https://doi.org/10.1103/PhysRevD.108.056016
https://arxiv.org/abs/2303.08618
https://arxiv.org/abs/2403.07739
https://doi.org/10.1103/PhysRevLett.79.4361
https://arxiv.org/abs/chao-dyn/9702011
https://doi.org/10.1103/RevModPhys.80.167
https://doi.org/10.1103/RevModPhys.80.167
https://arxiv.org/abs/cond-mat/0703401
https://doi.org/10.1103/PhysRevLett.92.060601
https://doi.org/10.1103/PhysRevLett.92.060601
https://doi.org/10.1103/PhysRevE.93.052138
https://arxiv.org/abs/1601.03641
https://doi.org/10.1103/PhysRevE.98.012318
https://arxiv.org/abs/1804.07733
https://doi.org/10.1103/PhysRevE.103.052127
https://arxiv.org/abs/2004.03169
https://doi.org/10.3390/sym14091783
https://arxiv.org/abs/2103.12554


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
9
5

TDA of Abelian Magnetic Monopoles Xavier Crean, Jeffrey Giansiracusa and Biagio Lucini

[31] D. Spitz, J.M. Urban and J.M. Pawlowski, Confinement in non-abelian lattice gauge theory
via persistent homology, Phys. Rev. D 107 (2023) 034506 [2208.03955].

[32] GUDHI User and Reference Manual, GUDHI Editorial Board, 3.10.1 ed. (2024).

[33] U. Bauer and M. Lesnick, Induced matchings and the algebraic stability of persistence
barcodes, Journal of Computational Geometry 6 (2015) 162 [1311.3681].

[34] D. Ali, A. Asaad, M.-J. Jimenez, V. Nanda, E. Paluzo-Hidalgo and M. Soriano-Trigueros, A
survey of vectorization methods in topological data analysis, IEEE Transactions on Pattern
Analysis and Machine Intelligence 45 (2023) 14069 [2212.09703].

[35] H. Adams, T. Emerson, M. Kirby, R. Neville, C. Peterson, P. Shipman et al., Persistence
images: A stable vector representation of persistent homology, Journal of Machine Learning
Research 18 (2017) 8 [1507.06217].

[36] T.A. DeGrand and D. Toussaint, Topological excitations and monte carlo simulation of
abelian gauge theory, Phys. Rev. D 22 (1980) 2478.

[37] M. Creutz, L. Jacobs and C. Rebbi, Monte Carlo Study of Abelian Lattice Gauge Theories,
Phys. Rev. D 20 (1979) 1915.

[38] B.E. Lautrup and M. Nauenberg, Phase Transition in Four-Dimensional Compact QED,
Phys. Lett. B 95 (1980) 63.

[39] G. Bhanot, Compact QED With an Extended Lattice Action, Nucl. Phys. B 205 (1982) 168.

[40] J. Jersak, T. Neuhaus and P.M. Zerwas, U(1) Lattice Gauge Theory Near the Phase
Transition, Phys. Lett. B 133 (1983) 103.

[41] J.S. Barber, R.E. Shrock and R. Schrader, A Study of 𝑑 = 4 U(1) Lattice Gauge Theory With
Monopoles Removed, Phys. Lett. B 152 (1985) 221.

[42] H.G. Evertz, J. Jersak, T. Neuhaus and P.M. Zerwas, Tricritical Point in Lattice QED, Nucl.
Phys. B 251 (1985) 279.

[43] J.S. Barber and R.E. Shrock, Dynamical Shifting of the Confinement-Deconfinement Phase
Transition in 4D U(1) Lattice Gauge Theory, Nucl. Phys. B 257 (1985) 515.

[44] V. Grösch, K. Jansen, J. Jersák, C. Lang, T. Neuhaus and C. Rebbi, Monopoles and dirac
sheets in compact u(1) lattice gauge theory, Phys. Lett. B 162 (1985) 171.

[45] C.B. Lang, Renormalization study of compact U(1) lattice gauge theory, Nucl. Phys. B 280
(1987) 255.

[46] L. Del Debbio, A. Di Giacomo and G. Paffuti, Detecting dual superconductivity in the
ground state of gauge theory, Phys. Lett. B 349 (1995) 513 [hep-lat/9403013].

[47] C.B. Lang and T. Neuhaus, Compact U(1) gauge theory on lattices with trivial homotopy
group, Nucl. Phys. B 431 (1994) 119 [hep-lat/9407005].

18

https://doi.org/10.1103/PhysRevD.107.034506
https://arxiv.org/abs/2208.03955
https://arxiv.org/abs/1311.3681
https://doi.org/10.1109/TPAMI.2023.3308391
https://doi.org/10.1109/TPAMI.2023.3308391
https://arxiv.org/abs/2212.09703
https://www.jmlr.org/papers/v18/16-337.html
https://www.jmlr.org/papers/v18/16-337.html
https://arxiv.org/abs/1507.06217
https://doi.org/10.1103/PhysRevD.22.2478
https://doi.org/10.1103/PhysRevD.20.1915
https://doi.org/10.1016/0370-2693(80)90400-1
https://doi.org/10.1016/0550-3213(82)90382-0
https://doi.org/10.1016/0370-2693(83)90115-6
https://doi.org/10.1016/0370-2693(85)91174-8
https://doi.org/10.1016/0550-3213(85)90262-7
https://doi.org/10.1016/0550-3213(85)90262-7
https://doi.org/10.1016/0550-3213(85)90361-X
https://doi.org/10.1016/0370-2693(85)91081-0
https://doi.org/10.1016/0550-3213(87)90147-7
https://doi.org/10.1016/0550-3213(87)90147-7
https://doi.org/10.1016/0370-2693(95)00266-N
https://arxiv.org/abs/hep-lat/9403013
https://doi.org/10.1016/0550-3213(94)90100-7
https://arxiv.org/abs/hep-lat/9407005


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
9
5

TDA of Abelian Magnetic Monopoles Xavier Crean, Jeffrey Giansiracusa and Biagio Lucini

[48] W. Kerler, C. Rebbi and A. Weber, Phase structure and monopoles in U(1) gauge theory,
Phys. Rev. D 50 (1994) 6984 [hep-lat/9403025].

[49] W. Kerler, C. Rebbi and A. Weber, Monopole currents and Dirac sheets in U(1) lattice gauge
theory, Phys. Lett. B 348 (1995) 565 [hep-lat/9501023].

[50] W. Kerler, C. Rebbi and A. Weber, Phase transition and dynamical parameter method in
U(1) gauge theory, Nucl. Phys. B 450 (1995) 452 [hep-lat/9503021].

[51] J. Jersak, C.B. Lang and T. Neuhaus, NonGaussian fixed point in four-dimensional pure
compact U(1) gauge theory on the lattice, Phys. Rev. Lett. 77 (1996) 1933
[hep-lat/9606010].

[52] J. Jersak, C.B. Lang and T. Neuhaus, Four-dimensional pure compact U(1) gauge theory on a
spherical lattice, Phys. Rev. D 54 (1996) 6909 [hep-lat/9606013].

[53] W. Kerler, C. Rebbi and A. Weber, Order parameters and boundary effects in U(1) lattice
gauge theory, Phys. Lett. B 380 (1996) 346 [hep-lat/9601002].

[54] W. Kerler, C. Rebbi and A. Weber, Critical properties and monopoles in U(1) lattice gauge
theory, Phys. Lett. B 392 (1997) 438 [hep-lat/9612001].

[55] I. Campos, A. Cruz and A. Tarancon, First order signatures in 4-D pure compact U(1) gauge
theory with toroidal and spherical topologies, Phys. Lett. B 424 (1998) 328
[hep-lat/9711045].

[56] I. Campos, A. Cruz and A. Tarancon, A Study of the phase transition in 4-D pure compact
U(1) LGT on toroidal and spherical lattices, Nucl. Phys. B 528 (1998) 325
[hep-lat/9803007].

[57] M. Vettorazzo and P. de Forcrand, Electromagnetic fluxes, monopoles, and the order of the
4-d compact U(1) phase transition, Nucl. Phys. B 686 (2004) 85 [hep-lat/0311006].

[58] L. Di Cairano, M. Gori, M. Sarkis and A. Tkatchenko, Phase Transitions in Abelian Lattice
Gauge Theory: Production and Dissolution of Monopoles and Monopole-Antimonopole
Pairs, 2303.05306.

[59] G. Arnold, T. Lippert, K. Schilling and T. Neuhaus, Finite size scaling analysis of compact
QED, Nucl. Phys. B Proc. Suppl. 94 (2001) 651–656 [hep-lat/0011058].

[60] K. Langfeld, B. Lucini, R. Pellegrini and A. Rago, An efficient algorithm for numerical
computations of continuous densities of states, Eur. Phys. J. C 76 (2016) 306 [1509.08391].

[61] X. Crean, J. Giansiracusa and B. Lucini, Topological data analysis of monopoles in u(1)
lattice gauge theory — monte carlo and analysis code release, Mar., 2024,
DOI:10.5281/zenodo.10806185.

[62] A. Bazavov and B.A. Berg, Heat bath efficiency with metropolis-type updating, Phys. Rev. D
71 (2005) 114506 [hep-lat/0503006].

19

https://doi.org/10.1103/PhysRevD.50.6984
https://arxiv.org/abs/hep-lat/9403025
https://doi.org/10.1016/0370-2693(95)00188-Q
https://arxiv.org/abs/hep-lat/9501023
https://doi.org/10.1016/0550-3213(95)00239-O
https://arxiv.org/abs/hep-lat/9503021
https://doi.org/10.1103/PhysRevLett.77.1933
https://arxiv.org/abs/hep-lat/9606010
https://doi.org/10.1103/PhysRevD.54.6909
https://arxiv.org/abs/hep-lat/9606013
https://doi.org/10.1016/0370-2693(96)00498-4
https://arxiv.org/abs/hep-lat/9601002
https://doi.org/10.1016/S0370-2693(96)01564-X
https://arxiv.org/abs/hep-lat/9612001
https://doi.org/10.1016/S0370-2693(98)00208-1
https://arxiv.org/abs/hep-lat/9711045
https://doi.org/10.1016/S0550-3213(98)00452-0
https://arxiv.org/abs/hep-lat/9803007
https://doi.org/10.1016/j.nuclphysb.2004.02.038
https://arxiv.org/abs/hep-lat/0311006
https://arxiv.org/abs/2303.05306
https://doi.org/10.1016/s0920-5632(01)01001-5
https://arxiv.org/abs/hep-lat/0011058
https://doi.org/10.1140/epjc/s10052-016-4142-5
https://arxiv.org/abs/1509.08391
https://zenodo.org/records/10806185
https://doi.org/10.1103/PhysRevD.71.114506
https://doi.org/10.1103/PhysRevD.71.114506
https://arxiv.org/abs/hep-lat/0503006


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
9
5

TDA of Abelian Magnetic Monopoles Xavier Crean, Jeffrey Giansiracusa and Biagio Lucini

[63] A.M. Ferrenberg and R.H. Swendsen, Optimized monte carlo data analysis, Phys. Rev. Lett.
63 (1989) 1195.

[64] G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276.

[65] A.M. Polyakov, Particle Spectrum in Quantum Field Theory, JETP Lett. 20 (1974) 194.

[66] A.S. Kronfeld, M.L. Laursen, G. Schierholz and U.J. Wiese, Monopole Condensation and
Color Confinement, Phys. Lett. B 198 (1987) 516.

[67] A.S. Kronfeld, G. Schierholz and U.J. Wiese, Topology and Dynamics of the Confinement
Mechanism, Nucl. Phys. B 293 (1987) 461.

[68] L. Del Debbio, A. Di Giacomo, B. Lucini and G. Paffuti, Abelian projection in SU(N) gauge
theories, hep-lat/0203023.

[69] C. Bonati, M. D’Elia, A. Di Giacomo, L. Lepori and F. Pucci, Non abelian Bianchi
identities, monopoles and gauge invariance, PoS LATTICE2010 (2010) 270 [1011.0371].

[70] M.N. Chernodub and M.I. Polikarpov, Abelian projections and monopoles, in NATO
Advanced Study Institute on Confinement, Duality and Nonperturbative Aspects of QCD,
pp. 387–414, 6, 1997 [hep-th/9710205].

[71] C. Bonati and M. D’Elia, The Maximal Abelian Gauge in SU(N) gauge theories and thermal
monopoles for N = 3, Nucl. Phys. B 877 (2013) 233 [1308.0302].

[72] B. Lucini, M. Teper and U. Wenger, The High temperature phase transition in SU(N) gauge
theories, JHEP 01 (2004) 061 [hep-lat/0307017].

[73] J.A. Mickley, C. Allton, R. Bignell and D.B. Leinweber, Centre vortex evidence for a second
finite-temperature QCD transition, 2411.19446.

[74] D. Spitz, J.M. Urban and J.M. Pawlowski, Topological data analysis of the deconfinement
transition in SU(3) lattice gauge theory, 2412.09112.

20

https://doi.org/10.1103/PhysRevLett.63.1195
https://doi.org/10.1103/PhysRevLett.63.1195
https://doi.org/10.1016/0550-3213(74)90486-6
https://doi.org/10.1016/0370-2693(87)90910-5
https://doi.org/10.1016/0550-3213(87)90080-0
https://arxiv.org/abs/hep-lat/0203023
https://doi.org/10.22323/1.105.0270
https://arxiv.org/abs/1011.0371
https://arxiv.org/abs/hep-th/9710205
https://doi.org/10.1016/j.nuclphysb.2013.10.004
https://arxiv.org/abs/1308.0302
https://doi.org/10.1088/1126-6708/2004/01/061
https://arxiv.org/abs/hep-lat/0307017
https://arxiv.org/abs/2411.19446
https://arxiv.org/abs/2412.09112

	Introduction
	Essential Topological Data Analysis for Lattice Gauge Theory
	Methodology A: the shape of a probability distribution
	Methodology B: TDA-based observables
	Simplicial complexes, cubical complexes, and filtrations
	Counting holes with homology
	Persistent homology
	Stability
	Vectorising persistence diagrams

	Topological data analysis of monopole current networks in compact U(1) Lattice Gauge Theory
	4-dimensional U(1) Lattice Gauge Theory at zero temperature
	Magnetic monopole currents
	The deconfinement phase transition
	Homological observables for current networks
	Numerical set-up and results
	Persistent homology as an encoder of current geometry

	Topological data analysis of Abelian monopole current networks in SU(3) Lattice Gauge Theory
	The Lattice setup
	Monopoles in the Maximal Abelian Gauge
	Numerical results

	Conclusions

