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1. Introduction

The N = 1 supersymmetric (SUSY) SU(𝑁) Yang–Mills theory consists of a bosonic particle,
the gluon, and its fermionic super-partner, the gluino. These particles are described in terms of a
SU(𝑁) gauge field coupled to 1 massless adjoint Majorana field. The SUSY Yang–Mills (SYM)
action enjoys a global U(1)V ⊗ U(1)A flavor chiral symmetry. At the quantum level, the vector
symmetry is exactly realized à la Wigner–Weyl, while the axial sub-group is anomalously and
spontaneously broken with the following pattern:

U(1)A −→
Anomaly

Z2𝑁 −→
Spontaneous

Z2. (1)

The theory is thus expected to be characterized by a non-vanishing gluino condensate ⟨Tr𝜆2⟩ due
to the spontaneous breaking of the residual discrete Z2𝑁 symmetry.

The gluino condensate can be calculated exactly using analytic methods [1–4]. However, its
actual value is the subject of a debate [5]. Two instanton-based calculations performed, respectively,
in the Strong-Coupling (SC) [1–3] and in the Weak-Coupling (WC) [4] regimes yielded the following
for the Renormalization-Group-Invariant (RGI) condensate:

ΣRGI ≡
1

(4𝜋)2𝑏0𝑁

��⟨Tr𝜆2⟩
�� = {

2eΛ3
NSVZ/𝑁 (SC) ,

Λ3
NSVZ (WC) .

(2)

Here ΛNSVZ is the dynamically-generated scale of SYM computed in the Novikov–Shifman–
Vainshtein–Zakharov (NSVZ) scheme [1, 6]. Adopting the standard QCD convention (see [7]
to trivially map it to the SUSY one), it reads:

Λ3
NSVZ =

𝜇3

𝑏0𝜆
(NSVZ)
t (𝜇)

exp

(
−8𝜋2

𝜆
(NSVZ)
t (𝜇)

)
, (3)

with 𝜆
(NSVZ)
t (𝜇) the renormalized ’t Hooft coupling in the NSVZ scheme, and 𝑏0 = 3/(4𝜋)2 the

first universal coefficient of the SYM 𝛽-function. Recently, an alternative calculation of the gluino
condensate, based on the use of fractional instantons [8–10] has been carried out in [11], based on
ideas put forward in [12–15]. The authors found ΣRGI = 2Λ3

NSVZ for gauge group SU(2) and argue
that 2 → 𝑁 for SU(𝑁), thus yielding yet another result.

This proceeding reports on the main results of our paper [16], where we performed the first
non-perturbative first-principles calculation of the gluino condensate of large-𝑁 SYM theory via
numerical Monte Carlo simulations of the lattice-discretized theory. Despite impressive recent
progress in lattice simulations of SUSY theories [17–23], the lattice literature on this topic is
quite limited [20, 21, 24, 25], and our paper presents the first comparison between numerical and
analytical results.

We here anticipate that our value and 𝑁-dependence for the gluino condensate agree with the
WC prediction. After the publication of our paper [16], the new study [26] from the same authors
of [11] appeared, reporting a value and 𝑁-dependence for ΣRGI/Λ3

NSVZ in agreement with ours.

2. From the lattice to the NSVZ scheme

To compare numerical and analytical results, we must compute two quantities: the RGI gluino
condensate ΣRGI and the SUSY scale ΛNSVZ. We review their definition in the following.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
9
2

The gluino condensate of large-𝑁 SUSY Yang–Mills Claudio Bonanno

2.1 The dynamically-generated scale

The Λ-parameter is a scheme-dependent quantity defined as the integration constant of the
Callan–Symanzik equation for the renormalized ’t Hooft coupling 𝜆 (s)

t , expressed via the 𝛽-function:

𝛽s

(
𝜆
(s)
t

)
=

d𝜆 (s)
t (𝜇)

d log(𝜇2)
, (4)

Λs = 𝜇

[
𝑏0𝜆

(s)
t (𝜇)

] −𝑏1
2𝑏02 exp

(
−1

2𝑏0𝜆
(s)
t (𝜇)

)
exp

[
−

∫ 𝜆
(s)
t (𝜇)

0
d𝑥

(
1

2𝛽𝑠 (𝑥)
+ 1

2𝑏0𝑥2 − 𝑏1

2𝑏2
0𝑥

)]
, (5)

with 𝑏0 = 3/(4𝜋)2, 𝑏1 = 6/(4𝜋)4 the first two universal (i.e., scheme-independent) coefficients in
the perturbative expansion of the 𝛽-function. In the NSVZ scheme, the exact 𝛽-function

𝛽NSVZ

(
𝜆
(NSVZ)
t

)
= − 𝑏0𝜆

(NSVZ)
t

2

1 − 𝑏1
𝑏0
𝜆
(NSVZ)
t

(6)

yields the exact expression for ΛNSVZ in Eq. (3).

2.2 The RGI gluino condensate

The Callan–Symanzik equation for the renormalized gluino mass 𝑚
(s)
R , expressed via the

anomalous dimension 𝜏-function, also features a scheme-independent integration constant:

𝜏s

(
𝜆
(s)
t

)
=

d log
(
𝑚

(s)
R (𝜇)

)
d log(𝜇) . (7)

𝑚RGI = Ã 𝑚
(s)
R (𝜇)

[
2𝑏0𝜆

(s)
t (𝜇)

]− 𝑑0
2𝑏0 exp

[
−

∫ 𝜆
(s)
t (𝜇)

0
d𝑥

(
𝜏s(𝑥)

2𝛽s(𝑥)
− 1
𝑥

)]
, (8)

with 𝑑0 = 2𝑏0 the first universal (i.e., scheme-independent) coefficient of the perturbative expansion
of the 𝜏-function, and Ã an arbitrary numerical constant. In the NSVZ scheme, also the 𝜏-function
is known exactly [27]:

𝜏NSVZ(𝑥)
2𝛽NSVZ(𝑥)

=
1

𝑥(1 − 𝑏1𝑥/𝑏0)
. (9)

Since the product Σ (s)
R (𝜇)𝑚 (s)

R (𝜇) is RGI—with Σ
(s)
R (𝜇) the usual scheme-/scale-dependent fermion

condensate—the RGI gluino condensate can be easily defined as [28, 29]:

ΣRGI = A Σ
(s)
R (𝜇)

[
2𝑏0𝜆

(s)
t (𝜇)

] 𝑑0
2𝑏0 exp

[∫ 𝜆
(s)
t (𝜇)

0
d𝑥

(
𝜏s(𝑥)

2𝛽s(𝑥)
− 1
𝑥

)]
. (10)

Once the exact 𝛽 and 𝜏 functions of the NSVZ scheme are inserted in Eq. (10), the arbitrary constant
A must be chosen as A = 8𝜋2

9𝑁2 in order for Eq. (10) to reproduce the known exact expression for
the RGI condensate in Eq. (2) in terms of Σ (NSVZ)

R (𝜇) [6, 30]:

ΣRGI =
1

(4𝜋)2𝑏0𝑁

��⟨Tr𝜆2⟩
�� , ��⟨Tr𝜆2⟩

�� = 𝜆
(NSVZ)
t (𝜇)

𝑁

[
1 − 𝜆

(NSVZ)
t (𝜇)/(8𝜋2)

] Σ (NSVZ)
R (𝜇). (11)
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3. Lattice setup

Our large-𝑁 calculation exploits large-𝑁 twisted volume reduction. By virtue of the well-
known dynamical equivalence between space-time and color degrees of freedom unvailed in the
pioneering paper of Eguchi and Kawai [31], it is possible to simulate 4𝑑 large-𝑁 gauge theories
as a matrix model which can be interpreted as standard lattice gauge theory defined on a reduced
one-point space-time lattice with twisted boundary conditions [32–34].

Reduced models have been extensively used in the last decade to study several large-𝑁 gauge
theories [35–38], including also theories with dynamical adjoint fermions [39, 40]. This enabled
in Ref. [41] the study of large-𝑁 SYM on the lattice using twisted volume reduction and the lattice
techniques developed by the DESY–Jena–Regensburg–Münster collaboration, see Refs. [17–19].
More precisley, in Ref. [41] we generated several gauge configurations for a few values of inverse
bare ’t Hooft coupling 𝑏 = 1/𝜆L and 𝑁 according the following setup.

• Simulations are performed using a dynamical massive gluino, discretized using Wilson
fermions. The gluino mass is controlled via the Wilson hopping parameter 𝜅.

• The mild sign problem introduced by the non-positivity of the Pfaffian of the lattice Wilson–
Dirac operator is bypassed via sign-quenched simulations. Since no occurrence of negative
signs of Pf (𝐶𝐷W) was observed in [41], no reweighting was needed.

• The lattice regularization and the non-zero gluino mass explicitly break SUSY. According
to the Kaplan–Curci–Veneziano prescription, the SUSY-restoration limit is achieved as the
joint continuum and chiral (massless gluino) limit [42, 43].

• The massless gluino limit is obtained requiring a vanishing mass for the “adjoint pion”. This
is an unphysical particle which is introduced by supplementing SYM with a quenched valence
gluino. This approach can be rigorously justified within the theoretical framework of Partially
Quenched Chiral Perturbation Theory [44].

The gluino condensate is computed adopting two different methods:

• Banks–Casher (BC) formula [45].

Σ
(s)
R (𝜇)
2𝜋

= lim
𝜆→0

lim
𝑚R→0

lim
𝑉→∞

[
𝜌
(s)
R (𝜇)

]
(𝜆R, 𝑚R) . (12)

Here 𝜌R stands for the spectral density of eigenmodes i𝜆R +𝑚R of the massive Dirac operator.

• Gell-Mann–Oakes–Renner (GMOR) relation [44].

𝑚2
𝜋 = 2

Σ
(s)
R (𝜇)
𝐹2
𝜋

𝑚
(s)
R (𝜇) . (13)

This relation involves the non-singlet adjoint pion mass 𝑚𝜋 and its decay constant 𝐹𝜋 .

4. Results

In this section we summarize the main results of Ref. [16], obtained for 𝑏 = 0.340, 0.345, 0.350
and 𝑁 = 169, 289, 361, using the gauge ensembles generated in Ref. [41]. Scale setting was
performed in [41] using gradient flow through the standard reference scale

√
8𝑡0.
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4.1 The Λ-parameter in the NSVZ scheme

0.0 0.2 0.4 0.6 0.8 1.0 1.2
aχ/
√

8t0 ×10−1

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

√
8t0ΛNSVZ

Improved Couplings

1/(bP )

8(1− P )

−8 log(P )

Figure 1: Extrapolation of ΛNSVZ towards the
SUSY limit. Figure taken from [16].

We computed the Λ-parameter using 2-loop
asymptotic scaling, and the 3 improved couplings in-
troduced earlier (here 𝑎𝜒 denotes the lattice spacing
extrapolated towards the massless gluino limit):√︁

8𝑡0ΛNSVZ = lim
𝑎𝜒→0

ΛNSVZ

ΛMS

ΛMS

Λs

√
8𝑡0
𝑎𝜒

exp
{
− 𝑓

(
𝜆
(s)
t

)}
,

𝑓 (𝑥) = 1
2𝑏0

[
1
𝑥
+ 𝑏1

𝑏0
log(𝑏0𝑥)

]
.

(14)

where ΛNSVZ/ΛMS = e−1/18 [54].
The 3 improved couplings yield results in very

good agreement, as shown in Fig. 1. We quote the
following final result, obtained imposing a common
continuum limit for the 3 different determinations:√︁

8𝑡0ΛNSVZ = 0.376(25),
√︁

8𝑡0ΛMS = 0.397(26). (15)

4.2 The gluino condensate from the BC relation

1.00 1.01 1.02 1.03 1.04
M/〈|λmin|〉

0

1

2

3

4

5

6

〈ν
R
〉

N = 361
b = 0.340
κ = 0.1850

1.00 1.05 1.10 1.15 1.20
M/〈|λmin|〉

0.60

0.61

0.62

0.63

0.64

0.65

0.66

Z
P
/Z

S

Final Result

N = 289
b = 0.34, κ = 0.1850

Figure 2: Top panel: example of the lin-
ear fit to the mode number to extract the
slope. Bottom panel: example of calcula-
tion of the ratio of non-singlet pseudoscalar
and scalar renormalization constants. Fig-
ures taken from [16].

The gluino condensate is obtained from the BC formula
via the Giusti–Lüscher method [38, 46–50].

• We solved numerically
(
𝛾5𝐷W [𝑈]

)
𝑢
𝜆
= 𝜆 𝑢

𝜆
for

the first O(100) eigenvalues.

• Counting the number of modes below a cer-
tain threshold 𝑀 we obtained the mode number
⟨𝜈(𝑀,𝑚)⟩ = ⟨#|𝜆 | ≤ 𝑀⟩.

• The gluino condensate is obtained via (here 𝑉 =

𝑎4 with 𝑎 the lattice spacing):

ΣR =
𝜋

4𝑉

√︄
1 − 𝑚2

R

𝑀2
R

𝑠R, 𝑠R ≡ d ⟨𝜈R(𝑀R)⟩
d𝑀R

, (16)

with 𝑠R the slope of ⟨𝜈R⟩ obtained from a linear
fit close to 𝑀R = 𝑚R.

• Renormalization: ⟨𝜈R⟩ = ⟨𝜈⟩, 𝑀R = 𝑀/𝑍P, 𝑚R =

𝑚/𝑍 (0)
S = 𝑟m𝑚/𝑍S, 𝑟m ≡ 𝑍S/𝑍 (0)

S , where 𝑍S and
𝑍P are the non-singlet scalar/pseudo-scalar renor-
malization constants, while 𝑍

(0)
S is the singlet

scalar renormalization constant.1

1In our original paper [16] we overlooked that 𝑟m = 1 + O(𝜆2) on the lattice due to explicit chiral symmetry breaking
of Wilson fermions. We correct it here, with negligible impact on final results, and no change in the conclusions.
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On the lattice we can compute the following quantities:

• The slope 𝑠 ≡ d⟨𝜈⟩
d𝑀 of the mode number as a function of the bare threshold 𝑀 obtained from

a linear fit close to 𝑀 = ⟨|𝜆min |⟩≃ 𝑚, see Fig. 2 (top panel).

• The RGI ratio of non-singlet renormalization constants 𝑍P/𝑍S using the following ratio of
spectral sums [46–49], see Fig. 2 (bottom panel):(

𝑍P

𝑍S

)2
=

⟨𝑠P(𝑀)⟩
⟨𝜈(𝑀)⟩ 𝑠P(𝑀) ≡

∑︁
|𝜆 | , |𝜆′ | ≤𝑀

���𝑢†𝜆𝛾5𝑢𝜆′
���2 . (17)

• Bare subtracted gluino mass: 𝑎𝑚 = 1/(2𝜅) − 1/(2𝜅crit) = 𝑎𝑚R𝑍
(0)
S = 𝑎𝑚R𝑍S/𝑟m.

Combining these quantities we obtain:

ΣR

𝑍S
=

𝑍P

𝑍S

𝜋

4𝑉

√︄
1 −

(
𝑍P

𝑍S

𝑚

𝑀
𝑟m

)2
𝑠. (18)

Since we do not have non-perturbative estimates of the scheme-/scale-dependent constant 𝑍S and
of the RGI ratio 𝑟m = 𝑍S/𝑍 (0)

S , we relied on 2-loop perturbation theory to compute them in the MS
scheme [51]:

𝑍
(MS)
S

(
𝜇 =

1
𝑎
, 𝜆L

)
= 1 − 12.9524103(1)

(4𝜋)2 𝜆L −
60.68(10)
(4𝜋)4 𝜆2

L + O
(
𝜆3

L

)
(19)

𝑍
(0)
S

(MS)
(
𝜇 =

1
𝑎
, 𝜆L

)
= 𝑍

(MS)
S

(
𝜇 =

1
𝑎
, 𝜆L

)
− 107.76(1)

(4𝜋)4 𝜆2
L + O

(
𝜆3

L

)
. (20)

In these expressions, in order to accelerate the convergence of perturbation theory, we used the
1-loop perturbative expression of the lattice bare coupling in terms of improved couplings:

𝜆L = 𝜆
(s)
t − 2𝑏0

(
𝜆
(s)
t

)2
log (Λs/ΛL) , (21)

with 𝜆 (I)
t = 1/(𝑏𝑃), 𝜆 (E)

t = 8(1−𝑃), 𝜆 (E′ )
t = −8 log(𝑃), and 𝑃 the expectation value of the plaquette.

The ratio of Λ-parameters is given by [52, 53]:
ΛL

ΛI
=

ΛL

ΛMS
× 2.7373,

ΛL

ΛE
=

ΛL

ΛMS
× 29.005,

ΛL

ΛE′
=

ΛL

ΛMS
× 5.600,

ΛMS

ΛL
= 73.467. (22)

4.3 The gluino condensate from the GMOR equation

Using standard techniques, in [41] we computed the pion mass 𝑚𝜋 from the exponential time
decay of the temporal pion-pion correlator, the pion decay constant,

𝐹𝜋

𝑁𝑍A
=

1
√

2𝑁𝑚𝜋

⟨0|𝐴4(𝑥 = 0) |𝜋( ®𝑝 = 0)⟩, (23)

and the PCAC (Partially Conserved Axial Current) gluino mass, related to the renormalized one by:

𝑚PCAC =
𝑍P

𝑍A
𝑚R. (24)

Combining these quantities, and the ones computed before, one has:

𝐹𝜋

𝑁
=

𝐹𝜋

𝑁𝑍A

𝑚

𝑚PCAC

𝑍P

𝑍S
𝑟m,

ΣR

𝑍S
=

1
2
𝐹2
𝜋

𝑚2
𝜋

𝑚

1
𝑟m

. (25)
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4.4 Converting the renormalized condensate into the RGI one

In the previous subsections we described how we computed the scheme-/scale-dependent
renormalized chiral condensate Σ

(s)
R (𝜇) in the MS scheme at the lattice scale 𝜇 = 1/𝑎, with 𝑎 the

lattice spacing. In order to compare our results with the analytic ones, we need to convert it into an
RGI quantity. To this end, we rely again on 2-loop perturbation theory as follows:

ΣRGI = A 2𝑏0𝜆
(MS)
t (𝑎𝜇 = 1)

[
1 +

𝑑
(MS)
1 −2𝑏1

2𝑏0
𝜆
(MS)
t (𝑎𝜇 = 1)

]
Σ
(MS)
R (𝑎𝜇 = 1), A = 8𝜋2/(9𝑁2), (26)

with 𝑑
(MS)
1 = 32/(4𝜋)4 [55], and where the renormalized coupling in the MS scheme at the scale

𝜇 = 1/𝑎 was computed in 2-loop perturbation theory as follows:

2𝑏0𝜆
(MS)
t (𝑎𝜇 = 1) = − 1

log(𝑎ΛMS)
− 𝑏1

2𝑏2
0

log [−2 log(𝑎ΛMS)]
log2(𝑎ΛMS)

. (27)

The product 𝑎ΛMS was practically computed as 𝑎ΛMS =
(
𝑎/
√

8𝑡0
)
×
√

8𝑡0ΛMS, with
√

8𝑡0ΛMS the
quantity in Eq. (15).

4.5 The 𝑁-dependence of the gluino condensate

We are now ready to compute the RGI gluino condensate from the BC and the GMOR relations
in units of Λ3

NSVZ. Note that Eq. (25) was computed using the value of 𝐹𝜋 extrapolated towards the
SUSY limit (via a joint chiral/continuum extrapolation), cf. Fig. 3 (left panel): 𝐹𝜋

𝑁ΛNSVZ
= 0.101(15) .

All our determinations of ΣRGI are shown in Fig. 3 (central/right panels). Given the displayed 𝑁-
dependence, our numerical results rule out all but the Weak Coupling (WC) calculation, cf. Eq. (2).
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Figure 3: Left panel: calculation of 𝐹𝜋/𝑁 in the SUSY limit. Central and right panels: collection of our
results for the third root of the RGI condensate in units of the SUSY scale in the NSVZ scheme ΛNSVZ obtained
with the GMOR and the BC formulas respectively. Figures adapted from [16].

5. Conclusions: the RGI gluino condensate in the SUSY limit

We extrapolate our results for Σ1/3
RGI /ΛNSVZ towards the SUSY limit performing a joint chiral-

continuum extrapolation as follows:(
Σ

1/3
RGI

ΛNSVZ

)
(𝑎, 𝑚𝜋) =

Σ
1/3
RGI

ΛNSVZ
+ 𝑐1

𝑎
√

8𝑡0
+ 𝑐2

(
8𝑡0𝑚2

𝜋

)
. (28)
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3.0

Σ
1/3
RGI
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From Gell-Mann–Oakes–Renner

N = 361
From Banks–Casher

√
8t0mπ = 0

Exact NSVZ
Weak Coupling

b = 0.340

b = 0.345

b = 0.350

Figure 4: Extrapolation towards the SUSY
limit of the RGI gluino condensate determined
from the BC and the GMOR formulas for the
largest value of 𝑁 explored. Figure adapted
from [16].

The SUSY-limit extrapolations, shown in Fig. 4, yield:

ΣRGI

Λ3
NSVZ

= [1.34(18)stat(13)syst]3

= 2.39(97)stat(72)syst, (BC) .
(29)

ΣRGI

Λ3
NSVZ

= [1.21(08)stat(12)syst]3

= 1.77(35)stat(53)syst, (GMOR) .
(30)

In the SUSY limit the two determinations from the
GMOR and BC relations give agreeing results. Both
are compatible with the WC instanton calculation:

ΣRGI

Λ3
NSVZ

= 1, (exact NSVZ analytic WC result) . (31)

We quote the GMOR determination as our final lattice result, as this is the most precise one:

ΣRGI

Λ3
NSVZ

= 1.77(35)stat(53)syst = 1.77(65), (final lattice result) . (32)

We stress that we added a conservative 30% systematic error to our final extrapolations to take into
account the perturbative renormalization we employed. This is the dominant source of uncertainty.
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