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1. Introduction

One of the central ingredients to extract continuum physics from lattice QCD simulations is
the continuum extrapolation of renormalised quantities in the lattice spacing 𝑎 ↘ 0. Reaching the
continuum limit with sufficient control over the associated systematic errors requires knowledge
about the asymptotic lattice spacing dependence of the quantity of interest.

Due to working in an asymptotically free theory, we do know that the asymptotically leading
lattice spacing dependence is of the form 𝑎𝑛min [2𝑏0�̄�

2(1/𝑎)] Γ̂𝑖 , where 48𝜋2𝑏0 = 11𝑁 − 2𝑁f with 𝑁

colours as well as 𝑁f flavours, and �̄�(1/𝑎) is the running coupling at renormalisation scale 𝜇 = 1/𝑎
corresponding to the relevant scale of lattice artifacts. A priori there are no bounds on the values
allowed for Γ̂𝑖 and they may become severely negative thus worsening the approach to the continuum
limit. That this is not purely an academical concern, can be seen in the seminal work by Balog,
Niedermayer and Weisz [1, 2] in the O(3) non-linear sigma model, where they found min𝑖 Γ̂𝑖 = −3.

To check for any such issues in lattice QCD one needs to derive these powers for the lattice dis-
cretisation of choice in terms of a Symanzik Effective Field Theory (SymEFT) [3–6] analysis. Here
the lattice artifacts of the renormalised theory are treated as a perturbation around the continuum
limit, i.e., we can formally write the SymEFT in terms of the effective Lagrangian

Leff = LQCD + 𝑎L (1) + 𝑎2L (2) + O(𝑎3) , (1)

where L (𝑑) is a linear combination of operators of mass-dimension (4 + 𝑑) that comply with the
symmetry constraints of the lattice action. Eventually one finds as many Γ̂𝑖 at a given power in the
lattice spacing as there are linearly-independent operators in the minimal basis. The Lagrangian of
the continuum theory, here Quantum Chromodynamics (QCD), reads

LQCD = − 1
2𝑔2

0
tr(𝐹𝜇𝜈𝐹𝜇𝜈) + Ψ̄

{
𝛾𝜇𝐷𝜇 + 𝑀

}
Ψ , (2)

where 𝐹𝜇𝜈 = [𝐷𝜇, 𝐷𝜈] is the field-strength tensor and 𝐷𝜇 = 𝜕𝜇+𝐴𝜇 is the covariant derivative with
algebra-valued gauge field 𝐴𝜇 ∈ su(𝑁). The continuum quark-flavours Ψ are here assumed to be
4-fold mass-degenerate, i.e., 𝑀 = diag(𝑚1, . . . , 𝑚𝑁sets) ⊗ 14×4 with 𝑁sets < 11𝑁/8. This particular
choice is due to discussing lattice QCD with unrooted Staggered quarks as initially proposed by
Kogut and Susskind [7], which by construction yield (multiples of) four mass-degenerate flavours
in the continuum limit, i.e., 𝑁f = 4𝑁sets.

The Staggered lattice fermion action reads in the one-component representation (1CR)

𝑆1CR = 𝑎4
∑︁
𝑥

�̄�(𝑥)
𝜂𝜇 (𝑥)

2
{
∇𝜇 + ∇∗𝜇

}
𝜒(𝑥), 𝜂𝜇 (𝑥) = (−1)

∑
𝜈<𝜇 𝑥𝜈/𝑎, (3)

where 𝜒 are the quark fields in the 1CR and we introduced the covariant forward and backward
lattice derivatives

𝑎∇𝜇𝜒(𝑥) = 𝑈 (𝑥, 𝜇)𝜒(𝑥 + 𝑎�̂�) − 𝜒(𝑥), 𝑎∇∗𝜇𝜒(𝑥) = 𝜒(𝑥) −𝑈†(𝑥 − 𝑎�̂�, 𝜇)𝜒(𝑥 − 𝑎�̂�), (4)

with gauge links 𝑈 (𝑥, 𝜇) ∈ SU(𝑁).
To work out the connection to the continuum notion of quark flavours, we need to identify

the four tastes contained within the 1CR, which will become the flavours of the continuum theory.
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Identifying those tastes is typically referred to as a taste representation (TR). The most commonly
used TR are momentum-space tastes, which use the 16 corners of the Fourier-space hypercube to
construct tastes. Unfortunately, the resulting TR suffers from non-local interactions [8–10], which
violates one of the central assumptions made when constructing a local effective Lagrangian as we
want to do in section 3. Instead we choose a TR that is strictly local by joining the 16 corners of a
spacetime hypercube, see e.g. [8, 11],

Φ̄(𝑦) = 1
8

∑︁
𝜉 ∈{0,1}4

�̄�(𝑦 + 𝑎𝜉)𝑇 [𝑈] (𝑦, 𝜉)†, Φ(𝑦) = 1
8

∑︁
𝜉 ∈{0,1}4

𝑇 [𝑈] (𝑦, 𝜉)𝜒(𝑦 + 𝑎𝜉), 𝑦 ∈ 2𝑎Z4, (5)

where we choose (𝜇 increasing towards the right-hand side)

𝑇 [𝑈] (𝑦, 𝜉) =
3∏

𝜇=0
𝑈 𝜉𝜇 (𝑦 + 𝑎∑𝜈<𝜇 𝜉𝜈 �̂�, 𝜇)𝛾

𝜉𝜇
𝜇 . (6)

The resulting matrix Φ(𝑦) has one colour index and two Dirac indices (𝑖, 𝑓 ), where the latter
are identified as spin 𝑖 and taste 𝑓 . There is quite some freedom in choosing a gauge-covariant
𝑇 [𝑈] (𝑦, 𝜉) beyond the requirement 𝑇𝑇† ∝ 1 in order to keep the measure unchanged. Different
choices must yield equivalent TRs as they are related by a substitution in the path-integral if they
keep the measure invariant.

2. Symmetries of local tastes

Expressing the lattice action in terms of the strictly local tastes becomes a highly non-trivial
expression in the interacting theory and we omit it entirely. The symmetries in this TR can
nonetheless be inferred from their 1CR counterparts by use of eq. (5). This is needed in order to
understand what remains of the continuum symmetries and make the connection to the continuum
flavours present in the SymEFT. The symmetries found for local tastes are

• SU(𝑁) gauge symmetry,

• U(1)B flavour symmetry,

• Remnant of chiral symmetry. Analogously to conventional chiral symmetry we may introduce
the shorthands

Φ̄R = Φ̄
1 − 𝛾5 ⊗ 𝜏5

2
, ΦR =

1 + 𝛾5 ⊗ 𝜏5

2
Φ ,

Φ̄L = Φ̄
1 + 𝛾5 ⊗ 𝜏5

2
, ΦL =

1 − 𝛾5 ⊗ 𝜏5

2
Φ , (7a)

where 𝜏𝜇 = 𝛾𝑇𝜇 acts in taste-space. The massless lattice action written in this form is then
invariant under

Φ̄R → Φ̄R𝑒
𝑖𝜗R𝛾5⊗𝜏5−𝑖𝜑R , ΦR → 𝑒𝑖𝜗R𝛾5⊗𝜏5+𝑖𝜑RΦR,

Φ̄L → Φ̄L𝑒
𝑖𝜗L𝛾5⊗𝜏5−𝑖𝜑L , ΦL → 𝑒𝑖𝜗L𝛾5⊗𝜏5+𝑖𝜑LΦL, 𝜗L,R, 𝜑L,R ∈ R. (7b)

3
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• Modified charge conjugation

Φ̄(𝑦) → −Φ𝑇 (𝑦)𝐶 ⊗ (𝐶−1)𝑇 , Φ(𝑦) → 𝐶−1 ⊗ 𝐶𝑇Φ̄𝑇 (𝑦),
𝑈𝜇 (𝑥) → 𝑈∗𝜇 (𝑥), 𝐶𝛾𝜇𝐶

−1 = −𝛾𝑇𝜇 . (7c)

◦ Modified Euclidean reflections [11] in �̂� direction

Φ̄(𝑦) → Φ̄(𝑦 − 2𝑦𝜇 �̂�)𝛾5𝛾𝜇 ⊗ 𝜏5
{
1 + 𝑎2 . . .

}
,

Φ(𝑦) → 𝛾𝜇𝛾5 ⊗ 𝜏5
{
1 + 𝑎2 . . .

}
Φ(𝑦 − 2𝑦𝜇 �̂�) ,

𝑈𝜈 (𝑥) →
{
𝑈
†
𝜇 (𝑥 − 2𝑥𝜇 �̂�) if 𝜇 = 𝜈

𝑈𝜈 (𝑥 − 2𝑥𝜇 �̂�) else
. (7d)

◦ Modified discrete rotations [11, 12] of 90◦ in any 𝜌-𝜎-plane, i.e., 𝜌 < 𝜎,

Φ̄(𝑦) → 1
2
Φ̄(𝑅−1𝑦) (1 + 𝛾𝜌𝛾𝜎) ⊗ (𝜏𝜌 − 𝜏𝜎),

Φ(𝑦) → 1
2
(1 − 𝛾𝜌𝛾𝜎) ⊗ (𝜏𝜌 − 𝜏𝜎)Φ(𝑅−1𝑦),

𝑈𝜈 (𝑥) →


𝑈
†
𝜌 (𝑅−1𝑥 − 𝑎�̂�) 𝜈 = 𝜎

𝑈𝜎 (𝑅−1𝑥) 𝜈 = 𝜌

𝑈𝜈 (𝑅−1𝑥) else

(𝑅−1𝑥)𝜌 = 𝑥𝜎 , (𝑅−1𝑥)𝜎 = −𝑥𝜌, (𝑅−1𝑥)𝜇≠𝜌,𝜎 = 𝑥𝜇, (7e)

with rotation matrix 𝑅 acting on vectors in Euclidean spacetime.

◦ Shift-symmetry by a single lattice spacing in direction �̂� combined with a discrete flavour
rotation and field redefinition

Φ̄(𝑦) → Φ̄(𝑦)1 ⊗ 𝜏𝜇

{
1 + 2𝑎�̂� (𝜇)− ∇̂†𝜇 + 𝑎2 . . .

}
,

Φ(𝑦) → 1 ⊗ 𝜏𝜇

{
1 + 2𝑎�̂� (𝜇)+ ∇̂𝜇 + 𝑎2 . . .

}
Φ(𝑦), (7f)

where ∇̂𝜇 involves a �̂�-dependent fat link spanning a distance of 2𝑎 and we introduced the
projectors

�̂�
(𝜇)
± =

1 ± 𝛾𝜇𝛾5 ⊗ 𝜏𝜇𝜏5

2
. (7g)

Filled (•) or open (◦) symbols highlight symmetries that are in their canonical form as one would
expect in a continuum theory and those that require field-redefinitions respectively. The latter
symmetries are only written out explicitly up to O(𝑎2) terms. In the free theory, only Shift-symmetry
requires a field-redefinition which further simplifies to being just a forward lattice derivative.

4
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3. Symanzik Effective Field Theory

Before we can impose these symmetries we need to work out how to deal with the field-
redefinitions present in some of the symmetry transformations on the lattice. As it turns out, such
a field-redefinition gives rise to operators vanishing by the fermion EOMs in the SymEFT that
are violating the symmetry in its canonical form without the field-redefinition. These particular
operators start to appear at the order in the lattice spacing at which the field-redefinition arise, e.g.,
for Shift-symmetry we find at O(𝑎)

O (1)E;1 =
1
2
Ψ̄

{←
/𝐷
←
𝐷𝜈𝛾𝜈𝛾5 ⊗ 𝜏𝜈 + 𝛾𝜈𝛾5 ⊗ 𝜏𝜈𝐷𝜈 /𝐷

}
Ψ,

O (1)E;2 =
1
2
Ψ̄

{←
/𝐷2𝛾5 ⊗ 𝜏𝜈 − 𝛾5 ⊗ 𝜏𝜈 /𝐷2

}
Ψ, (8)

where we introduce the sloppy shorthands for the fermion EOMs

Ψ̄
←
/𝐷 = Ψ̄(𝛾𝜇

←
𝐷𝜇 − 𝑀) EOM

= 0, /𝐷Ψ = (𝛾𝜇𝐷𝜇 + 𝑀)Ψ
EOM
= 0. (9)

By induction one can work out that those field-redefinitions should be curable (perturbatively) in
the SymEFT, thus restoring the canonical form of the symmetry transformations to all orders in the
lattice spacing.

Common lore allows us to make use of the continuum EOMs1 to work out the minimal on-
shell operator basis [13]. However, “making use of the EOMs” eventually amounts to an overall
field-redefinition (or more naturally a change of matching condition) that can and will have an
impact on the matching coefficients of the SymEFT action at subleading order in the lattice spacing,
here O(𝑎2), as well as the matching coefficients of local composite fields at the current order, here
already O(𝑎). For more details on this, see [14–16].

Since the symmetries only permit EOM-vanishing operators in the SymEFT at O(𝑎), the
leading-order minimal on-shell basis consists of mass-dimension 6 operators that contribute at
O(𝑎2). Taking all the symmetries into account leaves us with the minimal on-shell basis

O (2)1 =
1
𝑔2

0
tr( [𝐷𝜇, 𝐹𝜈𝜌] [𝐷𝜇, 𝐹𝜈𝜌]) , O (2)2 =

1
𝑔2

0

∑︁
𝜇

tr( [𝐷𝜇, 𝐹𝜇𝜈] [𝐷𝜇, 𝐹𝜇𝜈]) ,

O (2)3 =
∑︁
𝜇

Ψ̄𝛾𝜇 ⊗ 1𝐷3
𝜇Ψ, O (2)4 = 𝑔2

0 (Ψ̄𝛾𝜇 ⊗ 1Ψ)2,

O (2)5 = 𝑔2
0 (Ψ̄𝛾𝜇𝛾5 ⊗ 1Ψ)2, O (2)6 = 𝑔2

0 (Ψ̄𝛾𝜇 ⊗ 1𝑇𝑎Ψ)2,

O (2)7 = 𝑔2
0 (Ψ̄𝛾𝜇𝛾5 ⊗ 1𝑇𝑎Ψ)2, O (2)8 =

𝑖

4
Ψ̄𝑀𝛾𝜇𝜈 ⊗ 1𝐹𝜇𝜈Ψ,

O (2)9 = Ψ̄𝑀3Ψ, O (2)10 = tr(𝑀2)Ψ̄𝑀Ψ,

O (2)11 = 𝑔2
0 (Ψ̄1 ⊗ 𝜏𝜇Ψ)2, O (2)12 = 𝑔2

0 (Ψ̄1 ⊗ 𝜏𝜇𝜏5Ψ)2,

1Of course this also includes the gluon EOM

[𝐷𝜈 , 𝐹𝜈𝜇] = 𝑇𝑎𝑔2
0Ψ̄𝛾𝜇𝑇

𝑎Ψ.

5
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O (2)13 = 𝑔2
0 (Ψ̄1 ⊗ 𝜏𝜇𝑇

𝑎Ψ)2, O (2)14 = 𝑔2
0 (Ψ̄1 ⊗ 𝜏𝜇𝜏5𝑇

𝑎Ψ)2,

O (2)15 = 𝑔2
0 (Ψ̄𝛾5 ⊗ 𝜏𝜇Ψ)2, O (2)16 = 𝑔2

0 (Ψ̄𝛾5 ⊗ 𝜏𝜇𝜏5Ψ)2,

O (2)17 = 𝑔2
0 (Ψ̄𝛾5 ⊗ 𝜏𝜇𝑇

𝑎Ψ)2, O (2)18 = 𝑔2
0 (Ψ̄𝛾5 ⊗ 𝜏𝜇𝜏5𝑇

𝑎Ψ)2,

O (2)19 = 𝑔2
0 (Ψ̄𝛾𝜇 ⊗ 𝜏5Ψ)2, O (2)20 = 𝑔2

0 (Ψ̄𝛾𝜇𝛾5 ⊗ 𝜏5Ψ)2,

O (2)21 = 𝑔2
0 (Ψ̄𝛾𝜇 ⊗ 𝜏5𝑇

𝑎Ψ)2, O (2)22 = 𝑔2
0 (Ψ̄𝛾𝜇𝛾5 ⊗ 𝜏5𝑇

𝑎Ψ)2,

O (2)23 = 𝑔2
0 (Ψ̄𝛾𝜇𝜈 ⊗ 𝜏𝜌Ψ)2, O (2)24 = 𝑔2

0 (Ψ̄𝛾𝜇𝜈 ⊗ 𝜏𝜌𝜏5Ψ)2,

O (2)25 = 𝑔2
0 (Ψ̄𝛾𝜇𝜈 ⊗ 𝜏𝜌𝑇

𝑎Ψ)2, O (2)26 = 𝑔2
0 (Ψ̄𝛾𝜇𝜈 ⊗ 𝜏𝜌𝜏5𝑇

𝑎Ψ)2,

O (2)27 = 𝑔2
0 (Ψ̄𝛾𝜇 ⊗ 𝜏𝜈𝜌Ψ)2, O (2)28 = 𝑔2

0 (Ψ̄𝛾𝜇𝛾5 ⊗ 𝜏𝜈𝜌Ψ)2,

O (2)29 = 𝑔2
0 (Ψ̄𝛾𝜇 ⊗ 𝜏𝜈𝜌𝑇

𝑎Ψ)2, O (2)30 = 𝑔2
0 (Ψ̄𝛾𝜇𝛾5 ⊗ 𝜏𝜈𝜌𝑇

𝑎Ψ)2,

O (2)31 = 𝑔2
0

∑︁
𝜇

(Ψ̄𝛾𝜇𝜈 ⊗ 𝜏𝜇Ψ)2, O (2)32 = 𝑔2
0

∑︁
𝜇

(Ψ̄𝛾𝜇𝜈 ⊗ 𝜏𝜇𝜏5Ψ)2,

O (2)33 = 𝑔2
0

∑︁
𝜇

(Ψ̄𝛾𝜇𝜈 ⊗ 𝜏𝜇𝑇
𝑎Ψ)2, O (2)34 = 𝑔2

0

∑︁
𝜇

(Ψ̄𝛾𝜇𝜈 ⊗ 𝜏𝜇𝜏5𝑇
𝑎Ψ)2,

O (2)35 = 𝑔2
0

∑︁
𝜇

(Ψ̄𝛾𝜇 ⊗ 𝜏𝜇𝜈Ψ)2, O (2)36 = 𝑔2
0

∑︁
𝜇

(Ψ̄𝛾𝜇𝛾5 ⊗ 𝜏𝜇𝜈Ψ)2,

O (2)37 = 𝑔2
0

∑︁
𝜇

(Ψ̄𝛾𝜇 ⊗ 𝜏𝜇𝜈𝑇
𝑎Ψ)2, O (2)38 = 𝑔2

0

∑︁
𝜇

(Ψ̄𝛾𝜇𝛾5 ⊗ 𝜏𝜇𝜈𝑇
𝑎Ψ)2. (10)

The operators O𝑖≤10 are compatible with chiral symmetry or its spurion counterpart in the massive
theory and thus sufficient for a chirally-symmetric fermion action like Ginsparg-Wilson quarks [17],
while the other operators in the basis account for the flavour-changing interactions allowed for
Staggered quarks at O(𝑎2).

Allowing for multiple sets of tastes (𝑁sets > 1) requires the replacement 𝜏 → diag(𝜏, . . . , 𝜏)
since any shift on the lattice has to be done for all tastes simultaneously while the four tastes in each
set are connected via Shift-symmetry, remnant chiral, modified Euclidean reflections, and modified
rotations as listed in equations (7). In the case of full mass-degeneracy (in the continuum limit)
we may still rotate among the 𝑛th flavour of each set, i.e., there is an SU(𝑁sets)4 flavour symmetry
remaining from the full SU(𝑁f) flavour symmetry of continuum QCD.

4. 1-loop anomalous dimensions

Eventually we are looking for the powers [2𝑏0�̄�
2(1/𝑎)] Γ̂𝑖 multiplying the pure 𝑎2 corrections.

Those powers can be inferred from the 1-loop anomalous dimension matrix of the full set of
operators

𝜇
dO

𝑗;MS

d𝜇
= −�̄�2(𝜇)

[
𝛾O0 + O(�̄�2)

]
𝑗𝑘
O
𝑘;MS . (11)

Through an appropriate change of operator basis O → B we can bring the 1-loop anomalous
dimension matrix into Jordan normal form. The on-diagonal entries

�̂�𝑖 =
(𝛾B0 )𝑖𝑖

2𝑏0
(12)

6
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𝑁f �̂�𝑖

0 . . . . . . . .−0.273, 0.014, 0.273, . . . . . . .0.424, 0.560, 0.597, 0.634, 0.636, . . . . . . .0.727, 0.939, 0.955, 0.970,
1.091, 1.121, 1.145, 1.182, 1.201, 1.242, 1.501

4 −0.301, . . . . . . . . .−0.040, 0.040, 0.209, 0.419, 0.520, . . . . . .0.560, 0.698, 0.817, 0.920, 0.941, . . . . . .0.960,
1.120, 1.140, 1.160, 1.240, 1.320, 1.487, 1.661, 1.852

8 −0.913, −0.412, −0.103, 0.146, 0.294, . . . . . .0.412, 0.770, . . . . . .0.824, 0.882, 0.913, 0.941, 1.176,
1.186, 1.218, 1.235, 1.353, . . . . . . .1.412, 1.471, 1.972, 2.176, 2.370, 3.210

12 −2.614, −1.667, −1.040, −0.614, −0.333, 0.731, 0.778, 0.836, 0.889, 1.333, 1.424, 1.444,
. . . . . .1.556, . . . . . .1.667, 1.889, 2.223, . . . . . . .2.667, 2.836, 5.000, 5.145, 6.970

Table 1: List of unique asymptotically leading powers �̂�𝑖 found at O(𝑎2) rounded to the third decimal without
taking suppression due to vanishing matching coefficients or any subleading corrections into account. The
latter will obviously start at �̂�𝑖 + 1. . . . . . . . . . . . . . .Underdotted numbers belong to explicitly mass-dependent contributions,
underlined numbers originate from operators compatible with chiral symmetry, underdashed numbers orig-
inate from operators only compatible with the reduced Staggered symmetries as detailed in equations (7),
and the bold numbers highlight an explicit contribution of the form 𝑎2 [2𝑏0�̄�

2 (1/𝑎)] �̂�𝑖 log(2𝑏0�̄�
2 (1/𝑎))

originating from the extended operator basis of Staggered quarks. Powers with various markings originate
from all the corresponding sets of operators.

then yield the desired powers in the running coupling

Γ̂𝑖 = �̂�𝑖 + 𝑛𝑖 (13)

up to potential suppression from vanishing matching coefficients 𝑛𝑖 ∈ N ∪ {0}. If the 1-loop
anomalous dimension matrix is non-diagonalisable any off-diagonal entries remaining will give
rise to additional log(�̄�(𝜇)) factors. Here this is only relevant for 𝑁f = 0. For more details on these
logarithms have a look at the discussion in [18].

The 1-loop anomalous dimension matrix can be obtained from the 1-loop renormalisation of the
operator basis, where we work in background field gauge [19–22] and within the MS renormalisation
scheme [23–25]. The full setup is identical to our earlier work on Wilson and GW quarks [18].
Here we only give the powers �̂�𝑖 , see table 1, without taking matching into account as this will
depend on the particular choice of action. Notice that 4-quark operators violating chiral symmetry
are expected to be absent at tree-level as they cannot be generated from mixing with any of the
chirally-symmetric operators. For the full mixing matrix for our initial basis see the actual paper
explaining everything in more detail [26].

5. Conclusion

Contrary to other works on Staggered quarks we have chosen a strictly-local TR to establish
the connection to SymEFT. While this complicates the discussion of the symmetries significantly
it puts the SymEFT treatment on more solid grounds as one requires a local effective Lagrangian.
Also in this setup one is able to show absence of O(𝑎) terms in the on-shell minimal basis, settling
the question repeatedly asked in the past whether there are such terms, see e.g. [8, 9, 27–29].
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The operator basis found here is larger than the (different) ones found in either [27, 30] but
agrees with the one indicated in [31]. The derivation of the basis has been done in two independent
manners, where the second time an automation was devised, without any change for the minimal
basis. The renormalisation of the minimal basis further strengthens the expectation that this is
indeed the minimal basis because no redundancies in the available counterterms were observed. Of
course, this only guarantees absence of overcompleteness rather than completeness of the basis.

For this basis we have calculated the powers �̂�𝑖 relevant for the asymptotically leading correc-
tions to classical 𝑎2-scaling for spectral quantities of unrooted Staggered quarks. Those corrections
then lead to the asymptotic form 𝑎2 [2𝑏0�̄�

2(1/𝑎)] Γ̂𝑖 , where Γ̂𝑖 ≥ �̂�𝑖 accounts for potential suppres-
sion at the level of the matching coefficients, see eq. (13). Lattice artifacts involving local fields such
as, e.g., matrix elements and correlators get additional contributions due to the discretisation of the
local fields but the corrections computed here will still contribute. In general the severely enlarged
operator basis compared to Wilson and GW quarks makes the situation even more complicated due
to the various terms contributing.

Contrary to the O(3) non-linear sigma model we find min𝑖 Γ̂𝑖 ≳ −0.273,−0.301 for 𝑁f = 0, 4
respectively which is good news. Meanwhile the powers for 𝑁f = 8, 12 start to become troublingly
negative with min𝑖 Γ̂𝑖 ≳ −0.913,−2.614 respectively. Here one has to remember that the chiral-
symmetry breaking 4-quark operators, which are responsible for those powers, are expected to be
suppressed at tree-level. Thus shifting those powers by (at least) +1. Furthermore, 𝑁f = 12 is
expected to be (near-)conformal for 𝑁 = 3 making continuum extrapolations challenging.
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