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The pure 𝑆𝑈 (𝑁) gauge theory with a 𝜃 term has the Z𝑁 1-form global symmetry. When this
symmetry is gauged, it is formally established that the topological charge becomes fractional. In
this talk, we generate gauge configurations using the HMC method with coupling to the gauged
Z𝑁 2-form gauge field. After smoothing these configurations via the gradient flow method, we
numerically confirm that the topological charge has a fractional value. We also anticipate that
these higher-form fields can solve the topological freezing problem.

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:abe.motokazu@phys.kyushu-u.ac.jp
mailto:okuto.morikawa@riken.jp
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
8
0

Numerical simulation of fractional topological charge in 𝑆𝑈 (𝑁) gauge theories Motokazu Abe

1. Introduction

From a modern perspective, the concept of symmetry has been significantly extended and is
now referred to as generalized symmetry [1]. For instance, the pure 𝑆𝑈 (𝑁) gauge theory with 𝜃

term, 1
16𝜋2 𝜃

∫
d4𝑥 𝐹 ∧ 𝐹 = 𝜃𝑄, where 𝐹 is the field strength and 𝑄 is the topological charge, has

the Z𝑁 1-form global symmetry, which is originally known as the center symmetry. Since 𝑄 ∈ Z,
the path-integral weight is invariant under 2𝜋 shift of 𝜃: 𝑒−𝑖 𝜃𝑄 → 𝑒−𝑖 𝜃𝑄. The Z𝑁 1-form global
symmetry can be gauged, while 2-form background gauge fields, 𝐵, are introduced. Consequently,
a mixed ’t Hooft anomaly associated with the higher-form symmetry arises; the key point is that this
coupling with 𝐵 renders 𝑄 fractional. It is well known [2] that this anomaly is useful to understand
the low energy dynamics of gauge fields.

Recently, the fractional topological charge was defined in a completely lattice-regularized
framework, and the above mixed ’t Hooft anomaly was proved [3, 4]. Lattice field theories are
fully regularized in an ultra-local and non-perturbative manner, and enable us to perform numerical
simulations. In this talk, we numerically compute the fractional topological charge coupled with 𝐵

fields. Here, we generate those gauge configurations using the Hybrid Monte Carlo (HMC) method
with 𝐵 fields and make each configuration smooth by the gradient flow to compute 𝑄.

The coupling with 𝐵 fields also corresponds to the ’t Hooft twisted boundary condition (b.c.) [5].
(See also Ref. [6]). Here, we address the well-known issue of topological freezing, a numerical
challenge caused by critical slowing down in generating configurations. While the open b.c. is an
option to address this issue, the ’t Hooft twisted b.c. would also resolve this freezing problem. In
this talk, to see less severe freezing behaviors, we compare autocorrelation functions for two cases:
with 𝐵-fields (’t Hooft twisted b.c.) and without them (periodic b.c.).

2. Lattice setup

2.1 Z𝑁 1-form symmetry on the lattice

We perform the numerical calculation in the pure 𝑆𝑈 (𝑁) gauge theory with the following
Wilson action:

𝑆𝑊 [𝑈𝑙] ≡
∑︁

𝑝∈plaquettes
𝛽
[
tr
(
1l −𝑈𝑝

)
+ c.c.

]
, (1)

where the considered lattice isΛ = 𝐿4,𝑈𝑙 = 𝑈𝜇 (𝑛) denotes link variables living on a bond 𝑙 = (𝑛, 𝜇)
with a lattice site 𝑛 ∈ Λ, 𝑈𝑝 = 𝑈𝜇 (𝑛)𝑈𝜈 (𝑛 + 𝜇̂)𝑈†

𝜇 (𝑛 + 𝜈̂)𝑈†
𝜈 (𝑛) stands for the plaquette term at

𝑝 = (𝑛, 𝜇, 𝜈), and 𝛽 = 1/𝑔2
0. This action is invariant under the Z𝑁 1-form global transformation

𝑈𝑙 → 𝑒
2𝜋𝑖
𝑁

𝑘𝑈𝑙 (𝑘 = 0, 1, . . . , 𝑁 − 1). Let us define a codimension-1 surface Σ and symmetry
operator on it, 𝑈 (Σ), which acts as the Z𝑁 1-form transformation: 𝑈 (Σ)𝑈𝑙 = 𝑒

2𝜋𝑖
𝑁

𝑘 Link(Σ,𝑙)𝑈𝑙 with
an oriented intersection number Link(Σ, 𝑙) between Σ and 𝑙. Since 𝑈 (Σ) always passes through a
plaquette by an even number of times and 𝑘 is fixed, 𝑈𝑝 is invariant (Fig. 1(a)). Supposing that
Σ has a boundary and a loop 𝐶 surrounds this codimension-2 boundary, the Wilson loop 𝑊 (𝐶),
which is defined by the product of link variables on 𝐶, is transformed by 𝑒

2𝜋𝑖
𝑁

𝑘 ; that is, the Wilson
loop is a charged object associated to the 1-form symmetry. Moreover, with the knowledge from
fiber bundle, gauge transformations between gauge fields in adjacent 4-dimensional hypercubes,
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transition functions 𝑣𝑛,𝜇, satisfy the cocycle condition 𝑣𝑛− 𝜇̂,𝜈 (𝑥)𝑣𝑛,𝜇 (𝑥)𝑣𝑛,𝜈 (𝑥)−1𝑣𝑛−𝜈̂,𝜇 (𝑥)−1 = 1l.
Here for a general space-time 𝑥 ∈ 𝑝 = (𝑛, 𝜇, 𝜈), we can see the explicit form of 𝑣𝑛,𝜇 (𝑥) in Ref. [7].
Note that this condition is invariant under the Z𝑁 1-form symmetry. Next, we gauge this Z𝑁 1-form
global symmetry. Coupled with 2-form background gauge field 𝐵𝑝 (𝑛) to the plaquette, the action
becomes

𝑆𝑊 [𝑈𝑙, 𝐵𝑝] ≡
∑︁

𝑝∈plaquettes
𝛽

[
tr
(
1l − 𝑒−

2𝜋𝑖
𝑁

𝐵𝑝𝑈𝑝

)
+ c.c.

]
. (2)

This action is invariant under 𝑈𝑙 ↦→ 𝑒
2𝜋𝑖
𝑁

𝜆𝑙𝑈𝑙, 𝐵𝑝 ↦→ 𝐵𝑝 + (d𝜆)𝑝 (Fig. 1(b)). Then, the cocycle
condition is relaxed as following [3, 4]:

𝑣̃𝑛−𝜈̂,𝜇 (𝑥)𝑣̃𝑛,𝜈 (𝑥)𝑣̃𝑛,𝜇 (𝑥)−1𝑣̃𝑛− 𝜇̂,𝜈 (𝑥)−1 = 𝑒
2𝜋𝑖
𝑁

𝐵𝜇𝜈 (𝑛− 𝜇̂−𝜈̂)1l. (3)

𝑈 (Σ)

𝑈𝑝

𝑈𝑙

𝑊 (𝐶)

𝑈 (Σ)

𝑈𝑝

𝑈𝑙

𝑊 (𝐶)

𝑈 (Σ)

𝑈𝑝

𝑈𝑙

𝑊 (𝐶)

1(a) Global symmetry

𝑈 (Σ)

𝑈𝑝

𝑈𝑙

𝑊 (𝐶)

𝐵𝑝

𝑈 (Σ)

𝑈𝑝

𝑈𝑙

𝑊 (𝐶)

𝑈 (Σ)

𝑈𝑝

𝑈𝑙

𝑊 (𝐶)

1(b) Gauged case

Figure 1: Z𝑁 1-form symmetry transformation on the lattice. The left panel 1(a) illustrates the global
symmetry, while the right panel 1(b) depicts the gauged symmetry. The red line represents the symmetry
operator 𝑈 (Σ), the purple line indicates the Wilson loop 𝑊 (𝐶), and the orange-shaded region highlights the
plaquette coupled with the 𝐵-fields.

2.2 Topological charge

At first, we generate gauge configurations using the HMC method with the action excluding
the 𝐵-fields (Eq. (1)) and calculate the topological charge 𝑄 for each configuration. To suppress
ultraviolet fluctuations, the link variables are smoothed by the gradient flow method. The flow
equation [8] is

𝜕𝑡𝑉𝑡 (𝑛, 𝜇) = −𝑔2
0
(
𝜕𝑛,𝜇𝑆𝑊 [𝑉𝑡 ]

)
𝑉𝑡 (𝑛, 𝜇), 𝑉𝑡 (𝑛, 𝜇)

��
𝑡=0 = 𝑈𝜇 (𝑛), (4)

where 𝜕𝑛,𝜇 is the Lie-algebra derivative. We calculate 𝑄 at a specific flow time 𝑡 = (0.7𝐿)2/8. By
applying the gradient flow method, 𝑄 takes an integer value even in numerical lattice calculations.
Indeed, many studies have focused on lattice-based instanton calculations employing various ac-
tions [9]. Additionally, we adopt an improved method to measure the topological charge 𝑄 on the
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lattice. We consider not only the clover definition 𝑄
𝑃

𝐿 but also a rectangular improvement term 𝑄
𝑅

𝐿 ,
that is,

𝑄imp =
∑︁
𝑛∈Λ

{
𝑐0𝑄

𝑃

𝐿 (𝑛) + 𝑐1𝑄
𝑅

𝐿 (𝑛)
}
, (5)

𝑄
𝑃

𝐿 (𝑛) =
1

32𝜋2 𝜖𝜇𝜈𝜌𝜎 Tr
(
𝐶𝑃
𝜇𝜈𝐶

𝑃
𝜌𝜎

)
, 𝑄

𝑅

𝐿 (𝑛) =
2

32𝜋2 𝜖𝜇𝜈𝜌𝜎 Tr
(
𝐶𝑅
𝜇𝜈𝐶

𝑅
𝜌𝜎

)
, (6)

𝐶𝑃
𝜇𝜈 =

1
4

Im


 , 𝐶𝑅
𝜇𝜈 =

1
8

Im


+


, (7)

where we choose 𝑐0 = 5/3 and 𝑐1 = −1/12, which is identical to Ref. [10].
Next, we generate gauge configurations using an HMC method with the action coupled with

𝐵-fields (Eq. (2)). Here, we treat the 𝐵 field as a dynamical flux rather than a background field,
which naively breaks the detailed balance of the HMC method. To restore the detailed balance, we
employ a modified HMC algorithm, the “halfway-updating” HMC given in Ref. [11]. Since the
coupling of the 𝐵-fields is implemented in the same way as in the action, we substitute 𝑆𝑊 [𝑉𝑡 , 𝐵]
instead of 𝑆𝑊 [𝑉𝑡 ] into the flow equation (4); 𝑄 acquires fractional values as

𝑄 = − 1
𝑁

∫
𝑇4

1
2
𝑃2(𝐵𝑝) mod 1, (8)

where the Pontryagin square is defined by

𝑃2(𝐵𝑝) = 𝐵𝑝 ∪ 𝐵𝑝 + 𝐵𝑝 ∪1 d𝐵𝑝 . (9)

We insert the 𝐵 field to construct the Z𝑁 1-form symmetry, and it is known that this insertion is
equivalent to imposing the ’t Hooft twisted b.c. instead of the periodic b.c. This equivalence can
be verified under a gauge transformation of the 𝐵 field. With the ’t Hooft twisted b.c., 𝑄 also takes
fractional values; we can ensure that the construction in this talk is consistent with Ref. [6, 12].

2.3 Autocorrelation function and time vs. topological freezing

Physical values generated by the HMC method exhibit autocorrelation, which is a critical
metric for obtaining sufficient statistics in numerical calculations. The autocorrelation time of 𝑄
increases as the lattice spacing decreases, scaling as 1/𝑎7. This phenomenon poses a significant
numerical challenge known as topological freezing [8].

To address this, we first define the autocorrelation function and time. Consider numerical data
{𝑎𝑖} (𝑖 = 1, . . . , 𝑁) , generated by the Monte Carlo method. Here, these data represent 𝑄. The
autocorrelation function is defined as

Γ(𝜏) = 1
𝑁 − 𝜏

𝑁−𝜏∑︁
𝑖=1

(𝑎𝑖 − ⟨𝑎⟩) (𝑎𝑖+𝜏 − ⟨𝑎⟩) , (10)
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where ⟨𝑎⟩ = 1
𝑁

∑𝑁
𝑖=1 𝑎𝑖 , and 𝜏 is the number of trajectories (molecular dynamics time) in the HMC

method. Then, the autocorrelation time 𝑡auto is defined by the normalized autocorrelation function
as

𝜌(𝜏) = Γ(𝜏)/Γ(0) ≃ 𝑒−𝜏/𝑡auto . (11)

Furthermore, the integrated autocorrelation time for finite data is

𝜏int(𝑊) = 1
2
+

𝑊∑︁
𝑖=1

𝜌(𝑖), (12)

where 𝑊 is the summation window. If there is no autocorrelation between data, 𝜏int = 1/2. The
stronger the autocorrelation, the larger 𝜏int becomes. One solution to mitigate this freezing problem
is to impose open b.c. instead of periodic b.c. [13]. In this talk, we impose some kind of ’t Hooft
twisted b.c. through the random dynamics of the 𝐵-fields, and as a result, topological freezing is
expected to be resolved.

2.4 Lattice parameters

We perform the calculation of the topological charge in the 𝑆𝑈 (2) and 𝑆𝑈 (2)/Z2 gauge theory.
Then, we use the following parameters of coupling constant, lattice spacing, and lattice size given
in Table 1 in our actions (Eq.(1) and (2)).

𝛽 𝑎
√
𝜎 𝐿 𝐿𝑎

√
𝜎 number of configurations

2.4 0.2673 8 2.138 4000
2.5 0.186 12 2.23 4000
2.6 0.1326 16 2.122 1000

Table 1: Lattice calculations for 𝑆𝑈 (2) and 𝑆𝑈 (2)/Z2 gauge theories and the corresponding number of
configurations. For each value of the gauge coupling 𝛽, the lattice spacing 𝑎 is expressed in units of the
string tension 𝜎, as reported in Ref. [14]. Simulations are performed on various lattice sizes, 𝐿4, with the
corresponding number of configurations listed.

3. Simulation results

3.1 Integer topological charge

The result of the calculation of 𝑄 using the action without the 𝐵-fields in Eq. (1), specifically
with 𝛽 = 2.4 and 𝐿 = 8, is shown in Fig. 2(a). The computation is done for each configuration and
depicted with the trajectory number as the horizontal axis. It shows that 𝑄 is concentrated around
integer values.

3.2 Fractional topological charge

In Fig. 2(b), we present the results of the calculation of 𝑄 using the action coupled with the
𝐵-fields in Eq. (2), where the parameters are set to 𝛽 = 2.4 and 𝐿 = 8. In particular, Fig. 3 illustrates

5
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2(a) 𝑄 without the 𝐵-fields 2(b) 𝑄 with 𝐵 fields

Figure 2: Topological charge 𝑄 vs. the trajectory number 𝜏 (molecular dynamics time). Each configuration
is separated by 10 trajectories. The left panel shows that 𝑄 is almost integral, while the right panel indicates
that 𝑄 is fractional. 𝛽 = 2.4 and 𝐿 = 8.

how 𝑄 evolves with the flow time for a configuration. In this example, 𝑄 approaches the fractional
value 0.5 because we set 𝑁 = 2 in Eq. (8). We also adapted some definitions of the topological
charge: the simple plaquette one, the clover improvement, and our rectangular improved one. Then,
Fig. 2(b) shows that 𝑄 instead clusters around fractional values, which is multiples of 1/2 and
different from Fig. 2(a).

Figure 3: Topological charge 𝑄 vs. the flow time 𝑡. The configuration is selected from the region where
thermalization has occurred and sufficient time has passed, specifically at 𝜏 = 1000. From this, it becomes
evident that the rectangular improved method we chose exhibits the best convergence. Here, the purple
line represents a specific flow time, 𝑡 = (0.7𝐿)2/8, chosen as the stage before oversmearing in the flow
equation (4).

3.3 Normalized autocorrelation function and integrated autocorrelation time

From Fig. 4, we see the normalized autocorrelation function 𝜌(𝜏). The autocorrelation time
increases as the lattice spacing 𝑎 becomes larger. However, when the 𝐵-fields are introduced,
the autocorrelation time becomes remarkably smaller. This suggests that topological freezing is
mitigated by imposing the ’t Hooft twisted b.c.

6
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4(a) 𝜌(𝜏) without the 𝐵-fields 4(b) 𝜌(𝜏) with the 𝐵-fields

Figure 4: Normalized autocorrelation function 𝜌(𝜏) of the topological charge 𝑄 without (Fig. 4(a)) and with
(Fig. 4(b)) the 𝐵-fields for each 𝑎

√
𝜎. The label shows the value of 𝑎

√
𝜎 in Table 1. From the top of the

label, we use the lattice size 𝐿 = 8, 12, 16.

4. Conclusion and future works

In this talk, we numerically calculate the fractional topological charge by introducing the 𝐵-
fields, which were formally constructed on the lattice [3, 4]. We also compute the autocorrelation
time in the presence of the 𝐵-fields and demonstrate that the issue of topological freezing is mitigated
by imposing the ’t Hooft twisted boundary condition.

The other research in Ref. [13], which addresses topological freezing by imposing open bound-
ary conditions, shows that the integrated autocorrelation time scales as 1/𝑎2. In our setup, we aim
to verify the behavior of the integrated autocorrelation time as a function of the lattice spacing 𝑎 by
increasing the number of data points at different values of 𝑎.

Furthermore, by introducing the 𝐵-fields, we plan to numerically calculate the ’t Hooft partition
function as discussed in Ref. [15]. Since this partition function serves as an order parameter for
gauge field confinement, we aim to confirm the phase diagram of the 𝑆𝑈 (2)/Z2 gauge theory
through numerical calculations. In the 𝑆𝑈 (2) gauge theory, quite recently, the computation of the
’t Hooft partition function using the Monte Carlo method is addressed in Ref. [16].
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