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We investigate a single spherical domain-wall embedded in a three-dimensional Euclidean lattice.
We employ the Shamir-type domain-wall fermion formulation, where the negative mass region
is confined inside the $? domain-wall, while the positive mass outside is taken to the infinite
limit, allowing the exterior region to be neglected effectively. In the absence of a gauge potential,
Weyl fermions emerge as edge-localized modes along the S?> domain-wall. When a nontrivial
U(1) gauge potential is present, additional zero modes with opposite chirality appears, localized
at the center near the monopole. This centrally localized mode originates from the effective mass
contribution of the Wilson term, which induces a domain-wall near the monopole.
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1. Introduction

In the conventional flat domain-wall fermion framework [1-3], two domain walls are required
on a five-dimensional lattice to localize massless left- and right-handed fermions. This setup
has been explored as a potential foundation for constructing chiral gauge theories on the lattice.
However, decoupling unwanted modes from gauge fields presents significant challenges [4]. For
instance, the cobordism invariance of instanton backgrounds ensures that both domain-walls host
an equal number of zero modes, making it difficult to isolate purely chiral dynamics in the low-
energy theory. Recently, symmetric mass generation mechanism is studied to gap out these unwanted
modes without breaking chiral symmetry [5]. However, this method relies on highly nonperturbative
dynamics, which remain challenging to fully understand and implement.

When the domain-wall is allowed to have nontrivial curvature, it does not have to appear in
left and right pairs. In particular, when the domain-wall is a closed manifold like a sphere, it
can be embedded into a one-dimension higher flat space without any other domain-walls. Nash
embedding theorems [6] guarantee that every curved manifold can be isometrically embedded into
a finite-dimensional Euclidean spaces. Moreover, the metric and spin connection are uniquely
determined up to the local Lorentz transformation by the embedding.

Two of the authors have embodied this concept in lattice gauge theory [7, 8]. They have
confirmed that the spherical domain-wall fermion systems on a periodic flat lattice hold edge-
localized modes, which feel gravity through the induced spin connection. The obtained eigenvalue
spectrum is consistent with the continuum theory prediction. Moreover, automatic recovery of the
rotational invariance is also observed.

Recently, a similar system was discussed in Refs. [9—12]. Since the single spherical domain-
wall fermion can have an isolated left- or right-handed edge fermion, they argued that chiral gauge
theory can be formulated on the lattice. Although this proposal is appealing in the free fermion case,
it is nontrivial to reproduce the Weyl fermion anomaly and its cancellation. In particular, it was
pointed out in Ref. [13] that an axial current, which should be anomalous, can become conserved,
which contradicts with the continuum theory.

In this work, we consider a two-dimensional spherical domain-wall embedded in a three-
dimensional square lattice. The result was already published in Ref. [14]. As is expected, the free
fermion Dirac operator spectrum is consistent with that of a single Weyl fermion. The gravitational
effect through the induced spin connection is confirmed in the gap of the eigenvalues. However,
when a topologically nontrivial U(1) gauge background is given, we find an additional zero mode
localized at the center of the sphere, where the gauge field becomes singular. We identify this
additional zero mode as an edge-localized state on a small but finite domain-wall near the center,
which is dynamically created by the Wilson term'.

Tn Ref. [15], we discussed that the same mechanism can explain the Witten effect, in which the monopole background
captures an electron zero mode and becomes a dyon.
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2. Without gauge fields

In this paper, we consider Dirac operators

if 0 .
D:ZU@ﬁ”m%mm v

on a three-dimensional Euclidean space R3. Here, o7 is a Pauli matrix, A; is a U(1) gauge field in

the i-th direction, which will be considered in a later section, and m(r) is a mass term. To put an
S? domain-wall with the radius ro, the form of m(r) is

m(r) = {—m (r <rp) )

+M (r >r0),

where m and M are positive constants. We denote the negative mass region as D3. Taking the limit
of M — +co. It is equivalent to ignoring the outside of D* and imposing a boundary condition

o (ro) = +¥(ro), 3)

where the chirality operator o is given by
oy = Z aixi/r. 4)
i

Then, we obtain a Shamir domain-wall fermion system. If we employ the Hermitian conjugate
operator D, we obtain a boundary condition with o, = —1.

We first address the free fermion case with A = 0. Since the system is rotational symmetric,
the Dirac operator D commutes with the total angular momentum operators

1
Jo=Ls+ Eo-aa )
where L, is the orbital contribution
. 0
L, = _lfabcxb%, (6)

and %cra is the spin part. Let j be the total angular momentum quantum number. Then, we have

135

| = ) D) s "0 7
I=5353 (7

Respecting the rotational symmetry, we rewrite D as

o 1 iD%
D:a,(_+__’ —m, ®)

or r r
where DS’ is an effective Dirac operator given by
1

iDS = 0% (Ly) + 1= 0% — =. ©9)

2
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2 . . .
D’" and o, commute with the total angular momentum operator J,,, but anti-commute with each
. 2 . .
other. Since the square of DS is give by

(iDS)? =J + %, (10)

the eigenvalues of DS are not zero. We find the spinors .+ which satisfy

P xjjne =70+ Dxj e (11)
J3Xj,j3,i:j3)(j,j3,i (.]3 :_j’_j+1"“ ’j_laj)9 (12)
..q2 o1
iDS Xjjpx = 2VXjjpe (V= + ) (13)
OrXj.jst = Xj.j3. % (14)

The eigenstate of DYDy = E>y and DDy = E%y are expanded by Xj.j3,+- Assuming that E
is positive, we obtain the edge localized modes as

§ 1
WPP = —(Vm =Bl ap (N2 = B2 jo + N+ Elyap(Vm? = E2)y i) (15)

\/;
¥ 1
yrr = %(Vm_Elv—l/Z(sz_Ezr)Xj,j3,+_ Vm+EIV+1/2(Vm2_Ezr)/\,/j,js,—) (16)

for E < m. They have a (2j + 1)-fold degeneracy. From the boundary condition for D and DY, E
must satisfies

I1p(Nm? = E?rg)  Nm+E

= . 17)
Iv+1/2( sz—Ezl"()) m-—FE
In the large mass limit, E converges to
E— 2L (18)
ro

Thus, identifying o, as the chirality operator, the Weyl fermions appear at the wall, on which the
effective massless Dirac operator iDS acts.

Let us rewrite DS’ in a standard form of the Dirac operator on S2. Taking the gauge transfor-
mation or local Lorentz transformation,

R(6,¢) = exp(igcrz) exp(igog), 19)

we obtain

: : 0 o 0 1 cosf
“i#12R(0, $)iDS R(0, ¢) e ?/? = - O - L@
e (6, p)i (6,¢) e 73| 715, + sind |30 i\ =5 + 503 (20)

The transformation by ¢’%/> makes R(6, ¢) periodic in ¢ — ¢ + 27. Then, —% next to % is
generated as a spin® connection and the wave function becomes 2r-periodic with respect to ¢. The

last term <% 9 o3 is the spin connection on S2, which is related to the gravitational effect.
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Next, we show that the Weyl fermion system appear
at the wall on a lattice space. We discretize the three-

dimensional disk D? with the radius r and lattice spacing

a. We depict the two-dimensional version of the disk in

Fig. 1. Letx = (x],xz,x3) denote the lattice point, which

takes

3 1 1 3
X =+, —za, —za, -a, -d, -, (21)

2 27272

and satisfies r* = 3, (x")? < rZ. The forward difference
and its conjugate are given by

Vit (x) = ¥ (x + ai) =y (x), (22)
Vi () =y (x — ai) =y (x). (23) Figure 1: Two-dimensional disk with the

radius ro and lattice spacing a. We assign

Here, 7 is a unit vector in the i-th direction. If the length . )
the negative mass —m < 0 on the disk.

of x + ai exceeds ro, then ¥ (x + ai) = 0. As well as the
continuum theory, we have the Wilson Dirac operator,

3 T
1 Vi -V 1 t
Dy = ;(; gi———+ 5 ViV] | —am|. (24)
We also define the chirality operator
1
or(x) = —=(o'x' + 2% + 1) (25)
r

We numerically solve the eigenvalue problem DiVDWw = E%y at rg = 24a and ma = 0.35.
We plot numerical results for Erg by filled symbols in Fig 2, which is the square root of the
eigenvalue normalized by ro. The color gradation is the expectation value of o.. We can find that
all modes below mr(, which is represented by the dotted line, have the positive chirality. The lattice
data agrees well with the continuum prediction (Eq. (17)) designated by the orange cross symbols.
The finite mass and rg slightly shift Erg from v = +1, 2,---. The degeneracy looks (2 + 1)-fold,
but we can see the misalignment due to the violation of the continuous rotational symmetry.

The gap from zero is interpreted as the gravitational effect on S2. In general, the eigenvalues
A of the Dirac operator on an n-dimensional compact manifold satisfies

2> ﬁ min R(x), (26)

where R is the scalar curvature of the manifold [16]. In our case, the scalar curvature is a constant
function: R = n(n — 1) = 2, and the eigenvalues are larger than one. We can see this gap in Fig. 2
and Fig. 3.

We also plot the eigenvalue of DWDIV in Fig. 3. The spectrum is the same as Fig 2, but the
chirality is opposite.

In Fig. 4, we show the amplitude distribution of the lowest mode of D:VDW and Dchv ata
slice x3 = a/2. The color gradation represents the point-wise chirality,

Wi () "o () () [ () T (), 27
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Figure 2: The spectrum of DJ{,VDW at rg = 24a and ma = 0.35 (mrg = 8.4). We plot Ery, which is the
square root of the eigenvalue normalized by ro. The color gradation represents the chirality, which is the
expectation value of o,.. mrg is shown by the dotted line.
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Figure 3: The spectrum of DWDTW. The parameter is the same as Fig. 2.

where k is the label of the eigenstates. We find that these modes are localized at the domain-wall.
To evaluate the systematic error due to the lattice space a, we compute the eigenvalues by

changing the lattice space a while keeping mro = 8.4. We plot the relative deviation of the lowest

eigenvalue,

Eip - Eyy

cont ’
El /2

AEl /2= (28)

in Fig. 5. Here, the subscript 1/2 means the total angular momentum quantum number j = 1/2.
We can see that our lattice results linearly converge to the continuum predictions in the limit of
a — 0. The finite volume effect is also discussed in Ref. [14].

6.€ (20230 111V )Sod
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Figure 4: The amplitude of the lowest eigenstate of DWD;V (left panel) and that of D];VDW (right panel) at
ro = 24a and ma = 0.35 at a slice x> = a/2. The color gradation is defined by Eq. (27).
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Figure 5: The relative error of £, plotted as the function of the lattice spacing a normalized by ro. We fix
mro = 8.4.

Finally, we consider the restoration of the rotational symmetry in the continuum limit. In
Fig. 4, there are spiky peaks, which violate the rotational symmetry. To measure the violation, we
take the standard deviation o of the peaks near boundary normalized by their average u in Fig. 6.
We can see that our results converge to zero in a — 0. This indicates that the rotational symmetry
automatically recovers in the continuum limit.

Thus, we conclude that the Weyl fermion appear at the boundary in the absence of the monopole
even in the lattice theory. Apparently, there exists no mirror fermion with the opposite chirality.

This single domain-wall fermion system may be useful for constructing chiral gauge theories on the
lattice. Although, the chirality is not perfect unless mrg — O.
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Figure 6: The standard deviation o normalized by the average of peaks at the boundary plotted as the
function of the lattice spacing a. Here, we keep mry = 8.4.

3. With gauge fields

In the previous section, we discussed the Shamir domain-wall fermion system in the absence
of a gauge potential. In this section, let us turn on a nontrivial gauge potential

—4qm)y A = dmX

e YT aeen T @

where the monopole charge ¢g,, is constrained to be an integer by Dirac’s quantization condition.
The gauge configuration (29) has the Dirac string at x = y = O and z < 0. Later, we will demonstrate
that the Dirac string has no physical effects. In the continuum discussion, we ignore it for simplicity.

In the presence of a nontrivial gauge potential, the angular momentum operator is modified to

L, = i€ pex” ( _ iAC) _Ma (30)

Ox¢ 2r’

where we denote the quantized monopole charge as g, = n € Z. With this modification, the total
angular momentum j becomes

-1 -1 -1
PR RIS

R 2 31D

under the condition j > 0. We also note that the Dirac operator on the S?> domain-wall (which
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reduces to Eq. (20) when the gauge field vanishes) is given by

731780 T Tsing\ag T2 T T2 7B

.2 . .
- oy [Ol%_l_ o (8 n sin“6 +i_zcosea_3)}’ (32)

sin @ %_l§1+cos9 2 2

where Ay and A¢ are the dimensionless gauge potential given by Ag = rAg and A¢ =rsinfAy,
respectively.

When the total angular momentum is j = (|n| — 1)/2 with |n| > 1, we have a solution that
did not exist in the absence of the gauge potential. We denote an eigenstate of J2, Js, iDS” and o

satisfying
Pxj.js0 =70+ Dxjj0 (33)
J3Xj.73.0 = J3X].j3.05 (34)
iDS xj.j0 = 0, (35)
OrXj.j5,0 = Sign(n) x;,j5.0, (36)

as x;.j;,0- Then we find an edge-localized solution

1
o = ﬁf(r))(j,h,o (37
with
f(r) =ClLyp(kr) = C\/i sinh(kr), (38)
TKF

where C is a normalization constant.

For n < 0, it follows that from Eq. (36) that this solution cannot satisfy the boundary condition
with a positive sign o ¥o(r = ro) = +¥o(r = rg). This fact affects the index of the Dirac operator
DS on the sphere. From the Atiyah—Singer index theorem [17], we obtain

Index(iD%) = — / F=n. (39)
2r Jg2

This implies that the Weyl fermion with positive chirality does not contribute negatively to the index
when n < 0. We also note that the boundary condition o Dyyo(r = rg) = —Dio(r = rp) is not
satisfied except in the case of Dy(r = rg) = 0 when taking the limit of m — co. Therefore, we
have no chiral zero mode both of D™D and iDS” in the presence of the nontrivial gauge field with
n < 0 except for m — oo.

Next, let us move on to the lattice analysis. In lattice gauge theory, the U(1) gauge potential is
introduced by the link variable

U;(x) = exp (i/x l Ai(x’)dx’i) i (40)
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where the vector potential A;(x) is given by Eq. (29). The covariant difference operators are given
by

Vi (x) = Ui () (x + ai) — g (x). (41)

As mentioned earlier, it can be verified that the Dirac string at x = y = 0, z < 0 has no physical
effect under the link variable Eq. (40). Let p. be the values of the plaquettes in xy-plane, centered
at x; = (0,0, £a/2). These two values are computed as

al2 al2
P+ = €xp (l/ dxAl(x,—a/2,ia/2)+/ dy Ay(a/2,y,+a/2)

al2 -a/2
al2 al2
—/ dxAl(x,a/2,ia/2)—/ dy Ay(—a/2,y,+a/2) 42)
—a/2 -a/2
= M3, (43)

We see that the result is symmetric, which implies that Dirac string intersecting the plaquette at x_
does not influence the value p_. Thus, we conclude that the Dirac string has no physical effects.

Fig. 7 shows the plot of the eigenvalue spectrum of D;VDW for n = 1 (upper panel) and n = —1
(lower panel). The lattice setup is the same as in the previous section. As in Fig. 7, the orange cross
symbols represent the continuum results, while the filled circular symbols represent the numerical
results on the lattice. We see for n = 1 that all modes below mry, including the zero mode, have
chirality o = +1, which is consistent with the continuum results. IN contrast, for n = —1, we find
a zero mode with chirality o, = —1, which does not appear in the continuum analysis. The extra
zero mode is localized at the center where the monopole is placed, as Fig 8 shows.

The origin of the zero mode localized at the center can be explained by the contribution to the
effective mass from the Wilson term. We define the effective mass as

B3 (ZL, £ViV] - m) o)
B (X)bo(x)

Mei (x) = (44)

where ¢ (x) is the center-localized extra zero mode, and the term on the right-hand side proportional
to V,-VIT represents the contribution from the Wilson term. The numerical plot in the z = 1/2 slice
is provided in Fig. 9. We observe a peak at the center, where the sign of the effective mass flips.
We can interpret it as a domain-wall being generated in the vicinity of the monopole to populate
the zero mode localized on it. As a result, we cannot regard the low-energy effective theory of the
system as a chiral gauge theory. Instead, the low-energy theory would actually be described by a
vector-like gauge theory on the two domain walls.

4. Summary

In this article, we have studied the Shamir-type domain-wall fermion system with the spherical
S? domain-wall. The domain-wall is embedded in three-dimensional flat spacetime, where a single
massive Dirac fermion resides. When the gauge potential is trivial, as discussed in Section 3, we
have found that the almost chiral modes are localized on the S> domain-wall. We have seen that

10
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Figure 7: The plot of the eigenvalues of D;VDW with n = 1 (upper panel) and n = —1 (lower panel).
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Figure 8: The amplitude of the zero mode at 7 = a/2 slice withn = —1.
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4

TILLE

Figure 9: The plot of the effective mass defined in Eq. (44) for the center-localized zero mode at z = a/2
slice.

the chiral modes feel gravity by analyzing the induced spin connection in the Dirac operator on
the sphere. We have also evaluated the finite volume effect and the restoration of the rotational
symmetry in the continuum limit. By turning on the nontrivial U(1) gauge potential, the results
change drastically. We have found zero modes localized at the center, which possesses chirality
opposite to that of the zero modes localized at the edge. The centrally localized zero modes can
be understood as arising from the domain-wall generated near the monopole. The appearance of
additional zero modes implies that the chiral gauge theory is not realized as a low-energy theory of
this system.
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