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1. Introduction

It has proven difficult to give a nonperturbative definition of the Standard Model. This is due to
our inability to formulate non-abelian chiral gauge theories on the lattice. Despite many decades of
effort, and even a solution for abelian chiral gauge theories, the problem remains unsolved [1–3].

The situation improves considerably when considering a global chiral symmetry with an ’t Hooft
anomaly (as in quantum chromodynamics) rather than a gauged chiral symmetry (as in electroweak
theory). Developments related to the Ginsparg-Wilson (gw) relation [4] have clarified how an
anomalous global chiral symmetry manifests optimally on the lattice [5], leading to a satisfactory
resolution of the “fermion-doubling” problem [6–9] and eventually even a nonperturbative definition
for abelian chiral gauge theories [3].

Meanwhile, recent advances at the intersection of condensed-matter and particle physics have
revealed a broader classification of fermionic anomalies [10–13]. This includes the well-known
perturbative and conventional global anomalies [14], but also newer, more subtle global anomalies
[12, 13, 15–17]. These new insights have emerged from the correspondence between symmetry-
protected topological (spt) phases in the bulk and ’t Hooft anomalies on the boundary — the
so-called bulk-boundary correspondence — which has led to a renaissance of attempts towards
constructing lattice chiral gauge theories [18–34].

Given the importance of the gw relation in understanding the chiral anomaly on the lattice,
and the broadening of our understanding of fermionic anomalies, the central question of this talk is
the following: can the gw relation capture all fermionic anomalies? In other words, is there a gw
relation for any fermionic anomaly (or equivalently, an spt phase in one higher dimension)?

Boundary

Bulk

Anomaly

SPT phase

Ginsparg-Wilson relation

Domain-wall fermion

Figure 1: The relation between conventional domain-wall fermions and the gw relation for Dirac fermions is
an explicit lattice realization of the general bulk-boundary correspondence between spt phases in the bulk and
’t Hooft anomalies on the boundary. Are there gw relations for all fermionic anomalies, or equivalently, all
fermionic spt phases?

In this talk,1 we discuss recent progress in using a gw approach towards understanding fermionic
anomalies on the lattice [32]. We show that the original gw construction, which applied to
infinitesimal chiral symmetry for even-dimensional Dirac fermions, may be generalized to Majorana
or Dirac fermions in arbitrary spacetime dimension and arbitrary (discrete or continuous) anomalous
symmetry transformations. We find that these generalized gw relations apply to various bulk spt
phases, reproducing the corresponding anomalies.

1Notation: Throughout this talk, we use 𝑑 for Euclidean spacetime dimensions. The Euclidean Dirac 𝛾𝜇 (𝜇 = 1, . . . , 𝑑)
matrices are chosen to be Hermitian so that the continuum Dirac operator /𝜕 = 𝛾𝜇𝜕𝜇 is anti-Hermitian. We use the notation
𝐷 for a regulated Dirac operator and D for a (unregulated) continuum Dirac operator. When using a lattice-regulated
Dirac operator, we write the action simply as 𝑆 = 𝜓𝐷𝜓, suppressing the sum over any spatial, spinor or flavor indices.
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To show how the gw relation can be generalized, we first recall the fermion doubling problem
for Dirac fermions and how the standard gw relation resolves it in Sec. 2. Then, in Sec. 3, we discuss
generalizations of the gw relation with the example of 1-dimensional Majorana fermions with a
discrete time-reversal anomaly, following Ref. [32]. Finally, in Sec. 4, we comment on some open
questions in this approach.

2. Dirac fermions and the chiral anomaly

Although the problem for a gauged chiral symmetry is more severe, there is in fact already
a problem with the global chiral symmetry for a Dirac fermion on the lattice. Simply put, naive
attempts to formulate Dirac fermions with an exact chiral symmetry on the lattice lead to additional
unwanted fermions, called “doublers”. This can be seen by a straightforward discretization of the
continuum Dirac action 𝑆 =

∫
𝑑𝑑𝑥 𝜓/𝜕𝜓, where we simply replace the continuum derivative with

a difference operator on a 𝑑 (even)-dimensional hypercubic Euclidean spacetime lattice. In the
absence of gauge fields, this becomes

D𝜓 = 𝛾𝜇𝜕𝜇𝜓
naive−−−−−−−−−−−−−→

discretization
𝐷𝜓 =

1
2𝑎

∑
𝜇 𝛾𝜇 (𝛿𝜇 + 𝛿∗𝜇)𝜓 = 1

2𝑎
∑

𝜇 𝛾
𝜇
(
𝜓𝑥+�̂� − 𝜓𝑥− �̂�

)
(1)

where 𝑎 is the lattice spacing, 𝛾𝜇 are the (Hermitian) Dirac matrices, and 𝛿𝜇, 𝛿
∗
𝜇 are forward and

backward difference operators, respectively, acting on lattice Dirac fields 𝜓𝑥 as 𝛿𝜇𝜓𝑥 = 𝜓𝑥+�̂� − 𝜓𝑥

and 𝛿∗𝜇𝜓𝑥 = 𝜓𝑥 − 𝜓𝑥− �̂�, with �̂� being a unit vector in the direction 𝜇 = 1, . . . , 𝑑. In momentum
space, the continuum Dirac operator D(𝑝) = 𝛾𝜇𝑝𝜇 becomes the lattice Dirac operator 𝐷 (𝑝) =
𝑖
𝑎

∑
𝜇 𝛾

𝜇 sin
(
𝑎𝑝𝜇

)
, where 𝑎𝑝𝜇 ∈ (−𝜋, 𝜋] is now a periodic variable. We see that 𝐷 (𝑝) has 2𝑑

zeros, which result in propagator poles. These are additional massless fermions which survive the
continuum limit, but are clearly not present in the continuum theory we started with. This is the
fermion doubling problem. At this point, though, the problem seems to depend on our choice of the
naive discretization scheme in Eq. (1). So we may wonder: is there a clever discretization?

This is where the no-go theorem of Nielsen-Ninomiya (nn) [35–37] comes in. The nn no-go
theorem shows that a local free-fermion lattice theory with the right continuum limit and an exact
chiral symmetry cannot be free of doublers. Therefore, we must ask a sharper question: which of
the conditions of the no-go theorem should we give up to satisfactorily formulate a single massless
Dirac fermion on the lattice?

As an example of how to remove the doublers, we can add a momentum-dependent mass term
to the naive discretization of Eq. (1). The mass term is chosen so that the doublers at the corners
of the Brillouin zone become heavy, while the fermion at the origin stays massless. This can be
achieved with the Wilson-Dirac operator,

𝐷𝑤 (𝑚, 𝑟) =
∑︁
𝜇

1
2𝑎

[
𝛾𝜇 (𝛿𝜇 + 𝛿∗𝜇) − 𝑟𝛿∗𝜇𝛿𝜇

]
+ 𝑚 (2)

where 𝑚 is a bare fermion mass, 𝑟 is called the Wilson parameter, and Δ = 𝛿∗𝜇𝛿𝜇 is a lat-
tice discretization of the Laplacian operator. In momentum space, this operator is 𝐷𝑤 (𝑝) =∑

𝜇
1
𝑎

[
𝑖𝛾𝜇 sin

(
𝑎𝑝𝜇

)
+ 𝑟 (1 − cos 𝑎𝑝𝜇)

]
+𝑚. With 𝑚 = 0 and 𝑟 ∼ 𝑂 (1) > 0, all the doublers acquire

a heavy mass of cutoff scale ∼ 1/𝑎, while the fermion at the origin stays massless. The problem
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with this approach is that while it removes the doublers, it unfortunately also breaks chiral symmetry
since {𝐷𝑤 , 𝛾5} ≠ 0. The chiral symmetry is only recovered in the continuum limit. This becomes a
practical problem when we turn on gauge fields, because in the absence of chiral symmetry, fermion
masses get additively renormalized and require fine tuning. Thus, we sacrifice chiral symmetry to
eliminate the doublers, consistent with the nn no-go theorem. There are, of course, numerous other
ways to violate one of the conditions of the nn theorem, but is there an “optimal” approach?

The Ginsparg-Wilson relation. To understand the nature of chiral symmetry on the lattice,
Ginsparg and Wilson [4] asked the question: what becomes of the exact chiral symmetry when a
continuum theory of massless Dirac fermion with an exact chiral symmetry {D, 𝛾5} = 0 undergoes
a renormalization group (rg) “block-spin” transformation, leading to a lattice theory of the block-
averaged lattice fields? Denoting the resulting lattice Dirac operator by 𝐷, gw found that it satisfies
a remarkable relation

{D, 𝛾5} = 0
rg blocking
−−−−−−−−→ {𝐷, 𝛾5} = 2𝑎𝐷𝛾5𝐷, (3)

where 𝑎 is the lattice spacing. This is the gw relation. It reveals that the lattice Dirac operator
violates chiral symmetry, but in a rather specific manner. Despite formulating this relation, gw could
not find explicit solutions to it, leading their work to be largely overlooked for years. The relation
was later rediscovered when Hasenfratz serendipitously found that perfect actions satisfy the gw
relation [9]. Following this, it was quickly realized that overlap [7, 8] and domain-wall fermions
[6] are also solutions. Finally, Lüscher showed that the gw relation implies an exact, but modified,
chiral symmetry for any Dirac operator which satisfies it [5]. This cemented the fundamental role
of the gw relation in understanding lattice chiral symmetry and explaining the remarkable chiral
properties of its various solutions.2

The overlap operator and Lüscher symmetry. The overlap operator, in particular, provides
an elegant closed-form solution to the gw relation (3). In terms of the Wilson-Dirac operator 𝐷𝑤

[Eq. (2)], the overlap operator 𝐷ov is given by

𝑎𝐷ov =
1
2
(1 +𝑉), 𝑉 = 𝐴/

[
𝐴†𝐴

]− 1
2 . (4)

where 𝐴 = 𝐷𝑤 (−𝑚, 𝑎𝑚) is a Wilson-Dirac operator [Eq. (2)] with 𝑚 > 0 and the Wilson coupling
𝑟 = 𝑚𝑎. It is a straightforward exercise to check that the overlap operator 𝐷ov satisfies the gw
relation, is free of doublers, and has the right continuum limit. Unlike the Wilson-Dirac operator, the
overlap operator has a remarkable property by the virtue of being a solution to the gw relation. In
fact, for any 𝐷 satisfying the gw relation, the lattice action 𝑆 = 𝜓𝐷𝜓 has an exact chiral symmetry,
albeit an unusual one [5]:

𝜓 → 𝜓(1 − 𝑖𝜀𝛾5𝑉), 𝜓 → 𝜓(1 + 𝑖𝜀𝛾5) (5)

Note that the presence of 𝑉 in the transformation for 𝜓 makes this transformation non-onsite. The
continuum limit arises when 𝑉 → −1, so this reduces to the ordinary chiral transformation in

2See also the talk by Jan Smit in this conference [38] for an interesting account of the field before the developments
related to the gw relation.
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that limit.3 This symmetry protects the masslessness of Dirac fermions against additive mass
renormalization, thus eliminating the fine-tuning problem that plagues the Wilson-Dirac formulation.

Anomaly on the lattice. We have seen that the overlap action has an exact (modified) chiral
symmetry. But recall that the 𝑈 (1)𝜒 chiral symmetry has a mixed anomaly with the 𝑈 (1)𝑉 vector
symmetry. That is, in the presence of background 𝑈 (1)𝑉 gauge fields, the 𝑈 (1)𝜒 chiral symmetry is
broken. If the lattice action is invariant under the modified chiral symmetry of Eq. (5), how does this
anomaly emerge? It turns out that the gw fermions reproduce the anomaly precisely as continuum
fermions do — via the noninvariance of the fermionic path integral measure [39]. The Jacobian
associated with transformation Eq. (5) is 𝑒−𝑖 𝜀 tr 𝛾5𝑉 where tr 𝛾5𝑉 = ind 𝐷ov is in fact the index of
the overlap Dirac operator, defined as the difference between the number of negative and positive
chirality zero modes. This is precisely the expected anomaly.

A continuum solution to the gw relation. Much intuition can be gained about the overlap
operator, and its generalizations which we will discuss in the next section, by examining a “continuum”
solution to the gw relation. Let us write a (regulated) Dirac operator as 𝐷 = ℎ/(1 + ℎ), where ℎ is
some operator. Substituting this into the gw relation (with lattice spacing 𝑎 = 1) yields {ℎ, 𝛾5} = 0.
Thus, any operator ℎ with exact chiral symmetry provides a solution. One natural choice is the
continuum Dirac operator /𝐷/𝑚 itself, where 𝑚 is a regulator mass scale. This yields a continuum
solution to the gw relation: 𝐷 = /𝐷/( /𝐷 + 𝑚). But this is just a Pauli-Villars (pv) regulated Dirac
fermion! A pv regularization will produce this Dirac operator upon integrating out the massive,
complex, bosonic ghost field 𝜙 with the action 𝑆ghost =

∫
𝑑𝑑𝑥 𝜙( /𝐷 + 𝑚)𝜙. Therefore, we find that a

continuum pv regulated fermion already satisfies the gw relation. In a sense, the overlap operator is
a nonperturbative lattice version of the perturbative continuum pv regularization.

Interestingly, the pv solution to the gw relation also illuminates the origin of the modified chiral
symmetry in Eq. (5). While the transformation in Eq. (5) looks mysterious for the overlap operator,
it has simple interpretation for the pv regulated fermion: it is just the transformation under which the
fermion field transforms while the ghost bosonic fields do not [32].

3. Majorana fermions and a time-reversal anomaly

J+ J+ J+J− J− J± = J(1± α)

α = +1 (trivial) α = −1 (nontrivial SPT)

Figure 2: Fidkowski-Kitaev chain with bond staggering 𝛼 on an open chain with an even number of lattice
sites. The system is critical at 𝛼 = 0. For 𝛼 > 0, the system enters a trivial gapped phase, while 𝛼 < 0
corresponds to a nontrivial spt phase. The spt phase (𝛼 < 0) hosts edge modes which are (0+1)-dimensional
Majorana fermions protected by an anomalous time-reversal symmetry T with T2 = +1. Our goal is to obtain
a gw formulation of the Majorana edge modes and explicitly reproduce the time-reversal anomaly.

3Note that 𝜓 and 𝜓 transform differently — this is only possible in Euclidean spacetime. We shall return to this point
later when we look at Majorana fermions.
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We have seen how the gw relation and its solution, the overlap operator, provide an elegant lattice
framework which captures the ’t Hooft anomaly involving the chiral and vector 𝑈 (1) symmetries. In
this section, we illustrate a generalization of the gw relation by examining Majorana fermions in odd
dimensions with a global discrete anomaly.

To motivate the anomaly, let us consider the Fidkowski-Kitaev chain. This is a 1+1-dimensional
Hamiltonian model of single-component Majorana fermions on an 𝐿-site lattice with a time-reversal
symmetry T satisfying T2 = +1. Let 𝜆 𝑗 denote single-component Majorana fermions at sites
𝑗 = 1, . . . , 𝐿 satisfying the anti-commutation relations {𝜆𝑖 , 𝜆 𝑗} = 𝛿𝑖 𝑗 . For an open chain with even
𝐿, the Hamiltonian takes the form: 𝐻 = 𝐽

∑𝐿
𝑗=1(1 + 𝛼(−1) 𝑗)𝜆 𝑗𝜆 𝑗+1, where 𝐽± = 𝐽 (1 ± 𝛼) is a

staggered coupling for even and odd links, as illustrated in Fig. 2. Our interest in this system lies in
the fact that it exhibits a nontrivial spt phase and corresponding edge modes.

This system has a second-order critical point at 𝛼 = 0 and remains gapped for any 𝛼 ≠ 0.
However, this is an important distinction between 𝛼 > 0 and 𝛼 < 0: the former is a trivial phase,
while the latter is a nontrivial spt phase. This can be seen by considering the limits 𝛼 = ±1 on
an open chain, shown in Fig. 2. At 𝛼 = +1, all neighboring Majorana fermions couple, resulting
in a trivial gapped phase. In contrast, at 𝛼 = −1, the Majorana modes at the edges ( 𝑗 = 1, 𝐿) are
completely decoupled from the rest of the chain, while the remaining Majorana modes are paired.
The decoupled Majoranas at sites 𝑗 = 1, 𝐿 together form a 2-dimensional Hilbert space, giving
rise to 2-dimensional ground state degeneracy. This degeneracy is robust against any T-preserving
perturbations [40, 41]. Such robust edge-modes are the hallmark of a nontrivial spt phase.

The underlying physics here is analogous to the anomaly-inflow mechanism [42] which provides
the foundation for domain-wall fermions [6]. Indeed, this bulk-boundary correspondence is quite
general and establishes a one-to-one correspondence between spt phases and ’t Hooft anomalies.
Physically, this means that any system in a nontrivial spt phase necessarily hosts corresponding
edge-modes at its boundary. Both domain-wall fermions and the Majorana chain discussed earlier
are examples of this. In this language, the 5-dimensional domain-wall fermion realizes a nontrivial
spt phase. This is why we get robust massless Weyl fermions at the 4-dimensional boundary.

The edge mode of the 1+1-dimensional Majorana chain is simply a 0+1-dimensional Majorana
fermion, with the continuum action 𝑆 =

∫
𝑑𝑡 𝜒𝜕𝑡 𝜒, where 𝜒 is a single-component boundary

Majorana fermion. This appears deceptively simple — can such a system have an anomaly? Indeed,
as explained by Witten [12]4, this system has a subtle (global) Z8 anomaly involving time-reversal
and fermion parity symmetries. The question for us is thus: can we recover this anomaly on the
lattice within the gw/overlap framework?5

Generalizing the GW relation to Majorana fermions. In Ref. [32], it was shown that
the original derivation of gw can be generalized beyond even-dimensional Dirac fermions and
infinitesimal (continuous) symmetries to include odd dimensions, Majorana fermions, and finite
symmetry transformations (including discrete symmetries). We refer the reader to the paper for
details. Here, we sketch the essential features of the procedure and highlight some subtleties.

When employing the gw construction, we need to add a Gaussian term to the original continuum
action, coupling the continuum fields to the block-averaged lattice fields. Upon integrating out the

4See also Witten-Yonekura [13] for a more thorough discussion of the general fermionic bulk-boundary correspondence.
5For an illuminating discussion of this anomaly in the Hamiltonian framework, see Ref. [43] and also Ref. [44] for a

related discussion in 1+1 dimensions. Here, we are interested in a Euclidean lattice perspective on this anomaly.
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original continuum fields, one obtains a lattice theory. This Gaussian term has the dimensions of a
mass term, which is how a regulator scale enters the problem and how the standard (or continuum)
version of chiral symmetry (corresponding to {D, 𝛾5} = 0) is broken by the regulator.

A mass term is easy to write down for a Dirac fermion. But Fermi statistics prohibit adding
such a term to the Majorana action 𝑆 =

∫
𝑑𝑡 𝜒𝜕𝑡 𝜒. Consequently, we cannot formulate a gw relation

for a single 0+1-dimensional Majorana fermion.6 This becomes possible, however, for two Majorana
fermions, where one can introduce a mass term of the form 𝜒𝑎𝜀𝑎𝑏𝜒𝑏, with flavor indices 𝑎, 𝑏 = 1, 2
and 𝜀𝑎𝑏 being the totally antisymmetric Levi-Civita tensor. The continuum action with a mass term
thus takes the form 𝑆 =

∫
𝑑𝑡 𝜒𝑇 (𝜕𝑡 + 𝜇𝜏2)𝜒, where 𝜒 is now a two-flavor one-dimensional Majorana

field, and 𝜏2 is the second Pauli matrix.
Reflection symmetry R, which is the same as time-reversal in Euclidean spacetime [12], can

be taken to act on the Majorana fields as 𝜒(𝑡) → R𝜒(𝑡) = 𝑖𝜒(−𝑡), such that R2 = −1. One can
verify that this transformation preserves the kinetic term but not the mass term. This is a hint that
this symmetry might be anomalous. At this point, we have all the ingredients to apply the gw
construction, as detailed in Ref. [32]. Summarizing the results: if 𝑆 = 𝜒𝑇D𝜒 is the gw Majorana
lattice action with an antisymmetric lattice Majorana-Dirac operator D, then we find the relation

DR − D = 2𝑎D𝜏2DR, (6)

where DR = R𝑇DR. This is the gw relation for a 2-flavor Majorana system in 𝑑 = 1 corresponding
to the reflection symmetry R. Importantly, an explicit overlap solution exists:

𝑎Dov =
𝜏2
2
(1 +𝑉m), 𝑉m = 𝐴m/[𝐴†

m𝐴m]−
1
2 , (7)

where 𝐴m = 𝐷m
𝑤 (−𝜇, 𝑎𝜇) and 𝐷m

𝑤 (𝜇, 𝑟) = 1
2𝑎 [𝜏2 (𝛿1 + 𝛿∗1) − 𝑟𝛿∗1𝛿1] + 𝜇 is the analog of the Wilson

operator [Eq. (2)] for the 2-flavor Majorana fermion in 𝑑 = 1 with 𝜇 > 0.
Lüscher symmetry for Majorana fermions. Does the gw Majorana action admit an exact

modified reflection symmetry, analogous to the modified chiral symmetry for Dirac fermions? At
the outset, we note that a transformation like Eq. (5) cannot work, because we do not have the
freedom of transforming 𝜓 and 𝜓 separately for Majorana fermions. Nevertheless, a viable symmetry
transformation exists [32]: 𝜒 → R

√
−𝑉m𝜒. The definition of this square root requires care. With

the appropriate definition, we find again the possibility of a nontrivial Jacobian for this symmetry
transformation. The Jacobian evaluates to det

(
R
√
−𝑉m

)
= (−1) 𝜈−

2 , where 𝜈− counts the number of
zero modes of D (equivalently, the number of 𝑉m = −1 modes). This is precisely the mod-2 index
of the Dirac operator which appears in the continuum anomaly. Since we find a Z2 anomaly for
the 2-flavor Majorana, this means there is (at least) a Z4 anomaly for a single 𝑑 = 1 Majorana in
the gw framework. Interestingly, the complete anomaly is known to be Z8 [10, 12, 40], suggesting
limitations in our current framework.

4. Conclusions

We have shown how the original gw relation extends beyond the chiral anomaly for Dirac
fermions to encompass odd dimensions, discrete symmetries, and Majorana fermions. As a concrete

6This, incidentally, is the same problem with formulating a gw relation for a single Weyl fermion, which also does not
allow a mass term.
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Dirac, 𝑑 = 4 Majorana, 𝑑 = 1
Continuum action 𝑆 =

∫
𝑑4𝑥 �̄�( /𝐷 + 𝑚)𝜓 𝑆 =

∫
𝑑𝑡 𝜒𝑇 (𝜕𝑡 + 𝑚𝜏2)𝜒

Symmetry Chiral symmetry (continuous) Time-reversal or Reflection (discrete)
Anomaly Perturbative Global
gw relation {𝛾5, 𝐷} = 2𝑎𝐷𝛾5𝐷 DR − D = 2𝑎D𝜏2DR

Lattice symmetry 𝛿𝜓 = −𝛾5𝑉𝜓, 𝛿�̄� = �̄�𝛾5 𝜒 → 𝑅
√
−𝑉m 𝜒

Jacobian 𝑒−𝑖 𝜀 ind𝐷 (−1)
𝜈−
2

Topological invariant index mod-2 index

Table 1: gw formulation for Dirac fermions in 𝑑 = 4 and Majorana fermions in 𝑑 = 1 dimensions.

example, we examined the Fidkowski-Kitaev chain, which hosts (0+1)-dimensional Majorana edge
modes with a Z8 anomaly involving time-reversal and fermion parity. Table 1 summarizes these
results. While previous work has explored various generalizations of the gw relation [45–52],
we present here a unified treatment that derives a gw relation in all cases where a continuum pv
regularization exists.

The connection between spt phases in the bulk and ’t Hooft anomalies on the boundaries has
proven remarkably fruitful over the past few decades. From this point of view, domain-wall fermions
constitute a bulk system in an spt phase, whereas the overlap operator and the gw relation furnish
an explicit lattice realization of the boundary theory with an exact ’t Hooft anomaly. In this work,
we investigated whether a gw relation exists for all fermionic anomalies (and consequently for all
fermionic spt phases). We found that while the gw construction admits substantial generalization,
certain crucial elements remain missing. For example, it is unclear how the complete Z8 Dai-Freed
anomaly for the 1-dimensional Majorana emerges in this formulation, which only makes a Z4

anomaly manifest. A satisfactory Hamiltonian formulation remains another open question — one
that would be crucial for quantum computing applications and would help bridge the divide between
this approach and the condensed matter literature. Given the prominent role of the bulk-boundary
correspondence in recent approaches to constructing lattice chiral gauge theories, one is led to
wonder: Could a complete picture of lattice fermionic anomalies be the missing piece needed to
solve the longstanding puzzle of non-abelian chiral gauge theories? This remains to be seen.
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