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1. Introduction

The formulation of staggered fermions[1, 2] as one of the first fermions on the lattice has advanced the
simulation of fermion action early on and is still one of the widely used lattice fermion formulation
to this day [3–7]. Not only is the size of the naive fermion operator reduced by a factor of 4
while preserving a proxy of chiral symmetry; the distinct structure allows for many interesting
formulations such as reduced staggered fermions [8] or symmetric mass generation on the lattice
[9, 10]. In this work, we revisit the idea of including a taste dependent mass term, which decouples
the doublers from the physical fermion in a similar manner as the Wilson term does for naive
fermions [11–17]. We first explore the symmetry properties of staggered fermions with different
mass terms, with an emphasis on rotational symmetry breaking, which causes the appearance of
glounic counterterms [18]. We provide preliminary numerical results in pure gauge theory.
Starting from the naive fermion action with the full fermion fields 𝜓, the gamma matrices 𝛾𝜇 and a
mass 𝑚

𝑆𝑛 = 𝑎4
∑︁
𝑛

𝜓̄(𝑛)
(
𝛾𝜇

1
2𝑎
[𝜓(𝑛 + 𝜇̂) − 𝜓(𝑛 − 𝜇̂)] + 𝑚𝜓(𝑛)

)
(1)

and applying the so called staggered transformation of the fields

𝜓(𝑛) → Γ(𝑛)𝜒(𝑛), 𝜓̄(𝑛) → 𝜒̄(𝑛)Γ†(𝑛) (2)

where Γ(𝑛) = ∏
𝜇 𝛾

𝑛𝜇

𝜇 , results in the staggered action

𝑆𝑠𝑡 = 𝑎4
∑︁
𝑛

𝜒̄(𝑛)
(
𝜂𝜇

1
2𝑎
[𝜒(𝑛 + 𝜇̂) − 𝜒(𝑛 − 𝜇̂)] + 𝑚𝜒(𝑛))

)
(3)

with spinless fields 𝜒 and the staggered phase 𝜂(𝑛) = (−)
∑

𝜈<𝜇 𝑛𝜈 . In leading order, the resulting
staggered structure is encoded in the spin-taste basis [19]

(𝛾𝑆 ⊗ 𝜉𝐹)𝑥𝑦 =
1

2𝐷/2 tr(Γ†(𝑥)𝛾𝑆Γ(𝑦)𝛾†𝐹) (4)

where 𝜉𝐹 = 𝛾𝑇
𝐹

acts on flavor indices. This basis suggests a splitting of the tastes into two pairs
each by introducing spin singlet operators

1 ⊗ 𝜎𝜇𝜈 ←→ 𝑀𝜇𝜈 = 𝑖𝜖𝜇𝜈𝜂𝜇𝜂𝜈𝐶𝜇𝐶𝜈 (5)
1 ⊗ 𝜉5 ←→ 𝑀𝐴 = 𝜖𝜂5𝐶. (6)

where 𝜎𝜇𝜈 = 𝑖𝜉𝜇𝜉𝜈 . The 2-hop operator 𝑀𝜇𝜈 involves an antisymmetric tensor 𝜖𝜇𝜈 = (−)𝑥𝜇+𝑥𝜈 and
hopping operators 𝐶𝜇 = 1

2

(
𝑈𝜇𝛿𝑥+𝜇̂,𝑦 +𝑈†𝜇𝛿𝑥− 𝜇̂,𝑦

)
. A single taste operator can be constructed [13]

by a combination of 2-hop terms that hop in all four directions 𝑀𝐻 = 𝑀𝜇𝜈 + 𝑀𝜌𝜎 with 𝜇, 𝜈, 𝜌, 𝜎

permutations of {1, 2, 3, 4}. In the Adams term 𝑀𝐴 [12], 𝜖 = (−)
∑

𝜇 𝑥𝜇 is the generator of the
remnant chiral symmetry, 𝜂5 = 𝜂1𝜂2𝜂3𝜂4 and 𝐶 = (𝐶1𝐶2𝐶3𝐶4)𝑠𝑦𝑚 is a symmetrized sum over all
permutations of all hopping operators.
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2. Symmetry properties

The staggered action is invariant under the following discrete symmetries [20, 21]:

1. Rotations 𝑅𝜇𝜈 : 𝜒(𝑛) → 𝑆𝑅

(
𝑅−1𝑛

)
𝜒

(
𝑅−1𝑛

)
(7)

2. Shifts 𝑆𝜇 : 𝜒(𝑛) → 𝜁𝜇 (𝑛)𝜒 (𝑛 + 𝜇̂) (8)

3. Spatial inversion 𝐼𝑆 : 𝜒(𝑛) → 𝜂4(𝑛)𝜒
(
𝐼−1
𝑆 (𝑛)

)
(9)

4. Charge conjugation 𝐶0 :

{
𝜒(𝑛) → 𝜖 (𝑛) 𝜒̄ (𝑛)
𝜒̄(𝑛) → −𝜖 (𝑛)𝜒 (𝑛)

(10)

where 𝜁𝜇 = (−)
∑

𝜈>𝜇 𝑛𝜈 . Under rotation 𝑅𝜇𝜈 , spacetime indices transform as 𝜇 → 𝜈, 𝜈 → −𝜇,
𝜏 → 𝜏 for 𝜏 ≠ 𝜇, 𝜈 and the phase

𝑆𝑅 (𝑛) =
1
2
(
1 ± 𝜂𝜇𝜂𝜈 ∓ 𝜁𝜇𝜁𝜈 + 𝜁𝜇𝜁𝜈𝜂𝜇𝜂𝜈

)
(𝜇 ≶ 𝜈). (11)

Introducing taste splitting masses to staggered fermions partially breaks these symmetries into
subgroups as shown by Misumi et al. [16]. The following table summarizes these symmetries for
the staggered operator, the Adams operator 𝑀𝐴, and the single taste combination 𝑀𝐻 = 𝑀𝜇𝜈+𝑀𝜌𝜎 .

type 𝑅𝜇𝜈 subgroups 𝑆𝜇&𝐼𝑆 subgroups 𝐶0 subgroups
staggered 𝑅𝜇𝜈 𝑆𝜇, 𝐼𝑆 𝐶0
Adams 𝑅𝜇𝜈 𝑆𝜇𝑆𝜈 , 𝑆𝜇 𝐼𝑆 𝐶0

single taste 𝑅𝜇𝜈𝑅𝜌𝜎 𝑆𝜇𝑆𝜈𝑆𝜌𝑆𝜎 , 𝑆𝜇 𝐼𝑆 𝑅2
𝜇𝜌𝐶0

‡

Table 1: Symmetries of staggered, Adams, and single taste type operators.

More general combinations of mass terms are of course possible. To provide a brief overview, we
plot the free eigenvalue (EV) spectra for various combinations of mass terms in Figure 1 to 3.

𝑀𝐴 ∼ diag(−1,−1, 1, 1)

{𝐶0, 𝑆𝜇 𝐼𝑆 , 𝑅𝜇𝜈}

𝑀12 ∼ diag(−1, 1,−1, 1)

{𝑅2
13𝐶0, 𝑅

2
24𝐶0, 𝑆𝜇 𝐼𝑆 , 𝑅12, 𝑅34}

Figure 1: 2-flavored mass terms and their symmetries by a 2+2 splitting.

‡Note that this charge conjugation operator is for the 𝑀𝐻 = 𝑀𝜇𝜈 + 𝑀𝜌𝜎 type mass term and therefore differs from
the one given in [16], where a single flavor mass term of the form 𝑀𝐻 = 1√

3
(𝑀12 +𝑀34 +𝑀13 +𝑀42 +𝑀14 +𝑀23) was

considered.
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𝑀12 + 𝑀34 ∼ diag(0, 0,−2, 2)

{𝑅2
13𝐶0, 𝑅

2
24𝐶0, 𝑆𝜇 𝐼𝑆 , 𝑅𝜇𝜈𝑅𝜌𝜎}

𝑀𝐴 + 𝑀12 ∼ diag(−2, 0, 0, 2)

{𝑅2
13𝐶0, 𝑅

2
24𝐶0, 𝑆𝜇 𝐼𝑆 , 𝑅12, 𝑅34}.

𝑀12 + 𝑀13

{𝑅2
13𝐶0, 𝑅

2
24𝐶0, 𝑆𝜇 𝐼𝑆}

1
2 𝑀12 + 𝑀34 + 𝑀𝐴 ∼ diag(−0.5, 1.5,−0.5, 2.5)

{𝑅2
13𝐶0, 𝑅

2
24𝐶0, 𝑆𝜇 𝐼𝑆 , 𝑅𝜇𝜈𝑅𝜌𝜎}

Figure 2: 1-flavored mass terms and their symmetries by a 1+2+1 splitting.

−𝑀12 + 𝑀34 + 𝑀𝐴 ∼ diag(1,−3, 1, 1)

{𝑅2
13𝐶0, 𝑅

2
24𝐶0, 𝑆𝜇 𝐼𝑆 , 𝑅𝜇𝜈𝑅𝜌𝜎}

1
2 𝑀12 + 𝑀34 ∼ diag(0.5,−0.5,−1.5, 1.5)

{𝑅2
13𝐶0, 𝑅

2
24𝐶0, 𝑆𝜇 𝐼𝑆 , 𝑅𝜇𝜈𝑅𝜌𝜎}

Figure 3: 1-flavored mass terms and their symmetries from a 1+3 and 1+1+1+1 splitting.
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The 2 + 2 splitting shown in Figure 1 gives a clear picture of how the splitting is only partial for a
single mass term. A single 2-hop term splits the tastes into 2+2 while leaving the momentum in two
directions unmodified, resulting in the less degenerate EVs of the spectrum along the imaginary
axis as seen for 𝑀12 compared to 𝑀𝐴. Moving on to the 1+2+1 splitting in Figure 2, the different
symmetry breaking can be seen in particular comparing the 𝑀12 + 𝑀13 and 𝑀𝐴 + 𝑀12 spectra,
where the EVs at the outer most branches of 𝑀12 + 𝑀13 are less degenerate. The spectra show
more spikes rather than smooth rounded inner circles compared to 𝑀12 + 𝑀34. The spectrum of
1
2𝑀12 + 𝑀34 + 𝑀𝐴 amplifies the non-degeneracy of EVs and sharp cuts and brings an additional
splitting of non-equidistant branches. A single taste operator can also be achieved by a 1+3 resp.
1+1+1+1 splitting as shown in Figure 3. The EVs are once more less degenerate at the non-physical
branch of the 1+3 operator, while the 1+1+1+1 operator exhibits sharp edges appearing due to the
larger prefactor 𝑀34. Overall, it is evident that less symmetry leads to a smaller degeneracy in the
free eigenvalue spectra.
A peculiar consequence of the rotational symmetry breaking in particular is the appearance of
gluonic counterterms, as pointed out by Sharpe [18]. Different coefficients appear in the gluonic
action depending on the mass term taken. In our case, for

𝑀𝐻 = 𝑀12 + 𝑀34 (12)

we need to separate between

𝐹2
12 + 𝐹

2
34 and 𝐹2

13 + 𝐹
2
24 + 𝐹

2
14 + 𝐹

2
23. (13)

More generally for 𝑀𝜇𝜈 + 𝑀𝛼𝛽 with all indices different, the counterterms are of the form

𝑎(𝐹2
𝜇𝜈 + 𝐹2

𝛼𝛽) + 𝑏(𝐹2
𝜇𝛼 + 𝐹2

𝜈𝛽 + 𝐹2
𝜇𝛽 + 𝐹2

𝜈𝛼). (14)

Note that this symmetry breaking effect enters via the fermion determinant and thus is relevant only
when unquenching.

3. Numerical results

We present first numerical results on quenched configurations. The eigenvalue spectra give insight
into the severity of the rotational symmetry breaking for practical purposes. Starting off with pure
gauge configurations, which were kindly provided by Timo Eichhorn [22, 23], the numerical setup
is listed below. The configuration where generated for different 𝛽, up to 35 stout smearing steps
with 𝜌 = 0.12 with an update algorithm of one heat bath followed by four overrelaxation sweeps,
the scale is taken from [24]. The simulation parameters are as follows:

◦ 44, 64, 84 lattices
◦ 𝛽 ∈ {5.7, 5.8, 5.9, 6.0}
◦ 𝑎(fm) ∈ {0.168, 0.133, 0.109, 0.091}
◦ Up to 35 stout smearing steps, 𝜌 = 0.12
◦ 20 configurations.

5
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We compare spectra of staggered operators with a mass term given in Equation 12 to those with a
mass term rotated by a 𝑅23 rotation

𝑀12 + 𝑀34
𝑅23−−→ 𝑀13 + 𝑀42. (15)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
|Re |

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im

M12+M34, V=8 , beta=6.0, nsmear=0
negative Re
positive Re

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
|Re |

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im

M12+M34, V=8 , beta=6.0, nsmear=35
negative Re
positive Re

Figure 4: Folded eigenvalue spectra for 𝑉 = 84 at 𝛽 = 6.0 and 𝑛smear = 0 and 𝑛smear = 35.

In Figure 4, we show the change in the EV spectrum of 𝑀12 + 𝑀34 with increasing smearing
steps. The spectra are folded showing the overlap of eigenvalues with positive and negative real
part. Symmetry breaking is evident for unsmeared spectra where the positive and negative real
parts of the eigenvalues don’t match. When smearing the gauge configurations, the eigenvalues
stretch out further across the real axis and the symmetry breaking is milder. We also look at
the distance of the smallest eigenvalues from the real axis, which is a simple proxy for the ad-
ditive mass renormalization. In Figure 5 we plot this number averaged over 20 configurations
versus the number of smearing steps. The standard error bars are too small to be displayed.

0 5 10 15 20 25 30 35
nsmear

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
re

n

M12+M34, V=8 , =6.0

Figure 5: Additive mass renormalization, determined
by the distance of the spectrum from the real axis,
versus the number of smearing steps.

Considering the full rotation of the mass term,
the observed spectra shown in Figure 6 of 𝑀12+
𝑀34 and 𝑀13+𝑀42 indicate substantially milder
rotational symmetry breaking after smearing,
especially in the physical branch and for near-
zero modes, consistent with the expectations
from the eigenvalue spectrum Figure 4.
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2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Re

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Im

V=8 , =6.0, nsmear=0
M13+M42
M12+M34

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Re

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Im

V=8 , =6.0, nsmear=10
M13+M42
M12+M34

Figure 6: Eigenvalue spectra of 𝑀12 +𝑀34 and 𝑀13 +𝑀42 for 𝑉 = 84, 𝛽 = 6.0 and smearing steps 𝑛smear = 0
and 𝑛smear = 10.

0 5 10 15 20 25 30 35
nsmear

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

ra
tio

V=8 , =6.0

Figure 7: Determinant ratio for 𝑉 = 84at 𝛽 = 6.0
with respect to the number of smearing steps.

In order to quantify this symmetry breaking we
compute the ratio of the determinants

ratio =
det(𝐷𝑠𝑡 + 𝑀12 + 𝑀34)
det(𝐷𝑠𝑡 + 𝑀13 + 𝑀42)

(16)

with 𝐷stag the staggered operator. Fig-
ure 7 shows that the average determinant ra-
tio is compatible with 1 for all smearing
levels, indicating that the effects of rota-
tional symmetry breaking are not very pro-
nounced, at least for the very small vol-
umes we studied. The standard errors
decrease exponentially with higher smearing
steps.

Lastly, we consider the correlation of the determiant ratio to the gluonic counterterms emerg-
ing for the considered mass terms. From Equation 14 we find the counterterm structure dependency
to be of the form

det(𝐷𝑠𝑡 + 𝑀12 + 𝑀34)
det(𝐷𝑠𝑡 + 𝑀13 + 𝑀42)

∼ (𝑎 − 𝑏) (𝐹2
12 + 𝐹

2
34) − (𝑎 − 𝑏) (𝐹2

13 + 𝐹
2
24) (17)

and ultimately expressed in terms of the plaquette 𝑈𝜇𝜈

det(𝐷𝑠𝑡 + 𝑀12 + 𝑀34)
det(𝐷𝑠𝑡 + 𝑀13 + 𝑀42)

∼ (𝑈12 +𝑈34) − (𝑈13 +𝑈24). (18)

Figure 8 shows the correlation coefficient 𝜌 of the ratio given in Equation 18 for different 𝛽 versus
the number of smearing steps.

7
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0.2

0.0

0.2

0.4

0.6

0.8

V=8
=5.7
=5.8
=5.9
=6.0

Figure 8: Correlation coefficient for 𝑉 = 84 and different 𝛽 for an increasing number of smearing steps.

The right hand side of Equation 18 is computed for unsmeared configurations. The correlation be-
tween the determinant ratios and the corresponding counterterm structure confirms the dependence
for unsmeared configurations. The more the gauge configurations are smeared, the smaller the
correlation. After 10 smearing steps, the correlation coefficient predominantly remains constant up
to 𝑛smear = 35. The errorbars on the first two data points of 𝛽 = 6.0 are too small to be displayed.

4. Conclusion and Outlook

Given the symmetry properties of taste splitting masses for staggered fermions as summarized
in [16], we have studied these properties numerically in the free case as well as for pure gauge
configurations. In particular, the rotational symmetry was studied in order to understand the
severity of the breaking for single taste masses and to gain insights into the structure of counterterms
emerging from it. First studies of the eigenvalue spectra show that rotational symmetry breaking
is milder for stout smeared configurations while the additive mass renormalization is smaller.
Furthermore, the determinant ratio of the single taste operator 𝑀12 +𝑀34 and the operator resulting
from rotation 𝑀13 + 𝑀42 not only confirm the improved symmetry after smearing, but show that
even without smearing the breaking of rotational symmetry is not too severe. Finally, the correlation
coefficient of the determinant ratio to the general counterterm structure indicates, that there is little
correlation for highly smeared gauge configurations.
These results give first insights into the severity of rotational symmetry breaking for single taste
staggered fermion operators. Although our exploratory study was performed on quenched configu-
rations in small volumes, it seems that at higher smearing levels the rotational symmetry breaking
effects are manageable. As a next step, we plan to expand our investigation to unquenched gauge
configurations, which will be generated in collaboration with Gianluca Fuwa [25].
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