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1. Introduction

We explore the large-N¢ limit of a one-flavour theory with a single fermion in the two-index
antisymmetric representation as a proxy to predict the low-lying mesonic spectrum of supersymmet-
ric N = 1 SYM theories [1-4]. This study builds on the work of Corrigan and Ramond (CR) [5].
In such theories, gauge configurations with non-integer winding numbers may arise. However,
near the continuum limit and using periodic boundary conditions (PBC), it has been shown that
a geometrical quantity with the properties of a topological charge can be constructed, which only
takes integer values [6]. In contrast, fractional charges appear when ’t Hooft twisted boundary
conditions are imposed [7-9].

In [10], the “disappearance” of fractional charges toward the continuum limit with PBC was
investigated numerically for the sextet theory (SU(2) gauge group with fermions in the two-index
symmetric representation) in the quenched approximation. We aim to repeat such a study for
SU(Nc¢) gauge theories with one dynamical quark in the two-index antisymmetric representation.
Differently from the study in [10], which relied on the Atiyah-Singer index theorem [11], we
define the topological charge by smoothing out the gauge configurations using the gradient flow,
as proposed in [12]. To this end, we generated four ensembles (see Table 1) for N¢o = 4 with
different lattice spacings but otherwise (approximately) fixed physical parameters to investigate
whether fractional charges are present in such theories.

At first glance, this task may seem straightforward: apply the gradient flow to the gauge
configurations and verify whether fractional topological charges appear. However, we found that
defining the topological charge in this context is more challenging than initially expected.

In the following, we compare the “standard” Wilson flow [12] and the DBW2 flow (doubly
blocked from the Wilson action in two coupling space) [13]. In general, the flow equation is defined
as

d 0
EUx,,u(t) = _5Ux,/4 Sﬂow(Ux,y (1)), (D
where Wi,y is the Lie derivative with respect to the gauge field. The flow kernel Sqow is given by

the sum of plaquettes and rectangles with appropriate coefficients:

Sflow = C0Splaquette + C1Srectangle- ()

The standard Wilson flow corresponds to co = 1, ¢; = 0, while the DBW2 flow uses c¢g = 12.2704,
c1 = —1.4088 [13]. For the topological charge, we use the clover definition [14]:

0= Z Q(x) = # Z eyva'Tr (Cl(ﬂlover(x)cl(;(lgver(x)) . (3)

To measure the smoothness of our flowed gauge configurations we use the definition from [12]

h =maxReTr (1 - V,(p)). “
P

where V;(p) is given by the product of the smeared link variables around p. The maximum is taken
over all plaquettes p. The (space-time) average can be defined analogously.

The left panel of figure 1 illustrates results from the gradient flow using the plaquette for
the flow evolution (commonly referred to as the Wilson flow). The right panel shows results for
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Figure 1: Topological charge Q (in blue) as a function of the flow time using the Wilson flow (left) and
DBW?2 flow (right) and the average (in red, dashed) and maximum (in red) of the smoothness parameter &
(see eq. 4 and below) for both. Results from the 8 = 7.1 ensemble in Table 1.

the DBW2-smearing. In the first case the value of the topological charge keeps jumping also for
rather large values of ¢, making it difficult to define a consistent value. The jumps coincide with
large values of the parameter 4, which is not a monotonic function of ¢. The average value of
ReTr (1 — V;(p)) instead decreases monotonically with ¢, making it clear that the Wilson flow
provides in fact, on average, a smoothing procedure. In view of that it is conceivable that the jumps
in h are caused by large fluctuations at the lattice scale (e.g., instantons of very small size). This
issue has been known for some time in the similar context of cooling and (over)improved kernels
have been proposed to address it [15]. More recently, the stability of topological sectors has been
studied for pure gauge SU(2) in [16]. The right panel of figure 1 supports the conclusions of such
studies.

2. Lattice Setup

For our numerical study, we use a single flavour of two-index antisymmetric fermions with the
Liischer-Weiz gauge action. We adopt the Wilson formulation with tree-level improvement for the
fermions (csy, = 1). We generate four ensembles at different § values, ranging from 7.1 to 7.4.
The hopping parameter « is chosen such that the flavour-diagonal connected pseudo-scalar mass
(CPS) is approximately constant across different gauge couplings. An overview of the ensembles
is provided in Table 1. This setup is unphysical, with physical values included only for comparison
with other lattice simulations and to gauge the scales involved. To set the scale, we use the condition

(Eplag) g = 0.422, S

where Epj,q is the plaquette definition of the energy density introduced in [12]. The equation above
is obtained by rescaling the standard definition of 7y adopted in QCD (namely (E )t% = 0.3) using
the leading dependence of (E) on N¢ for fixed ’t Hooft coupling. That results in a (Né - 1)/Nc¢
scaling for the r.h.s. of eq. 5. For comparison with other simulations, we use

81" = 0.45 fm, (©6)
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B 7.1 7.2 7.3 7.4

K 0.15770  0.15651  0.15525 0.15401
L/a 12 14 16 18
Nenfg 648 346 640 388

a [fm] 0.171(1) 0.136(1) 0.117(1) 0.103(1)
L [fm] 2.052(2) 1.904(2) 1.872(2) 1.854(2)
mcps [MeV] | 748(2)  740(3)  734(3)  756(4)
mcpsL 7.78(5)  7.14(6)  6.96(7)  7.10(8)
to/a? 0.87(1) 1.37(1) 1.86(1) 2.39(1)

Table 1: Overview of parameters of the lattice ensembles. Physical volumes and connected pseudo-scalar
masses (mcps) are matched to ensure an approximate line of constant physics. The errors are purely statistical.

which is an average of the Ny = 0 [12] and Ny = 2 [17] results in QCD.

The simulations were performed using the HiRep code [18], recently optimised for GPUs [19,
20] and we have been using the git-hash ca4aa637. The code is publicly available, and input files are
provided in the arXiv submission. To reduce autocorrelation, gauge configurations were separated
by eight MDUs with a trajectory length of 7 = 2.0. The integration steps of the hybrid Monte Carlo
algorithm were tuned for an acceptance rate exceeding 90%, and every fourth configuration was
stored. To ensure thermalisation, the first 800 MDUs were discarded. For the flow measurements
we use a third level integrator [12] with a stepsize of € = 0.01 for a maximum flowtime of 64 in
lattice units. All configurations were generated on the GPU partition of the LUMI supercomputer,
whereas the flow measurements were performed on CPU partitions (LUMI and Discoverer).

3. Results

Figure 2 shows the topological charge Q as a function of normalised flow time 7/¢y. The left
panels correspond to the Wilson flow and the right panels to the DBW2 flow. The DBW2 flow
stabilises the topological charge at early flow times (¢/fg = 1), while the Wilson flow exhibits
significant fluctuations over the entire period shown. This behaviour improves with finer lattice
spacings, but transitions between topological sectors within one configuration remain visible for
the Wilson flow. In contrast, such transitions are absent in the DBW?2 flow.

Figure 3 displays histograms of the topological charge Q for different flow times. Integer
values of Q become more distinct with either increased flow time or finer lattice spacings. No
evidence of fractional charges is observed, except for large values of Q. However those may result
from discretisation effects due to the non-exact integer quantisation of the topological charge on
the lattice as defined here. Figure 4 and table 2 illustrate the standard deviation of the topological
charge as a function of flow time for both the Wilson and DBW2 flows. Despite the instability of the
Wilson flow in producing consistent topological charges, the standard deviation is comparable to
that obtained with the DBW?2 flow. The errors are purely statistical and computed using bootstrap
resampling.
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Figure 2: Topological charge Q as a function of flow time using the Wilson (left) and DBW?2 (right) flows.
Four ensembles are shown from top to bottom: S = 7.1 (top, blue), 8 = 7.2 (red), 8 = 7.3 (green), and
B = 7.4 (bottom, purple). Only the first 150 configurations after thermalization are shown. The vertical grey
line indicates where the flow wraps around the lattice, V8t ~ L /2.
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Figure 3: Histograms of topological charge Q for different flow times using the DBW2 flow. Each row

corresponds to an ensemble, from 5 = 7.1 (top) to 8 = 7.4 (bottom). Columns show results for 27, 4¢y, and
161.
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Figure 4: Standard deviation of the topological charge as a function of the flowtime ¢ /¢ for the Wilson (left)
and the DBW2 (right) flow. The four colours correspond to the different ensembles.

4. Conclusions and Outlook

We investigated the presence of fractional topological charges in SU(4) gauge theories with
fermions in the two-index antisymmetric representation. Using the DBW?2 flow at sufficiently large
flow times (z/ty > 2), we found no evidence of fractional charges, even in coarse lattice setups.
Future studies will extend this work to larger gauge groups (N¢ = 5, 6), where smaller fractional
charges are in general possible.

Flowtype Lattice ‘ 0 X tg 1 Xty 2 Xty 4 Xty 8 X 1y 16 X 1o

Wilson B=7.1 1.40(4) 5.93(17) 6.20(17) 6.41(18) 6.59(19) 6.72(19)
B=72| 1757) 5.72(22) 5.89(23) 6.03(23) 6.14(24) 6.22(24)
B=73| 2297) 5.15(15) 5.28(16) 5.37(16) 5.45(16) 5.52(16)
B=74|281(10) 4.47(15) 4.55(15) 4.62(15) 4.67(15) 5.15(22)
DBW2 B=7.1] 140(4) 4.45(12) 4.99(14) 530(15) 5.44(15) 5.56(15)
B=72| 1757) 5.06(20) 5.50(22) 5.70(23) 5.86(23) 5.97(24)
B=73| 2297) 4.66(13) 4.86(13) 4.99(14) 5.07(14) 5.13(14)
B=74|281(10) 4.29(13) 4.42(14) 4.52(14) 4.58(14) 4.84(20)

Table 2: The standard deviation of the topological charge for Wilson and DBW?2 at different flow times.
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