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1. Introduction

In investigating the topological properties of quantum field theories from lattice theories,
Liischer’s admissibility condition [1], which gives a formulation of lattice gauge theory that pre-
serves the topological structure, is of crucial importance. By the admissibility condition, gauge
fields are separated into disconnected subspaces corresponding to the different topological sectors.
The admissibility condition reads

11 = Puy(n)|| <€, Vn,pu,v, (1.1)

where € is some fixed positive number and P, (n) is a plaquette defined as a product of link variables
U, (n) suchas P, (n) = U, (n)U, (n+f1) UL (n+9)U}(n). Liischer introduced the following gauge
action that automatically meets the admissibility condition in Eq. (1.1),

1 —ReP, (n) )
f ||l1-Pyy s
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00 otherwise,

where 8 denotes an inverse gauge coupling.

Although the Liischer gauge action in Eq. (1.2) should be superior to the standard Wilson gauge
action, particularly in focusing on the topological phenomena from the lattice gauge theories, the
Monte Carlo simulation based on the Liischer gauge action encounters severe difficulty unfortunately.
As reported in Ref. [2], the topological change is substantially suppressed under the Monte Carlo
updates. This issue is usually referred to as the topological freezing problem. This is why the Monte
Carlo simulation for the Liischer gauge action is performed in the fixed topological sectors [3—5].

We demonstrate that this obstacle is resolved by the tensor renormalization group (TRG) which
approximately computes the path integral expressed as a tensor network. Since the TRG evaluates
the path integral itself, the numerical results obtained by the TRG automatically include all the
contributions from different topological sectors. Additionally, there is no difficulty in imposing the
periodic boundary condition, suitable for dealing with topological terms, in the TRG calculations.
In this study, we investigate the two-dimensional (2d) lattice U(1) gauge-Higgs model defined by
the Liischer gauge action with a topological 6 term, particularly the phase transition at 6§ = 7 with
a sufficiently large mass parameter. In addition to the topological freezing problem, the standard
Monte Carlo simulation suffers from a complex action problem when the model has a topological 6
term. However, since the TRG is free from the complex action problem associated with a topological
6 term as well [6—13], we can investigate the phase transition at 8 = & without suffering from these
two numerical obstacles.

2. The model and its tensor network representation
The action of the U(1) gauge-Higgs model with a topological 6 term is given by

S=8g+S8,+So, 2.1



TRG study of the 2d lattice U(1) gauge-Higgs model Shinichiro Akiyama

where S, is the Liischer gauge action in Eq. (1.2) with the U(1)-valued link variable U, (n), and S,
defines the Higgs sector as

Sh==_[6"MUu(m(n+ ) +¢"(n+ DU (md(m)] +M D o) +1 D g(m)[*. (2.2)
n,u n n

The Higgs field is denoted by the single-component complex-valued field ¢(n) and the lattice mass
parameter by M. The quartic coupling is given by A. The topological 6 term is introduced by the
third term in Eq. (2.1). One way to define a topological 6 term on a lattice is

i0
So =75 ;m Pia(n), 2.3)

which grantees the 27 periodicity with respect to 6 not only in the continuum limit but also in the
lattice model. Alternatively,

i0
So =5 Zn: ImPy>(n), (2.4)

is also a widely used action of a topological 6 term on a lattice, known as the field-theoretical
definition. Although this definition grants the 27 periodicity only in the continuum limit, a
topological term on a lattice in four dimensions can be defined similarly to Eq. (2.4).

We parametrize the link variable via U, (n) = e'9u(") with t,(n) € [-m, ] and employ the
polar coordinate for the Higgs field as ¢(n) = r(n)e!?™. Thanks to the invariance of the Haar
measure, the angular field ¢(n) can be eliminated from the path integral, which reads

™ ddy(n) * )
‘- 1_,1[ / gnn H/O r(m)dr(n) exp [~BS = S}, = So] 2.5)
where
S, =- Z 2r(n)r(n+ fi) cosd,(n) + Z [Mr(n)2 + Ar(n)4] . 2.6)
n,u n

We now represent the path integral in Eq. (2.5) as a tensor network. We assume the model is
defined on a square lattice with periodic boundary conditions for both two directions. Since Eq. (2.5)
includes the integrations over the continuous variables, they have to be replaced by summations,
otherwise Eq. (2.5) cannot be expressed as a tensor contraction. In this study, we employ the
Gauss-Legendre quadrature for the integrations over ¢, (n) and the Gauss-Laguerre quadrature for
those over r(n), where the roots of Legendre and Laguerre polynomials are used to determine the
sampling points, respectively. Denoting the number of sampling points for the link variables as K
and that for the Higgs fields as Kj, we can approximately represent the original path integral as a
tensor network via

Z ~ Z(Kg, Kp) = tTr , 2.7)

15

n

where T}, is a fundamental tensor defined on each lattice site n. We emphasize that the Liischer gauge
action in Eq. (1.2) is straightforwardly implemented in the fundamental tensor 7,, when we apply the
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Gauss quadrature as a discretization scheme. For the details on this tensor network representation,
see Ref. [14]. Although the original path integral is restored in the limits of K, — oo and Kj, — oo,
the Gauss quadratures provide us with sufficiently accurate results with finite K, and K}, as we will
see below.

3. Numerical results

We use the bond-weighted TRG (BTRG) [15], which improves the original TRG [16] without
increasing the computational cost, to perform the tensor contractions in Eq. (2.7). BTRG enables
us to approximately carry out the contractions among 2P fundamental tensors, which corresponds
to the lattice size V via V = 2P, just within p times of coarse-graining transformation constructed
by the truncated singular value decomposition, whose accuracy is controlled by the bond dimension
Dpgtrg. This is another algorithmic parameter in addition to K, and K}, in the Gauss quadratures.
The quartic coupling is fixed as 4 = 0.5 throughout this study. For the algorithmic parameters, we
always set (Kg, K5, DptrG) = (20, 20, 160).

Firstly, we investigate the model with the topological 6 term defined by Eq. (2.3). Fig. 1 shows
the topological charge density, defined by

(Q)  10lnZ
Vv V80"’

(3.1

at § = 3 and € = 1. The resulting topological charge density varies smoothly against 6 with
M = 2.99. On the other hand, it is discontinuous at § = m when M = 3.00. This is consistent with
the expected phase structure in Ref. [17]; the model exhibits the first-order transition at § = & with
the spontaneous breaking of the Z; charge conjugation symmetry when the Higgs mass parameter
M is sufficiently large. This first-order transition at § = 7 terminates at some critical mass M.,
whose critical behavior is expected to be in the 2d Ising universality class. To locate the critical
endpoint, we compute the ground state degeneracy according to Ref. [18]. Fig. 2 shows the ground
state degeneracy as a function of M, which gives the bound for M. as 2.99747 < M. < 2.99748.
We also employ the recently proposed tensor-network-based level spectroscopy [19, 20] to precisely
locate the critical endpoint, identifying its universality class. Let 4, (n = 0,1,2,---) be an n-th
eigenvalue of the transfer matrix. Assuming that these eigenvalues are in descending order, the
scaling dimension x,, (L) with the finite system size L = V'/ is given by

1 Ao(L)

Xn(L) = g In /ln(L) .

3.2)

Ref. [20] utilizes a linear combination of two scaling dimensions such as x¢mp (L) = x1 (L)+x2(L)/16
to remove the effect from the dominant irrelevant perturbation with the scaling dimension 4. Fig. 3
shows the combined scaling dimension x.mp (L) at various system sizes as a function of M. The
almost volume-independent behavior with x.mp = 3/16 is observed at M ~ 2.99748, which is a
clear signal of the 2d Ising universality. Following the strategy of the tensor-network-based level
spectroscopy [19, 20], the critical endpoint is finally located as M. = 2.9974765(14). ' This
estimation is comparable with M, = 2.989(2) obtained in Ref. [21] by the Monte Carlo simulation

IFor the algorithmic parameter dependence of the resulting critical endpoint, see Ref. [14].
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based on the dual representation, where the Villain form defines the Boltzmann weight for the gauge
fields. We also investigate the finite-size correction of the free energy density In Z/V to obtain the
central charge c. Using the data at M = 2.99748 with L € [2!°,2!5], the non-vanishing central
charge is obtained as ¢ = 0.50(7), which is another evidence of the emergence of the 2d Ising
universality class.
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Figure 1: Topological charge density as a function of 6/7 at 8 =3, € = 1, and A = 0.5 with M = 2.99 (left),
M = 3.00 (right) at various lattice volumes.
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Figure 2: Ground state degeneracy at 0 = 7 as a
function of M at V = 240,

Figure 3: The volume dependence of the com-
bined scaling dimension x¢mp(L). The dashed
line denotes x.mp = 3/16.

Next, we consider the same model but with the topological 6 term defined by Eq. (2.4). We
begin with the computation using the standard Wilson gauge action instead of the Liischer gauge
action because the numerical results can be directly compared with a previous dual simulation
provided in Ref. [22]. Fig. 4 shows the topological charge density and its susceptibility, defined by

16°InZ

XQZ—v 902

(3.3)
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at 8 = 10 and M = 4. These results shown in Fig. 4 seem quantitatively consistent with Figure 11
in Ref. [22]. Since a clear discontinuity is observed in the topological charge density with L = 27,
it seems that the first-order transition takes place when M = 4 but the transition point deviates from
6 = m due to the lattice artifact.
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Figure 4: Topological charge density (left) and topological susceptibility (right) as a function of 6/x at
B =10, M = 4 with the standard Wilson gauge action at various lattice volumes. Dashed vertical lines
denote 8 = nr. The inset graph is provided for the susceptibility in the smaller volumes.
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Figure 5: Topological charge density (left) and topological susceptibility (right) as a function of 6/x at
B =10, M = 4 with the Liischer gauge action (e = 1) at various lattice volumes. Dashed vertical lines denote
6 = n. The graph scale is the same as Fig. 4.

Let us now move on to the case with the Liischer gauge action. The resulting topological
charge density and its susceptibility are shown in Fig. 5, where we set € = 1. The results obtained
by the Liischer gauge action with € = 1 are qualitatively consistent with those by the Wilson gauge
action. Compared with Fig. 4, however, the transition point is now closer to 8 = x. This is a clear
advantage of the Liischer gauge action particularly in dealing with the topological 6 term according
to the field-theoretical definition. We further examine how these topological quantities are modified
by setting € even smaller. In Fig. 6, we have set € = 0.1. It can be seen that the resulting transition
point is almost at § = x. Although the finite-volume effect seems to be enhanced with smaller e,
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this does not provide any extra difficulty in the TRG computations because the computational cost
of the TRG scales logarithmically with respect to the lattice volume. With L > 2°, the discontinuity
in the topological charge density emerges as well as in the previous cases, indicating the first-order
transition. Finally, we investigate the ground state degeneracy near 8 = x. In Fig. 7, we show the
degeneracy computed on a finite lattice with L = 2° as a function of §. We note that the two-fold
degeneracy should be observed only at the transition point in the thermodynamic limit. Noninteger
values are just due to the finite-volume effect. The two-fold degeneracy observed near 8 = r is
the signal of spontaneous Z, symmetry breaking. Therefore, the current TRG computations based
on the field-theoretical definition work as well as in the previous calculations with the logarithmic
definition in Eq. (2.3). Fig. 7 again demonstrates that the Liischer gauge action with the smaller €
results in the transition point almost at 6 = 7.
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Figure 6: Topological charge density (left) and topological susceptibility (right) as a function of 6/x at
B =10, M = 4 with the Liischer gauge action (¢ = 0.1) at various lattice volumes. Dashed vertical lines
denote 8 = nr. The inset graph is provided for the susceptibility in the smaller volumes.

4. Summary and outlook

We have shown that the TRG is a promising approach in dealing with the lattice gauge theory
under Liischer’s admissibility condition. Specifically, both the topological freezing problem and
complex action problems are simultaneously resolved by the TRG approach. The phase transition
at § = m in the 2d U(1) gauge-Higgs model has been investigated by employing two types of
definitions for the topological term on a lattice. With the logarithmic definition, the lattice model
exhibits the phase transition exactly at 6 = m when M > M.. Using the tensor-network level
spectroscopy, we have confirmed that the critical behavior at M = M is in the 2d Ising universality
class. With the field-theoretical definition, on the other hand, the Liischer gauge action has shown
a clear advantage over the standard Wilson gauge action; the transition point is located almost at
6 = m even at finite 8 by setting sufficiently small €. The search for the critical endpoint in the 2d
U(1) gauge-Higgs model with the topological 6 term based on the field-theoretical definition will
be reported elsewhere.
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