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1. Introduction

Chiral Perturbation Theory (𝜒PT) was developed in the early eighties by Gasser and Lleutwyler
[1]. Since then 𝜒PT has been extensively used to explore continuum QCD at low energies and
has also become an essential component in extracting physical quantities obtained using unphysical
parameters (both lattice spacing and quark mass) from lattice simulations. It describes the low-
energy interactions of the pseudoscalar mesons arising as Goldstone modes from the spontaneous
breaking of the chiral symmetry of the QCD vacuum. 𝜒PT has also been extended to include the
lattice discretization errors. This allows a continuous extrapolation to 𝑎 → 0 and 𝑚 → 𝑚physical

simultaneously.
Symanzik effective theory [2, 3] describes lattice actions near the continuum limit using higher

dimensional operators in orders of lattice spacing 𝑎 which appears explicitly in the action. Such
a chiral Lagrangian is an expansion in the quark masses (like continuum 𝜒PT) and in the lattice
spacing. This formalism is known as lattice 𝜒PT. Well-known examples of lattice 𝜒PT are Wilson
𝜒PT [4–6] and Staggered 𝜒PT [7]. In this work we address minimally doubled fermion 𝜒PT,
especially for Karsten-Wilczek formalism [8, 9].

According to the Nielsen-Ninomiya No-Go Theorem [10], fermion actions that have an exact
chiral symmetry must have at least two doublers. The actions that satisfy the minimum criteria
are known as minimally-doubled fermions. All minimally doubled fermions preserve exact chiral
symmetry and locality [11]. One such action with the two doublers on the temporal axis was
suggested by Karsten and Wilczek. Another popular variant of minimally doubled fermions is
Borici-Creutz fermions [12–15], whose 𝜒PT construction will be taken up in the future.

The aim of this work is to construct a lattice 𝜒PT for Karsten-Wilczek minimally doubled
fermions. We discuss two cases, first is the simplistic one where we do not consider the existence
of the two doublers. The second case considers the two doublers or "quark tastes" and splits the
quark wavefunction into two. Symanzik effective theory is constructed in both the cases and then
the standard process of spurion analysis is used to construct the chiral Lagrangians.

2. Karsten-Wilczek Fermions

The Karsten-Wilczek (KW) action [8, 9] in presence of 𝑆𝑈 (3) gauge fields on a discrete
4-dimensional spacetime lattice is written as,

𝑆KW = 𝑎4
∑︁
𝑥

[
1

2𝑎

4∑︁
𝜇=1

[
𝜓(𝑥) (𝛾𝜇 − 𝑖𝛾4(1 − 𝛿𝜇4))𝑈𝜇 (𝑥)𝜓(𝑥 + 𝑎�̂�)

− 𝜓(𝑥 + 𝑎�̂�) (𝛾𝜇 + 𝑖𝛾4(1 − 𝛿𝜇4))𝑈†
𝜇 (𝑥)𝜓(𝑥)

]
+ 𝜓(𝑥)

(
𝑚0 +

3𝑖𝛾4
𝑎

)
𝜓(𝑥)

] (1)

We retain the lattice spacing 𝑎 explicitly in the action above and in all the subsequent expressions
since it will play a role in construction of lattice 𝜒PT. In the momentum space, the free Dirac
operator [16] with gauge fields turned off, i.e. 𝑈 = 1, is,

DKW(𝑝) = 𝑖

𝑎

4∑︁
𝜇=1

𝛾𝜇 sin 𝑎𝑝𝜇+
𝑖

𝑎
𝛾4

3∑︁
𝑘=1

(1−cos 𝑎𝑝𝑘) +𝑚0 = 𝐷 (𝑝) + 𝑖

𝑎
𝛾4

3∑︁
𝑘=1

(1−cos 𝑎𝑝𝑘) +𝑚0 (2)
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The action preserves chiral symmetry: {DKW, 𝛾5} = 0. We obtain the momentum space free KW
propagator [16, 17] after inverting the free Dirac operator in equation (2),

𝑆(𝑝) =

−𝑖𝑎
4∑︁

𝜇=1
𝛾𝜇 sin 𝑎𝑝𝜇 − 2𝑖𝑎𝛾4

3∑︁
𝑘=1

sin2 𝑎𝑝𝑘/2 + 𝑎2𝑚0

4∑︁
𝜇=1

sin2 𝑎𝑝𝜇 + 4 sin 𝑎𝑝4

3∑︁
𝑘=1

sin2 𝑎𝑝𝑘/2 + 4
( 3∑︁
𝑘=1

sin2 𝑎𝑝𝑘/2
) ( 3∑︁

𝑙=1
sin2 𝑎𝑝𝑙/2

)
+ (𝑎𝑚0)2

(3)

The poles of the free massless propagator are at (0, 0, 0, 0) and (0, 0, 0, 𝜋). Expanding the propagator
around the pole (0, 0, 0, 𝜋) shows the presence of two degenerate fermionic species having opposite
chiralities. The discrete symmetries of KW action are 𝑃, site-reflection [18] and 𝐶𝑇 and so 𝐶𝑃𝑇 .

3. Lattice Chiral Perturbation Theory

QCD action in the continuum is the starting point of continuum 𝜒PT [1], which is also employed
in understanding lattice QCD results. In this work, since we are trying to develop lattice 𝜒PT for
MDF, particularly KW fermions on lattice, we begin from the construction of Symanzik action.
References [2, 3] suggest that the lattice action can be written as an expansion in lattice spacing,

𝑆sym = 𝑆0 + 𝑎𝑆1 + 𝑎2𝑆2 + ...

where, 𝑆k =
∑︁
𝑖

∫
𝑑4𝑥𝑐

(𝑘+4)
𝑖

𝑂
(𝑘+4)
𝑖

(4)

𝑂
(𝑘+4)
𝑖

are the (𝑘 + 4)-dimensional operators that obey all the symmetries of the lattice action. The
operators of all dimensions obeying these symmetries are needed in this construction.
The QCD vacuum breaks the axial flavor symmetry group leading to the spontaneous symmetry
breaking of the group 𝑆𝑈 (𝑁)A. 𝑁2 − 1 massless Nambu-Goldstone bosons arise from the spon-
taneous breaking of axial symmetry. These are the lowest-lying pseudoscalar mesons. The quark
mass term in the continuum QCD action breaks 𝑆𝑈 (𝑁)A explicitly, giving small masses to the
pseudoscalar mesons. The low-energy dynamics of QCD are defined by 𝜒PT as the interactions
of these pseudoscalar mesons. They are represented as the composite pion field Σ, defined as
Σ = exp

(
𝑖
𝜆𝑎𝜙𝑎

𝑓0

)
where 𝜙𝑎 are the Nambu-Goldstone fields and 𝜆𝑎 are the corresponding broken

generators. For an introduction to 𝜒PT, we refer the reader to [19] and references within.

4. Single Taste Approach

The KW propagator has two poles. This means that the fermion wavefunction in the KW
action can be broken down to two independent fermion wavefunctions or tastes. As a first step, we
consider only one taste and construct a lattice 𝜒PT for it.

3
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4.1 Symanzik Effective Theory

We select all operators up to dimension-5 that are invariant under the discrete symmetries of
the KW action (site-reflection, 𝑃 and 𝐶𝑇) and construct the single-taste Symanzik Effective Theory
(SET) up to dim-5.

𝑆sym =

∫ [
𝑎−1

{
𝑐 (1) 𝑖𝜓𝛾4𝜓

}
+ 𝑎0

{
𝜓𝛾𝜇𝜕𝜇𝜓 + 𝜓𝑚𝜓

}
+𝑎1

{
𝑑 (0)𝜓𝑚2𝜓 + 𝑑 (1) 𝑖𝜓𝑚2𝛾4𝜓 + 𝑑 (2)𝜓𝑚𝛾4𝜕4𝜓 + 𝑑 (3)𝜓𝑚𝛾 𝑗𝜕 𝑗𝜓 (5)

+𝑑 (4) 𝑖𝜓𝛾4𝜕4𝜕4𝜓 + 𝑑 (5) 𝑖𝜓𝛾4𝜕𝑘𝜕𝑘𝜓 + 𝑑 (6) 𝑖𝜓𝛾𝑙𝜕𝑙𝜕4𝜓

}]
where, summation over repeated Roman alphabets is understood to be the summation over the space
directions. The coefficients 𝑐 (𝑖) and 𝑑 (𝑖) are independent low-energy constants (LECs).

Spurion analysis is performed by attributing transformation rules to these LECs that make
their corresponding term invariant under all the relevant symmetries. These LECs, 𝑐 (𝑖) and 𝑑 (𝑖) ,
with their transformation rules and with the lattice spacing dependences are called spurions. As an
example, 𝑑 (1) and quark bilinear 𝑖𝜓𝛾4𝜓 transform under 𝐶, 𝑇 and 𝑆𝑂 (4) as,

𝑑 (1) 𝐶,𝑇−−−→ −𝑑 (1) 𝑖𝜓𝛾4𝜓
𝐶,𝑇−−−→ −𝑖𝜓𝛾4𝜓 (6)

𝑑 (1) 𝑆𝑂 (4)
−−−−−→ Λ−1

𝜇4𝑑
(1)
4 𝑖𝜓𝛾4𝜓

𝑆𝑂 (4)
−−−−−→ Λ𝜇4𝑖𝜓𝛾4𝜓

where 𝑑 (1) is treated as a four vector with only non-zero component being the fourth component.
Using Σ, its derivatives and together with the spurions, the KW chiral Lagrangian for single fermion
species is constructed. The corresponding terms in the Lagrangian at leading orders in 𝑝, 𝑀 and 𝑎

are,

L𝑝2 = 𝐴1⟨𝜕𝑘Σ𝜕𝑘Σ†⟩ + 𝐴2⟨𝜕4Σ𝜕4Σ
†⟩ + 𝐴3⟨𝑀Σ + 𝑀Σ†⟩

L𝑝2/𝑎2 =
1
𝑎2 𝐵1⟨𝜕4Σ𝜕4Σ

†⟩ (7)

L𝑝2𝑎 = 𝑎
{
𝐶1⟨𝜕𝑘Σ𝜕𝑘Σ†⟩ + 𝐶2⟨𝜕4Σ𝜕4Σ

†⟩
}

L𝑝2𝑎2 = 𝑎2𝐷1⟨𝜕4Σ𝜕4Σ
†⟩

where, the angular brackets stand for trace and the coefficients 𝐴, 𝐵, 𝐶 and 𝐷 are low-energy
couplings not known in principle.

This single fermion model helps us to see how 𝑆𝑂 (4) symmetry is breaking. It also indicates
how to build up the two-taste lattice 𝜒PT without the usual doublers that appear in lattice with
fermions. This model is obviously simplistic and far from accurate and, hence, cannot be used for
understanding the results from lattice simulations with KW fermions. An additional issue is that
the SET we used contains no gluonic terms, which means that it is a free theory. The symmetries
of the free and the interacting KW action are crucially different and thus studying the interacting
theory is an important step in achieving complete results1.

1The reason is that in the free KW action, two𝑈 (1)A symmetries are conserved whereas in the interacting KW action,
only one survives. We have used the free SET as it is a simpler model to understand.
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5. Two-Taste 𝜒PT for KW fermions

The next obvious step is to address both the tastes of KW fermions for the construction of
the chiral Lagrangian. We separate the fermion wavefunction in equation (1) into two independent
wavefunctions corresponding to the two poles of the KW propagator. This is known as point-
splitting [20, 21]. The momentum space KW action coming from the Dirac operator in equation
(2) itself is broken down into two actions corresponding to the two tastes. Point splitting has
been discussed in detail by Tiburzi [20] and an alternate version has been provided by Creutz
[21]. For the sake of completeness, we provide a brief summary of Tiburzi’s method below. We
construct the SET for the free point-split action following which we construct the chiral Lagrangian2.

5.1 Point Splitting

Here, we recapitulate Tiburzi’s approach to point splitting. Once the existence of two fermion
tastes is considered, the discrete symmetry transformations (𝑃, 𝐶, 𝑇 , site-reflection) do not preserve
the locality of the coordinate space single fermion wavefunction. This is because the momentum
support of the wavefunction comes from two different poles with opposite chirality. It is convenient
to use a non-local object whose structure of non-locality remains preserved under discrete transfor-
mations.
First, we divide the Brillouin zone between the tastes by allocating half Brillouin zones to each
taste. This is done by defining the two momentum space wavefunctions corresponding to the two
tastes as follows,

𝜓(𝑘)
��
𝑘𝜇∈B = 𝜓 (1) (𝑘) (8)

𝜓(𝑘)
��
𝑘𝜇∉B = 𝛾4𝛾5𝜓

(2) (𝑇𝜋4𝑘)

where the new momentum is given by 𝑇𝜋4𝑘𝜇 = (k, (𝑘4 + 𝜋) mod 2𝜋). B is the central part of the
Brillouin zone, B : |𝑘4 | < 𝜋

2 . Two equal parts of the Brillouin zone correspond to the two tastes.
We define the isospinor,

Ψ(𝑘) =
(
𝜓 (1) (𝑘)
𝜓 (2) (𝑘)

)
(9)

In terms of this isospinor, the free two-taste KW action is,

𝑆 =

∫
B

𝑑4𝑘

(2𝜋)4Ψ(𝑘)
[∑︁

𝜇

𝑖(𝛾𝜇 ⊗ 1) sin 𝑘𝜇 − 𝑖(𝛾4 ⊗ 𝜏3)
∑︁
𝑗

(cos 𝑘 𝑗 − 1)
]
Ψ(𝑘) (10)

The action splits into two parts, each consisting purely of a single taste fermion differing only by the
sign of the second term, signifying that the chirality of the two tastes is opposite. The symmetries of
the free two-taste action are covered in detail by Tiburzi and are listed as transformations in Tables

2A caveat- we acknowledge that in our work we missed an important ingredient as was pointed out by Steve Sharpe
and Stefan Dürr at the Lattice 2024 conference where this work was presented. The principal point is that the total
number of pions (Nambu-Goldstone modes) should be three instead of two as has been argued here.

5
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Table 1: Transformation properties of time-smeared wavefunctions under discrete symmetries.

Site-Reflection Parity C×T T×Flavor Rotation
𝛿B𝜓𝑥 𝛾4𝛾5𝛿B𝜓

𝑇

1−x,𝑥4 𝛾4𝛿B𝜓−x,𝑥4 𝛾2𝛾5𝛿B𝜓
𝑇

x,−𝑥4 𝑖𝑒𝑖 𝜋𝑥4𝑒𝑖 𝜃𝛿B𝜓x,−𝑥4

𝛿B𝜓𝑥 𝛾4𝛾5𝛿B𝜓
𝑇

1−x,𝑥4 −𝛾4𝛿B𝜓−x,𝑥4 −𝛾2𝛾5𝛿B𝜓
𝑇

x,−𝑥4 −𝑖𝑒𝑖 𝜋𝑥4𝑒−𝑖 𝜃𝛿B𝜓x,−𝑥4

Table 2: Transformation properties of the time-smeared wavefunctions under the four 𝑈 (1) symmetries.

Isosinglet Vector Isovector Axial Isovector Vector Isosinglet Axial
𝛿B𝜓𝑥 𝑒𝑖 𝜃𝛿B𝜓𝑥 𝑒𝑖 𝜃𝛾5𝛿B𝜓𝑥 𝑒𝑖 𝜃𝛿B𝜓𝑥 𝑒𝑖 𝜃𝛾5𝛿B𝜓𝑥

𝛿B𝜓𝑥 𝑒𝑖 𝜃𝛿B𝜓𝑥 𝑒𝑖 𝜃𝛾5𝛿B𝜓𝑥 𝑒−𝑖 𝜃𝛿B𝜓𝑥 𝑒−𝑖 𝜃𝛾5𝛿B𝜓𝑥

1 and 2. The single taste coordinate space wavefunction loses its locality under the transformations
given in Tables 1 and 2. But the time-smeared wavefunctions 𝛿B𝜓𝑥 and 𝛿B𝜓𝑥 preserve the structure
of their time-smearing under these transformations. The time-smeared wavefunction is defined as,

𝛿B𝜓𝑥 =

∫
B

𝑑𝑘4
2𝜋

∑︁
𝑦4

𝑒𝑖𝑘4 (𝑥4−𝑦4 )𝜓x,𝑦4 (11)

and similarly for 𝛿B𝜓𝑥 with the integration domain changing to B. We say that the quark wave-
function splits into two taste wavefunctions 𝛿B𝜓𝑥 and 𝛿B̄𝜓𝑥 .

5.2 Two-taste Chiral Lagrangian

Using the taste wavefunctions of equation (9) as our fundamental building blocks, the two-taste
SET is constructed as given below in equation (12). The most general terms made up of the taste
wavefunctions are those that are invariant under all the transformations given in Tables 1 and 2.
The action corresponding to the taste originating from the pole at {0, 0, 0, 0} is,

𝑆B
Sym =

∫
𝑑4𝑥

[
𝑎−1{𝑐 (1) 𝑖𝛿B𝜓𝛾4𝛿B𝜓

}
+ 𝑎0{𝛿B𝜓𝛾𝜇𝜕𝜇𝛿B𝜓 + 𝛿B𝜓𝑚𝛿B𝜓

}
+𝑎1{𝑑 (0)𝛿B𝜓𝑚

2𝛿B𝜓𝑥 + 𝑑 (1) 𝑖𝛿B𝜓𝑥𝑚
2𝛾4𝛿B𝜓𝑥 (12)

+𝑑 (3)𝛿B𝜓𝑥𝑚𝛾4𝜕4𝛿B𝜓𝑥 + 𝑑 (4) 𝑖𝛿B𝜓𝑥𝛾4𝜕4𝜕4𝛿B𝜓𝑥

]
A similar action 𝑆B

sym corresponding to the pole at {0, 0, 0, 𝜋} can be written by replacing
𝛿B𝜓 with 𝛿B𝜓. Hence we see that the SET splits into two SETs each made only of a single taste.
Because of the invariance of the total action (sum of the individual single-taste actions) under
𝑇×Flavor Rotation symmetry, the coefficients 𝑐 (𝑖) and 𝑑 (𝑖) must be equal in both 𝑆B

sym and 𝑆 B̄
sym.

The chiral group of the action in equation (10) comprises of the four 𝑈 (1) transformations as
given in Table 2. They can be written as,

𝐺 = 𝑈 (1)B𝑉 ×𝑈 (1)B𝑉 ×𝑈 (1)B
𝐴
×𝑈 (1)B

𝐴
(13)

6
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Table 3: Transformations of the composite pion field.

P C T G T×Taste Rotation
𝚷(x) Π†(𝑥) Π𝑇 (𝑥) Π(𝑥) 𝑔LΠ(𝑥)𝑔†R 𝜏1Π(𝑥)𝜏1

This chiral group is spontaneously broken to the group 𝐻 = 𝑈 (1)B
𝑉
×𝑈 (1)B

𝑉
, two axial generators

getting spontaneously broken3. Therefore, Goldstone’s theorem implies the existence of two mass-
less Goldstone bosons. The composite pion field is Π(𝑥) = exp (𝑖𝜙/ 𝑓0). Since the broken group is
𝐺/𝐻 ≡ 𝑈 (1)B

𝐴
⊕ 𝑈 (1)B

𝐴
,

𝜙(𝑥) = 𝜋𝑎 (𝑥)𝑇𝑎 = 𝜋(𝑥)
(
1 0
0 0

)
+ �̃�(𝑥)

(
0 0
0 1

)
=

(
𝜋(𝑥) 0

0 �̃�(𝑥)

)
(14)

where 𝜋(𝑥) is the pion coming from taste B and �̃�(𝑥) is the one coming from taste B. Thus the
composite pion field Π(𝑥) becomes,

Π(𝑥) = exp
(
𝑖
𝜙(𝑥)
𝑓0

)
=

(
𝑒𝑖 𝜋 (𝑥 ) 0

0 𝑒𝑖 �̃� (𝑥 )

)
(15)

The transformations of the field Π(𝑥) are given in Table 3 where, 𝑔L/R stands for,

𝑔L/R =

(
𝑒
𝑖 𝜃B

𝐿/𝑅 0

0 𝑒
𝑖 𝜃B

𝐿/𝑅

)
(16)

Effectively, 𝑇×Taste Rotation exchanges the pion fields that is 𝜋(𝑥) ⇄ �̃�(𝑥).
At various orders in 𝑝, 𝑎 and 𝑀 , the terms in the chiral Lagrangian are,

L𝑝2 = 𝐴1⟨𝜕𝑘Π𝜕𝑘Π
†⟩ + 𝐴2⟨𝜕4Π𝜕4Π

†⟩ + 𝐴3⟨𝑀Π + 𝑀Π†⟩

L𝑝2/𝑎2 =
1
𝑎2 𝐵1⟨𝜕4Π𝜕4Π

†⟩ (17)

L𝑝2𝑎 = 𝑎
{
𝐶1⟨𝜕𝑘Π𝜕𝑘Π

†⟩ + 𝐶2⟨𝜕4Π𝜕4Π
†⟩

}
L𝑝2𝑎2 = 𝑎2𝐷1⟨𝜕4Π𝜕4Π

†⟩

The terms appearing in the two-taste chiral Lagrangian are identical to those in equation (7)
except that the structure of the composite pion field is different in each case. This difference brings
changes in structure of the interactions of the pions.

6. Summary

We have developed a chiral Lagrangian for free KW fermions using two different approaches.
The first approach considers only one taste and provides a simplistic model for the eventual develop-
ment of the full chiral Lagrangian with two tastes. In this approach, symmetries of the single-taste

3This statement is not completely correct. All three generators of 𝑆𝑈 (3)A are spontaneously broken while two of
them are also explicitly broken. So only one generator of 𝑆𝑈 (3)A is preserved explicitly. This assumption leads to the
erroneous result of having two pions instead of three, as pointed out by Sharpe and Dürr.
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KW action are used to construct a single-taste Symanzik Effective Theory. Spurion analysis is
then used to write down the chiral Lagrangian. In the second approach, existence of two tastes is
considered. The momentum-space KW action is split into two once the wavefunction is point-split.
The symmetries of this two-taste KW action are used to construct a two-taste Symanzik Effective
Theory. The pion field is defined following the group structure of the (spontaneously broken) sym-
metries of the action. Spurion analysis is then performed to obtain the two-taste chiral Lagrangian.
The two-taste chiral Lagrangian turns out to be similar to the single-taste chiral Lagrangian except
for the structure of the composite pion field.

This work has been done using the free KW action. Complete results will be established using
the interacting KW action as the symmetries of the two actions differ significantly. The group
arguments used to define the pion field for the two-taste chiral Lagrangian are erroneous and lead
to two pions instead of three. For KW fermions, due to lattice discretization errors, one expects
the existence of one massless pion and two massive pions in the chiral limit. In the continuum
limit, all three pions become massless. Ongoing work focuses on studying the interacting two-taste
Symanzik Effective Theory and developing the corresponding chiral Lagrangian. Such a chiral
Lagrangian can be used to calculate the masses of the two pions that are massive in the chiral limit
as a function of the lattice spacing.
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