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The breaking of space-time symmetries and the non-conservation of the associated Noether
charges constitutes a central artifact in lattice field theory. In [1, 2] we have shown how to
overcome this limitation for classical actions describing point particle motion, using the world-
line formalism of general relativity. The key is to treat coordinate maps (from an abstract parameter
space into space-time) as dynamical and dependent degrees of freedom, which remain continuous
after discretization of the underlying parameter space. Here we present latest results [3] where we
construct a reparameterization invariant classical action for scalar fields, which features dynamical
coordinate maps. We highlight the following achievements of our approach: 1) global space-time
symmetries remain intact after discretization and the associated Noether charges remain exactly
preserved 2) coordinate maps adapt to the dynamics of the scalar field leading to adaptive grid

resolution guided by the symmetries.
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Figure 1: Lattice spacing induced symmetry breaking and its effects. See main text for discussion.

1. Motivation

Symmetry breaking induced by the finite lattice spacing a, inherent in conventional formula-
tions of lattice field theory, adversely affects the physics interpretation of lattice simulations. In
fig. 1 we illustrate several concrete examples. In the absence of rotational symmetry, the angular
momentum quantum numbers used to label hadron states in the continuum lose their meaning and
mixing among physical states ensues (see e.g. [4]). Lack of translation symmetry is known to lead
to unphysical contributions to the energy momentum tensor on the lattice, whose renormalization
hence becomes more involved (see e.g. [5]). When improved actions are deployed, one benefits
from a more rapid convergence towards the continuum limit, but at the cost that these actions may
not respect reflection-positivity. In turn the analysis of hadronic spectral functions suffers from the
occurrence of positivity violations (see e.g. [6]). Last but not least, the use of machine learning
approaches to lattice field theory (see e.g. [7] and [8] in these proceedings) relies on training data,
often informed by continuum physics. If the simulation, on which the machine learning approach
is deployed, does not preserve the symmetries present in the training data the mismatch may affect
the reliability of the analysis.

In this contribution we present recent work [3] that realizes a discretization of classical (scalar)
lattice field theory, while retaining space-time symmetries. It relies on a novel reparameterization
invariant classical action, whose construction is inspired by the work-line formalism of the general
theory of relativity. Its key ingredients are dynamical coordinate maps, which evolve together with
the field. Deploying a discretization scheme that mimics exactly integration by parts we maintain
Noether’s theorem in the discrete setting. Using classical scalar wave propagation in (1 + 1)d as
proof-of-principle, we show that the Noether charge remains exactly conserved and also find that
the coordinate maps adapt to the dynamics of the field, realizing automatic mesh refinement.

2. From the world-line formalism to a new action for classical scalar fields

In the following we will construct a novel action for scalar field theory, borrowing from
the formalism of general relativity (GR). We do not consider curved spacetime, G,y = Ny, =
diag[1, -1, —1, —1] but adapt the mathematical framework of reparameterization invariant actions.
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2.1 Point particle motion in the world-line formalism

Before we turn to fields, let us first discuss point particle motion in the world-line formalism
in GR. In contrast to the non-relativistic treatment of particle motion in terms of a trajectory, i.e. a
function describing spatial position X(¢) that depends on the parameter 7, the world-line formalism
requires us to treat space and time on equal footing. The path a single particle traces out as it
evolves in spacetime is a one-dimensional manifold and thus can be parameterized by a single
number, often denoted by y € [0, 1], christened the world-line parameter. At each point along the
path, the particle’s spacetime coordinates are represented by dynamical coordinate maps #(y) and
X(7v) which depend on the abstract parameter 7.

In GR the particle world-line describes a geodesic, the shortest path in a given space-time.
Such a geodesic may be obtained from a variational principle, based on the geodesic action

_ V(X)\dX"Y dx° dX' dX?
Seeo = / dy (—mc){\/(GOO + ZMCZ)WE + G”d_y dy }, (D

where m denotes the mass and V the potential underlying the forces acting on the point particle.
This action is but the generalization of path length to an arbitrary geometry described by the metric
G. When taking the non-relativistic limit, involving slow speeds v/c <« 1 and potential energy
smaller than rest energy V/2mc? < 1 one arrives at the standard action

S from;q. (1 / dt { —mc* + %m(f(l‘))z - V(f(t))}’ 2)

with one extra contribution, the constant rest mass term. Note the factor 1/2 in the kinetic energy,
arising from the expansion of the square root in eq. (1). The term (mc) denotes a novel scale, at
which particle motion through time becomes inseparable from motion through space.

As we have showed in a previous study [1, 2], the geodesic action offers the opportunity to
discretize in the world-line parameter vy instead of time 7. In turn the coordinate maps remain
continuous even in the discrete setting. We were able to establish a Noether theorem for the point
particle motion and showed that its energy is exactly preserved at its continuum value. Furthermore
we found that 7(y) as dynamical coordinate map adjust to the dynamics of the particle, leading to a
varying time resolution along the world line, i.e. one-dimensional automatic mesh refinement.

2.2 The Stavanger-Cape Town-Linkoping (SCL) action for scalar fields

Inspired by the world-line formalism we set out to derive a novel reparameterization invariant
action for scalar fields. As shown in the lower half of fig. 2, in such a formalism spacetime
coordinates are represented by dynamical coordinate maps #(7, o) and x(7, o), which together with
the field ¢(7, o) evolve in an abstract space spanned by the parameters (7, o). The former denotes
temporal evolution, the latter spatial evolution. Just as discretization of the world-line parameter
did not affect the space-time symmetry properties the goal here too is to discretize in (7, o) instead
of (¢, x) in order to retain the continuum symmetries.

Let us briefly review the key steps in the derivation, which is discussed in detail in [3]. Starting
from the conventional reparameterization invariant action, we consider the possibility that this
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Figure 2: Comparison of the (top) conventional formulation of field theory where fields ¢(z,x) lives in
space and time and discretization breaks spacetime symmetries. (bottom) Sketch of our novel formalism
with dynamical coordinate maps 7(1, o) and x(7, o) in addition to the fields ¢(7, o). All degreed of freedom
live in an abstract parameter space, whose discretization leaves spacetime symmetries intact (from [3]).

action itself is the low energy limit of another more general action. Taking inspiration from the
world-line formalism, we reverse engineer a more general action, starting by including a constant 7'

5= [ dt0x V=aalGT{ - 7+ 3 (6" 3,0(0)0,6(0) + V(@) @)

similar to the term (mc) in eq. (1). Let us move T to the front after which the action appears to
represent the lowest order in an expansion of powers of x = action density/T

Spvp = / 4 X \/—det[G {l——(G’“’(’),uqﬁ(X)B ¢(X)+V(¢))}+0(K2), @)
~ / 44 x \/—det[G](—T)\/l—%(G#V8#¢(X)6y¢(X)+V(¢)). 5)

Reverse engineering the action by undoing the assumed expansion, we arrive in eq. (5) at an

action Sgyp that contains a square root term. This action is still formulated in terms of spacetime
coordinates. The next decisive step is to elevate the coordinates to dynamical coordinate maps
X" — XH(X) dependent on the abstract parameters X = (7,0)%. Changing the integration
variables X — X introduces the determinant of the Jacobian |det(J)|, which together with the metric
term y/—det[G] combines into the determinant of the so-called induced metric gqp = Gy Jh Jy
describing the geometry of the space of parameters

Save = [ a4z —T)\/—det[g] b (O 0,0(2),0(2) + V(@) Jdetlzl. ©)

There are still references to the old metric and spacetime derivatives visible under the square root,
which we can convert by introducing the adjugate of the induced metric adj[g] = g~ 'det[g] to
obtain the final form of the Stavanger-Cape Town-Linkoping (SCL) action

Sve = [ a4 0x (=7)\J(Rv(0) - 1)aetlal + Lo o @)



Symmetry preservation and mesh refinement in classical LFT A. Rothkopf

Thus we achieved the goal of introducing dynamical coordinate maps along with the field. These
maps are the key that allows us to discretize the action in the abstract parameters (7, ) and they
implement automatic mesh refinement as we show in section 4. Note that T represents the scale
where dynamics of the field and that of coordinate maps become inseparable.

Classical dynamics are fully specified by the critical point of the classical action. Since the
critical point does not change when applying a monotonous function to the integrand of the action,
we go over to the following expression devoid of the square root

Eave = [ a0z {(2V(0) - 1)detle] + 10,00 Nadilelun). O

3. Summation-by-parts finite difference discretization of the novel action

Our goal is discretize the action of eq. (8) in the abstract parameters (7,7) to leave the
coordinate maps continuous. This will allow us to retain the continuum space-time symmetries of
the system. In addition in order for symmetries to be related to conserved quantities, Noether’s
theorem must hold. To derive it from the system action, integration by parts is a crucial ingredient.
Thus we deploy a finite difference scheme that mimics integration by parts exactly in the discrete
setting, fulfilling the so-called summation by part (SBP) property (for reviews see [9-11]).

Let us discuss the SBP approach in a simple one-dimensional setting, with functions u(7) and
v(7), which we discretize as w and v on an equidistant grid with N points with At = (77—1;)/(N-1).
Since integration by parts connects integration and differentiation, we must first select a quadrature
rule fT l_Tf dru(t)v(r) ~ v’ Hv = (u, v) via the diagonal positive definite matrix IH. The associated
SBP finite difference operator D is constructed as

D=H'Q, Q+Q'=Ey-E =diag[-1,0,...,0,1], 9)

where () encodes the stencil structure of the finite difference. The matrices IE; contain zero
everywhere, except at the i-th diagonal entry. It is the relation on the right of eq. (9) that establishes
the summation-by-parts nature of D, i.e. it guarantees the correct boundary treatment in the inner
product (Du)” Hv = —u” HDv + uyvy — ugvg. The lowest order SBP operator SBP121 reads

[ 2 2
-1 0 1

|21 — Ay . D2t " : 10
1 2At ) (19)
1 -1 0 1

-2 2

ol—

Note that it consists of the forward and backward derivative stencil on the boundaries, as well as the
central symmetric stencil in the interior (this operator has been investigated in the context of point
particle quantum mechanics in [12]).

As is well known in the lattice community, a central symmetric finite difference operator suffers
from the infamous doubler problem. The strategy proposed by Wilson in the case of fermion fields
is not applicable here, as it requires modifying the finite difference with a complex term. Here
our operator acts only on purely real functions. Instead we developed an alternative regularization
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Figure 3: (blue) Spectrum of the naive SBP121 finite difference operator on a N = 32 grid. Note that two
zero modes, one physical, one unphysical occur. (red) Spectrum of the regularized SBP operator is devoid
of zero modes and the physical constant function is represented by the eigenvalue unity (from [13]).

strategy [13] which is inspired by the weak treatment of boundary conditions in modern approaches
to partial differential equations. Our strategy is to incorporate penalty terms into the finite difference
operator, which penalize deviation from the boundary data. I.e. we define a new regularized SBP
operator Du = Du+H'E; (u—u,), where the array u; contains the boundary data in its first entry.
This modification contains two contributions. The first, proportional to u can be readily absorbed
into the original structure of ID. However to accommodate the constant shift related to u; we must
introduce affine coordinates, i.e. to construct D, the original DD is extended by one row and one
column, the value unity placed in the new bottom right corner. The shift then enters in the newly
added column. As shown in fig. 3 the unphysical zero mode of the original ID operator (blue cross
at the origin) is lifted and the original physical zero mode is turned into the single eigenvector with
a purely real eigenvalue one (see red circles).

With the properly regularized SBP operator at hand (a detailed description of how to generalize
the above construction to multiple dimensions is provided in [3]) we can proceed to discretize our
novel action. Note that for each degree of freedom in the action, the regularization of the SBP
operator makes reference to its specific boundary data. I.e. we introduce differently regularized
SBP operators, denoting them by an additional superscript e.g. d,¢ =~ ]]_)Zj ¢ or 0, X" ~ DL XH (in
the latter case no summation is implied). Introducing the vector h with entries i; = I;; we obtain

- _ (/1 1 - - T
Egve[X*, D X", ,D06] = 5{(7:V(#) ~ 1) o detlg] + =(DI9) o (D)) o adjlglas} h. (11)

All information about the coordinate maps is encoded in the induced metric g, = G ,,,,(]D’a’ XH*) o
(]]_)ZX ), where o denotes element-wise multiplication of neighboring discrete arrays. Note that even
after discretization, the entries of g, remain manifestly invariant under Poincaré transformations.

Since integration by parts is exactly mimicked in the discrete setting, the derivation of Noether’s
theorem remains intact. All we need to do is to replace derivatives with finite differences and
continuum functions with their discretized counterparts in the continuum Noether current.

In order to use eq. (11) to solve for the causal evolution of the scalar field and coordinate maps,
we will have to cast it in the form appropriate for an initial boundary value problem. This entails
going over to a setting in which the degrees of freedom are doubled and which amounts to the
classical limit of the Schwinger-Keldysh closed time path formalism. In addition, the initial and
boundary data necessary for a unique solution of the dynamics of the system must be provided,
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which is achieved by introducing additional Lagrange multipliers in eq. (11). A discussion of this
construction goes beyond the scope of this contribution, an extended exposition is provided in [3].

4. Proof-of-principle: classical scalar wave propagation in (1 + 1)d

Here we present as proof of principle an application of our approach to scalar wave propagation
in (1 + 1) dimensions. The two abstract parameters in our action are T and o and we choose (in
absence of an estimate of T in nature) arbitrarily 7 = 10*. We simplify the setting by taking V = 0
and choose a trivial spatial coordinate map x[7, o] = 0. This leaves us with the action

eave 'Y [ardo 374 L (PP - D=2 s @P@P)) a2

which remains manifestly invariant under global continuous time translations. Discretizing this
action on a N; X N grid with appropriately regularized SBP121 operators D, and D leads to

Egvp =%{(I_Dt7t)2 + %((I_foﬁ)z o (Dst)* - 1)
~2(D44) o (D2g) 0 (Dt) o (DLpt) + (D)0 (DL02)} b (13)

After incorporating this action in the doubled degrees of freedom formalism and amending it
by Lagrange multipliers for boundary data, we numerically obtain its critical point in terms of
b = ¢a[7, 0] andty = ty[7, o] using the IPOPT library implemented in the NMinimize command
of Mathematica. On the left of fig. 4 we show the evolution of the field ona N, = 48 and N, = 60
grid initialized by a bump centered in the spatial domain. Two wave packages emerge from the
bump, traveling to the boundary of the simulation domain and reflecting from the Dirichlet boundary
before merging again with inverted amplitude.

Let us take a look at the evolution of the dynamical temporal coordinate map ¢[ 7, o"] whose T
derivative we plot on the right of fig. 4. A larger value denotes a coarser time resolution, a smaller
value a finer time resolution. We find that the temporal resolution adapts to the dynamics of the
field. When the wave packages recede from the interior of the simulation domain the resolution is
coarsened, when they violently reflect from the boundary the resolution is self-consistently adjusted.
This amounts to automatic adaptive mesh refinement.

Let us investigate the expression for the Noether charge associated with the time translation
symmetry. For completeness we provide the full expression

Qs =Hy {(D20) + 2 ((Do$)” o (D2) = (D) o (Do) o (D))}

L 1
JO eRNtXNo

LT[0+ 1hF TN a4)

Lagr. mult. contrib.

where additional Lagrange multiplier contributions are explicitly shown (for details see [3]). These
contributions are a reminder that boundary data must be fixed explicitly in the action. As shown in
fig. 5 we find that this Noether charge is exactly preserved at its initial value down to the numerical
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Figure 4: (left) Scalar wave propagation from the critical point of the IBVP action based on eq. (13) on a
Ny =48 and N, = 60 grid. (right) T derivative 7. [7, o"] showing adaptive mesh refinement (from [3]).
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Figure 5: Exact conservation of the Noether charge associated with time translation symmetry (from [3]).

precision used to obtain the critical point. This conservation goes beyond that offered by symplectic
approaches, which only conserve energy on average. It is the exact conservation of the Noether
charge that underlies the automatic mesh refinement observed in ¢[ 7, o], forcing the temporal map
to adapt, in order to leave eq. (14) constant.

5. Summary

We have presented a novel reparameterization invariant action for scalar fields [3], which in-
corporates dynamical coordinate maps. These maps together with the field propagate in an abstract
parameter space. Discretizing in these parameters leaves the coordinate maps continuous and the
spacetime symmetries intact. Deploying SBP operators allows us to retain Noether’s theorem. To
avoid doublers, we rely on an alternative to the Wilson term [13], which exploits boundary data
and is applicable also to purely real functions. Using classical scalar wave propagation as proof of
principle, we show that the Noether charge remains exactly conserved, which in turn forces the time
mapping to adapt to the dynamics, leading to automatic adaptive mesh refinement.
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