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1. Introduction and summary

The renormalization group (RG) [1, 2] has been instrumental in understanding scale-dependent
phenomena and phase transitions at criticality. A significant step of its transformation may be
provided by the coarse-graining such as spin blocking or integrating over higher momentum modes.
Similarly, in perturbative RG technique in quantum field theory, the change of the renormalization
scale gives rise to effectively energy-dependent coupling constants, or the running couplings being
subject to an RG equation. Outside the perturbative regime, we expect that coupling constants flow
along RG and some of them hopefully possess critical values at RG-invariant fixed points [3–5].
Attractive issues in every quantum system sub specie aeternitatis, as discussed in Ref. [6], are
concentrated on clarifying it as universal scaling law near a nontrivial fixed point.

For half a century, physicists and mathematicians have studied the RG in nature, e.g., based
on perturbative calculations, 𝜖 expansion, large 𝑁 approximation, and so on. See Ref. [7] from
the physical point of view. Despite remarkable achievements, there has been no available and
effective formulation of the non-perturbative RG in any gauge theory. The functional definition of
RG requires a momentum cutoff function and then is usually incompatible with gauge symmetry.
For attempts to make a smooth momentum cutoff compatible with gauge symmetry, see Refs. [8, 9].

To put this program into practice, it would be a wonder [10] that the RG flow can be identified
with the so-called gradient flow [11–14]. The gradient flow is a kind of diffusion equation evolving
fields {A𝑖} along the fictitious time 𝑡,

𝜕𝑡A𝑖 (𝑡, 𝑥) = 𝜕2
𝜇A𝑖 (𝑡, 𝑥) + . . . , (1)

the leading formal solution A𝑖 (𝑡, 𝑥) ∼ 𝑡−𝐷/2
∫
𝑑𝐷𝑦 𝑒−(𝑥−𝑦)2/4𝑡A𝑖 (0, 𝑦) appearing similar to the

coarse-graining if 𝑡 is identified with the renormalization scale. We note that this can be constructed
in a gauge-covariant manner. There are many studies on non-perturbative formulation and nontrivial
fixed points of RG based on the gradient flow [15–36] (see also Refs. [37–42]).

In particular, one finds that a dimensionless flowed operator O𝑖 (𝑡, 𝑥) associated with the
gauge coupling 𝑔𝑖 provides a renormalization scheme such that a running coupling 𝑔2

𝑖
(𝜇)GF is

non-perturbatively defined as

𝑔2
𝑖 (𝜇)GF ≡ ⟨O𝑖 (𝑡)⟩√8𝑡=1/𝜇 ∼ 𝑔2

𝑖 +𝑂 (𝑔4
𝑖 ) (2)

with the renormalization scale 𝜇 identical to 1/
√

8𝑡. Furthermore, gearing the flow time to the finite
physical box size in lattice gauge theory, we can compute numerically the running coupling through
a sophisticated finite-size scaling analysis [43, 44]. Based on this method, for instance, the size of
the strong coupling 𝛼𝑠 in QCD was determined with high accuracy [45].

Suppose that there exists a one-to-one mapping of the parameter space of all coupling constants
into the space spanned by the set {⟨O𝑖 (𝑡)⟩}. Reference [18] addressed the analytical illustration of
this RG flow in the following theories, in which a 2-dimensional parameter space (⟨O1(𝑡)⟩, ⟨O2(𝑡)⟩)
plays an important role: the two-loop approximation of the 4-dimensional many-flavor gauge theory
and the large-𝑁 limit of the 3-dimensional (3D) 𝑂 (𝑁) linear sigma model. Then, we can confirm
whether (a combination of) ⟨O𝑖 (𝑡)⟩ is relevant or irrelevant around an infrared fixed point in the
limit 𝑡 → ∞ by way of illustration. (See also Ref. [17])
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In this paper, we reconsider one example given in Ref. [18], the 3D 𝑂 (𝑁) linear sigma model,
which possesses the Wilson–Fisher fixed point [46] in the infrared limit. First, we review the flowed
scalar theory and the construction of flowed operators {O𝑖}𝑖=1,2 under the large 𝑁 approximation
following Ref. [18], and then compute the critical exponent of the relevant parameter. Next, we
simulate numerically this model with finite 𝑁 based on the lattice regularization. As a completely
non-perturbative approach, we finally depict the RG flow in our parameter space (⟨O1(𝑡)⟩, ⟨O2(𝑡)⟩)
and observe the Wilson–Fisher fixed point.

In future, we hope to get a better understanding of RG in gauge theory via the gradient flow.
As already mentioned, this new approach to RG is manifestly gauge invariant. We can simply apply
our method to lattice simulations of gauge theory.

2. Infrared criticality of 𝑂 (𝑁) sigma model on 3D continuum spacetime

2.1 Gradient flow for scalar fields and its relation with Wilsonian RG

The 3D 𝑂 (𝑁) linear sigma model is defined by the following Euclidean action

𝑆E =

∫
𝑑3𝑥

{
1
2

[
𝜕𝜇𝜙𝑖 (𝑥)

]2 + 1
2
𝑚2

0𝜙
2
𝑖 (𝑥) +

1
8𝑁

𝜆0
[
𝜙𝑖 (𝑥)2]2

}
, (3)

where 𝑖 = 1, . . . , 𝑁 . For the scalar fields {𝜙𝑖}, we introduce the flow equation [47]

𝜕𝑡𝜑𝑖 (𝑡, 𝑥) = 𝜕2
𝜇𝜑𝑖 (𝑡, 𝑥), 𝜑𝑖 (𝑡 = 0, 𝑥) = 𝜙𝑖 (𝑥). (4)

It is proved in perturbation theory that, using the renormalized coupling and the wave function
renormalization, any composite operator of 𝜑𝑖 (𝑡, 𝑥) is automatically a finite renormalized operator.
The correlation functions of 𝜑𝑖 (𝑡, 𝑥) can be computed by substituting

𝜑𝑖 (𝑡, 𝑥) =
∫

𝑑3𝑦

∫
𝑑3𝑝

(2𝜋)3 𝑒
𝑖 𝑝 (𝑥−𝑦)𝑒−𝑡 𝑝

2
𝜙𝑖 (𝑥). (5)

The ringed field variable �̊�𝑖 (𝑡, 𝑥) defined by

�̊�𝑖 (𝑡, 𝑥) ≡
√︄

𝑁

2(2𝜋)3/2𝑡1/2⟨𝜑 𝑗 (𝑡, 𝑥)2⟩
𝜑𝑖 (𝑡, 𝑥)

𝑡→0→ 𝜑𝑖 (𝑡, 𝑥) +𝑂 (1/𝑁) (6)

is free from the multiplicative renormalization factor.
Assuming the translational invariance for one-point functions, we see the scaling relation for

the flowed operators constructed by 𝜑𝑖 under 𝑥 ↦→ 𝑒 𝜉 𝑥 [18]〈
O𝑖 (𝑒2𝜉 𝑡)

〉
{𝑔 𝑗 } = ⟨O𝑖 (𝑡)⟩{𝑔 𝑗 ( 𝜉 ) } , (7)

up to a nontrivial operator mixing. The coupling constants, {𝑔𝑖}, run along the RG flow parameter-
ized by 𝜉 as {𝑔𝑖 (𝜉)}. In general, on the assumption that the mapping as

𝑔𝑖 (𝜉) ↦→ ⟨O𝑖 (𝑡)⟩ = R𝑖 [{𝑔 𝑗 (𝜉)}] (8)

is one-to-one, the set of one-point functions {⟨O𝑖 (𝑡)⟩} can be regarded as a set of running couplings
non-perturbatively defined.
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2.2 Large 𝑁 solution and the critical exponent

The solution of the model is well known at the 1/𝑁 expansion through the use of the auxiliary
field method. The physical mass scale 𝑀 is given by the mass-gap equation

𝑀2 + 𝜆0

8𝜋
𝑀 = 𝑚2

0 +
1

4𝜋2𝜆0Λ, (9)

where Λ is the momentum cutoff, and the renormalized coupling at the renormalization scale 𝜇 is

𝜆

𝜇
=
𝜆0

𝜇

(
1 +

√
3

96
𝜆0

𝜇

)−1

. (10)

We have the RG equations

𝛽

(
𝜆

𝜇

)
≡

(
𝜇
𝜕

𝜕𝜇

)
0

𝜆

𝜇
= −𝜆

𝜇
+
√

3
96

(
𝜆

𝜇

)2
,

(
𝜇
𝜕

𝜕𝜇

)
0

𝑀

𝜇
= −𝑀

𝜇
. (11)

The fixed points, that is, zeros of the beta functions (11), are given at ( 𝜆∗
𝜇
,
𝑀∗
𝜇
) = (0, 0) and

( 𝜆∗
𝜇
,
𝑀∗
𝜇
) = ( 96√

3
, 0). The critical exponents correspond to the slopes of the beta function 𝛽′ near the

fixed points:

• At ( 𝜆∗
𝜇
,
𝑀∗
𝜇
) = (0, 0), 𝜆 is relevant as 𝛽′( 𝜆∗

𝜇
) = −1 and 𝑀 is also relevant as −1 (Gaussian

fixed point).

• At ( 𝜆∗
𝜇
,
𝑀∗
𝜇
) = ( 96√

3
, 0), 𝜆 is irrelevant as 𝛽′( 𝜆∗

𝜇
) = +1 but 𝑀 is relevant as −1 (Wilson–Fisher

fixed point).

Instead of the running coupling 𝜆 and the mass 𝑀 , we define corresponding dimensionless
operators as follows:

O1(𝑡, 𝑥) ≡ −4(2𝜋)3

𝑁
𝑡
[
�̊�(𝑡, 𝑥)2]2 + 𝑁 + 2, (12)

O2(𝑡, 𝑥) ≡
16𝜋
𝑁
𝑡3/2 [

𝜕𝜇 �̊�𝑖 (𝑡, 𝑥)
]2 − 1

(2𝜋)1/2 . (13)

From the analytical computation at the large 𝑁 approximation, the asymptotic behaviors are given
by

⟨O1(𝑡)⟩
𝑡→0→ 𝐾𝜆0𝑡

1/2 (14)

𝑡→∞→

𝐾 ′ 𝜆0

𝑀

(
1 + 1

16𝜋
𝜆0
𝑀

)−1
1

𝑀3𝑡3/2 for 𝑀/𝜆0 > 0,

𝐾∗ for 𝑀/𝜆0 → 0,
(15)

⟨O2(𝑡)⟩
𝑡→0→ 𝑀𝑡1/2 (16)

𝑡→∞→
(

2
𝜋

)1/2
− 3

(8𝜋)1/2
1
𝑀2𝑡

, (17)
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Figure 1: The RG flow of (⟨O1 (𝑡)⟩, ⟨O2 (𝑡)⟩) depicted in Ref. [18]

where

𝐾 � 0.289432, 𝐾 ′ =
1

(4𝜋)3/2 , 𝐾∗ � 1.4259. (18)

Note that ⟨O2(𝑡)⟩ ≡ 0 in the limit 𝑀 → 0. We see the RG flow of the parameter space of ⟨O1(𝑡)⟩
and ⟨O2(𝑡)⟩ arrowed along 𝑡 in Fig. 1 [18]. The infrared Wilson–Fisher fixed point as depicted by
the red point is indicated at (⟨O1(𝑡)⟩, ⟨O2(𝑡)⟩) = (𝐾∗, 0). This discussion completes the observation
given in Ref. [18].

From now on, let us compute the critical exponent based on the RG equation with regard
to ⟨O1(𝑡)⟩ and ⟨O2(𝑡)⟩. We first note that the theory around the Gaussian fixed point at (0, 0)
possesses the small enough dimensionless parameter 𝜆0/𝑀 while that around the Wilson–Fisher
fixed point at (𝐾∗, 0) does the large one. Then, we observe the critical behavior at the Gaussian
fixed point in the 𝜆0 → 0 limit

⟨O1(𝑡)⟩G ∝ 𝜆0𝑡
1/2, ⟨O2(𝑡)⟩G ∝ 𝑀𝑡1/2, (19)

and therefore we find the same critical exponents as Eq. (11)(
𝑡
𝑑

𝑑𝑡

)
⟨O𝑖 (𝑡)⟩G =

1
2
⟨O𝑖 (𝑡)⟩G +𝑂 (⟨O𝑖 (𝑡)⟩2

G). (20)

Here note that the mass dimension of 𝑡 is −2 while 𝜆 is 1. On the other hand, at the Wilson–Fisher
fixed point, we see the irrelevant behavior in the 𝑀 → 0 limit

⟨O1(𝑡)⟩WF − 𝐾∗ ∝ 𝜆−1/2
0 𝑡−1/2, (21)

and the relevant one in the 𝜆0 → ∞ limit

⟨O1(𝑡)⟩WF − 𝐾∗ ∝ 𝑀𝑡1/2, ⟨O2(𝑡)⟩WF ∝ 𝑀𝑡1/2. (22)
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Figure 2: Effective mass, 𝑀 , as a function of the coupling 𝜆. Dependence to 𝑁 is also shown. Two curves
are given by the gap equation in the large 𝑁 approximation in Eq. (9) with Λ = 𝜋/2𝑎 (above orange) and
Λ = 𝜋/𝑎 (below purple). Despite the different regularizations, the lattice approach seems to be consistent
with the large 𝑁 solution.

Redefining ⟨O2(𝑡)⟩ as an appropriate linear combination of (⟨O1(𝑡)⟩ − 𝐾∗) and ⟨O2(𝑡)⟩, that is,
diagonalizing Eqs. (21) and (22), one finds the RG equations as expected(

𝑡
𝑑

𝑑𝑡

)
⟨O1(𝑡)⟩WF = −1

2
⟨O1(𝑡)⟩WF +𝑂 (⟨O1(𝑡)⟩2

WF), (23)(
𝑡
𝑑

𝑑𝑡

)
⟨O2(𝑡)⟩WF =

1
2
⟨O2(𝑡)⟩WF +𝑂 (⟨O2(𝑡)⟩2

WF). (24)

3. Lattice simulation of RG flow in 3D 𝑂 (𝑁) sigma model

In this section, we attempt numerical simulations for the finite-𝑁 𝑂 (𝑁) sigmal model. By using
the simple symmetric difference instead of the derivative, the discretized lattice action includes the
tunable parameters, 𝑚0𝑎 and 𝜆0𝑎. We utilized the overrelaxed heatbath method for configuration
generation. From the computation of the two-point function of 𝜙, as usual, we see the coupling
dependence of the effective mass in Fig. 2 for 𝑁 = 1, 2, 3, 5, and also the result of the large 𝑁 gap
equation.

Now, we again consider the flowed operators, O1(𝑡) and O2(𝑡), via the 4th order Runge–Kutta
method for gradient flow. To look forward to the critical behavior, tuning 𝑚0𝑎 so as to make 𝑀
smaller, we show the 𝑡-⟨O𝑖 (𝑡)⟩ plots with fixed 𝜆0𝑎 = 5.0 and 𝑁 = 1 in Fig. 3 (the lattice size is
taken to 1283). This figure appears to imply the existence of the plateau, that is, 𝑡-independent
critical couplings for large enough 𝑡. To see this behavior explicitly, Fig. 4 gives the 𝑡 flow of ⟨O1⟩
(horizontal axis) and ⟨O2⟩ (vertical axis) simultaneously. This is just the figure of the RG flow for
the effective couplings, ⟨O1⟩ and ⟨O2⟩. The left below side means the UV region (small 𝑡), while
the left above or the right below side is the IR region (large 𝑡). In between, the gray curve tends to
stop for large 𝑡, which indicates the existence of the Wilson–Fisher fixed point around there. The
RG trajectories flowing to the left are in the symmetric phase, while those flowing to the right are
in the broken phase. This is our main result.

6
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Figure 3: ⟨O1 (𝑡)⟩ (left) or ⟨O2 (𝑡)⟩ (right) plots as functions of gradient flow time 𝑡. For a fixed 𝜆𝐿 = 𝜆0𝑎,
various values of 𝑚𝐿 = 𝑚0𝑎 are shown. We see the plateau between 𝑚2

𝐿
= −1.519 and −1.518.
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〉
0.05

0.00
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 Plot (size = 1283, λL = 10.0)

Parameter interval 
 = 0.001

m2
L = -2.76

m2
L = -2.769

Figure 4: The RG flow of (⟨O1 (𝑡)⟩, ⟨O2 (𝑡)⟩) along gradient flow

Here, from Fig. 4, one may ask the following questions: (i) why the RG trajectories are likely
to be crossing each other at large 𝑡 (near IR); (ii) where is the Gaussian fixed point because the point
of each trajectory at 𝑡 = 0 (UV) is different.

The first issue happens when the lattice size is too small; it is a finite-size effect. To see this,
we compare the ⟨O1(𝑡)⟩-⟨O2(𝑡)⟩ plot for different lattice sizes. In Fig. 5, for 𝜆0𝑎 = 10.0, the left
panel is devoted to the larger lattice size 1283, while the right panel is to the smaller lattice size 643.
Each trajectory then suffers from more severe intersections if the lattice size is smaller. In fact, for
such a large flow time, ⟨O𝑖 (𝑡)⟩ is oversmeared such that the diffusion length is comparable to the
lattice size.

For the second point, that is, the UV behavior, we can simply say that the system is not taken
to the continuum limit, and then is just a finite lattice model. Actually, for different values of 𝜆,
Fig. 6 shows that small 𝜆 (and small 𝑀) makes ⟨O1⟩ small. For the continuum limit, we expect

7
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Figure 5: Finite size effect
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Figure 6: Lattice model details at UV

the Gaussian fixed point with 𝜆 and 𝑀 near zero. Also, the critical behavior for each lattice
model should be the same near the Wilson–Fisher fixed point. We can consider the following two
situations:

• For small 𝜆, the system is close to the Gaussian and far from the Wilson–Fisher fixed point.
We need to have a sufficiently larger lattice size and try to reduce numerical errors for solving
the gradient flow.

• For large 𝜆, the system is far from the Gaussian but hopefully close to the Wilson–Fisher fixed
point. More computational costs when generating configurations is predictable for strongly
coupled theories.
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