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order of limits in volume and topological sectors when studying observables on the lattice. We
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description. We particularly focus on recent proposals to face the challenging problems that this
study poses in lattice QCD and that are also present in the quantum rotor, such as topology freezing
and the sign problem.
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Lattice techniques to investigate the strong 𝐶𝑃 problem: lessons from a toy model David Albandea

1. Introduction

The QCD Lagrangian admits an additional renormalizable and gauge invariant term known as
the 𝜃 term,

𝛿L𝜃 = 𝜃𝑞(𝑥) ≡
𝜃

16𝜋2 tr 𝐹𝜇𝜈 �̃�𝜇𝜈 , (1)

where 𝜃 ∈ [0, 2𝜋), is a free parameter of the model on which physical observables can potentially
depend. This term would violate 𝐶𝑃 symmetry, but from experimental measurements of electric
dipole moment of the neutron we know that 𝜃 must be extremely small, |𝜃 | ≲ 10−10 [1, 2]. The
puzzle why it happens to be so small is known as the strong 𝐶𝑃 problem.

There have been many proposed solutions in the literature to explain the smallness of the 𝜃
angle, such as a Peccei-Quinn symmetry [3] and Nelson-barr type models [4, 5]. However, the
strong 𝐶𝑃 problem is far from being settled, and there have been repeated debates about whether
the 𝜃 angle affects physics at all, regardless of its value. Particularly, a recent proposal argues [6, 7]
that expectation values in infinite volume can be obtained from expectation values at finite volume
as

⟨𝑂⟩ = lim
𝑁→∞

lim
𝑉→∞

∑︁
|𝑄 |<𝑁

⟨𝑂⟩𝑄,𝑉 𝑝𝑉 (𝑄), (2)

where 𝑂 is an observable, ⟨· · · ⟩𝑄,𝑉 denotes expectation value at fixed topological sector 𝑄 and
finite volume 𝑉 , 𝑝𝑉 (𝑄) is the distribution of topological charge at finite volume, and the volume is
taken to infinity before the contributions from all topological sectors are summed. The consequence
of such an order of limits, opposite to the conventional one, would be the absence of 𝜃-dependence
from observables, implying that there is no strong 𝐶𝑃 problem.

The 𝜃-dependence is difficult to study in lattice QCD simulations because of several compu-
tational challenges, such as the sign problem [8, 9] and topology freezing [10–13]. However, the
claims presented in Refs. [6, 7] should also hold in simpler models. The present work is based
on Ref. [14] and is organized as follows: in Sec. 2, we study the order of limits of Eq. (2) in the
one-dimensional quantum rotor, showing that it disagrees with the conventional one for the partic-
ular case of the topological susceptibility; in Secs. 3 and 4, we introduce two recently proposed
algorithms to overcome both topology freezing and the sign problem, respectively; finally, in Sec. 5,
we study the continuum limit of the topological susceptibility and the 𝜃-dependence of the ground
state of the spectrum of the quantum rotor with lattice simulations.

2. The quantum rotor

The quantum rotor is the simplest theory with topology and the presence of a 𝜃 term: it is a
free particle of mass 𝑚 on a ring, with Hamiltonian

𝐻 = − 1
2𝐼

(
𝜕𝜙 −

𝜃

2𝜋

)2
, (3)

where 𝜙 is the angle representing the position of the particle in the ring (see Fig. 1 [left]), 𝐼 = 𝑚𝑅2

is its moment of inertia, and 𝜃 ∈ [0, 2𝜋) is a free parameter, analogous to the 𝜃 angle of QCD.
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Figure 1: (Left) Representation of the quantum rotor. (Middle and right) Possible trajectories of the quantum
rotor along a torus in the path integral representation, with topological charges 𝑄 = 0 and 𝑄 = 1.

The system can also be formulated as a path integral at finite temperature 𝛽 and Euclidean
volume 𝑇 = 1/𝛽 via the partition function [15, 16]

𝑍𝑇 (𝜃) =
∫

D𝜙 𝑒−𝑆 [𝜙]+𝑖 𝜃𝑄[𝜙] , (4)

where action and topological charge in the continuum read

𝑆[𝜙] = 𝐼

2

∫ 𝑇

0
𝑑𝑡 ¤𝜙(𝑡)2, 𝑄 [𝜙] = 1

2𝜋

∫ 𝑇

0
𝑑𝑡 ¤𝜙(𝑡) ∈ Z, (5)

where −𝜋 < 𝜙(𝑡) ≤ 𝜋 and periodic boundary conditions are imposed, i.e. 𝜙(𝑇) = 𝜙(0) + 2𝜋𝑛
with 𝑛 ∈ Z. Additionally, topology can be easily visualized in this model, as the periodic boundary
conditions make the trajectory of the particle live on the surface of a torus (see Fig. 1 [right]), where
each trajectory can be classified with an integer𝑄: if the trajectory of a configuration does not wind
around the torus, it has topological charge 𝑄 = 0; if it winds once around the torus, it has 𝑄 = 1.

This model can be trivially solved using the quantum mechanical formalism, and the energy
levels of the system read

𝐸𝑛 =
1
2𝐼

(
𝑛 − 𝜃

2𝜋

)2
, 𝑛 ∈ Z , (6)

from which one can build the thermal partition function 𝑍𝑇 (𝜃) =
∑
𝑛∈Z 𝑒

−𝑇𝐸𝑛 =
∑
𝑛∈Z 𝑒

− 𝑇
2𝐼 (𝑛− 𝜃

2𝜋 )2

and obtain the probability distribution of each topological sector,

𝑝𝑇 (𝑄) =
1

𝑍𝑇 (𝜃 = 0)
1

2𝜋

∫ 𝜋

−𝜋
𝑑𝜃 𝑍𝑇 (𝜃)𝑒−𝑖 𝜃𝑄 =

1
𝑍𝑇 (𝜃 = 0)

√︂
2𝐼𝜋
𝑇

exp
(
−2𝐼𝜋2

𝑇
𝑄2

)
. (7)

With these results one can test the order of limits of Eq. (2). Particularly, the topological suscepti-
bility in a finite volume 𝑉 can be computed as

𝜒𝑡 ,𝑉 =
⟨𝑄2⟩𝑉
𝑉

, (8)

and studying the infinite volume limit as in Eq. (2) one finds

𝜒𝑡 = lim
𝑁→∞

lim
𝑇→∞

1
𝑇

∑︁
|𝑄 |<𝑁

𝑄2 𝑝(𝑄) = lim
𝑁→∞

lim
𝑇→∞

1
𝑇

∑
|𝑄 | ≤𝑁 𝑄

2 exp(−2𝜋2𝐼
𝑇
𝑄2)∑

|𝑄 | ≤𝑁 exp(− 2𝜋2𝐼
𝑇
𝑄2)

, (9)
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Figure 2: Winding transformation on a quantum rotor configuration on the lattice.

which is trivially zero. Alternatively, one can obtain the topological susceptibility in the zero
temperature limit (𝑇 → ∞) directly from the energy spectrum in Eq. (6), which reads

𝜒𝑡 ≡
𝑑2𝐸0(𝜃)
𝑑𝜃2

���
𝜃=0

=
1

4𝜋2𝐼
. (10)

This result can also be obtained with the conventional order of limits [14], and contradicts the
result coming from the proposed order of limits in Eq. (9). In the following, we will validate the
conventional order of limits using lattice simulations, for which we will need to deal with topology
freezing and the sign problem.

3. Topology freezing and the winding HMC algorithm

Standard algorithms for lattice QCD, such as the Hybrid Monte Carlo (HMC) algorithm [17],
are well-known to suffer from topology freezing: near the continuum limit, continuous update
algorithms get trapped within a topological sector, thus failing to sample the full configuration
space and leading to exponentially increasing autocorrelation times as the continuum limit is
approached in a finite volume.

The topology freezing problem is also present in simple models such as the quantum rotor,
making them useful testbeds for new algorithms aiming to tackle this problem. The spacetime
discretization of the quantum rotor consists of 𝑇 = 𝑇/𝑎 angle variables 𝜙𝑡 for 𝑡 ∈ {0, . . . , 𝑇 − 1}
separated by a lattice spacing 𝑎. Here we will work with the so-called standard discretization of the
action and topological charge,

𝑆st [𝜙] =
𝐼

2

�̂�−1∑︁
𝑡=0

(1 − cos(𝜙𝑡+1 − 𝜙𝑡 )) , 𝑄st [𝜙] =
1

2𝜋

�̂�−1∑︁
𝑡=0

sin(𝜙𝑡+1 − 𝜙𝑡 ), (11)

where 𝐼 = 𝐼/𝑎, as well as with the classical perfect discretization,1

𝑆cp [𝜙] =
𝐼

2

�̂�−1∑︁
𝑡=0

((𝜙𝑡+1 − 𝜙𝑡 ) mod 2𝜋)2, 𝑄cp [𝜙] =
1

2𝜋

�̂�−1∑︁
𝑡=0

((𝜙𝑡+1 − 𝜙𝑡 ) mod 2𝜋) ∈ Z. (12)

Note that both discretizations lead to the same continuum limit of Eq. (5) when taking 𝑎 → 0 along
a line of constant physics with 𝑇/𝐼 = 𝑇/𝐼 = constant.

1Note that the classical perfect topological charge, 𝑄cp, has a geometrical definition and is exactly an integer.
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Figure 3: Autocorrelation time of 𝑄 as a function of 𝐼 for wHMC (blue) and HMC (orange), keeping
𝑇/𝐼 = 100, with the standard discretization of the action.

The simplest idea to build an algorithm that can sample topology efficiently is to find transfor-
mations between topological sectors. Such a topology-changing transformation can be easily built
for the quantum rotor, for which we define the winding transformation by

W± : 𝜙𝑡 → 𝜙W
±

𝑡 = 𝜙𝑡 ± 2𝜋𝑡/𝑇, W+W− = 𝐼, (13)

where the + (winding) or − (antiwinding) is common to all 𝑡 ∈ [0, 𝑇 − 1]. As shown in Fig. 2, the
transformation gradually winds the trajectory of a configuration around itself exactly once, such that
𝑄cp(𝜙W

±) = 𝑄cp(𝜙) ± 1. This transformation can be easily embedded into a Metropolis algorithm
with acceptance

𝑝acc(𝜙W
± | 𝜙) = min

{
1, 𝑒−𝑆 [𝜙

W± ]+𝑆 [𝜙]
}
, (14)

and we denote the combination of this Metropolis step with the HMC algorithm as the winding
HMC (wHMC) algorithm [18], which restablishes ergodicity within the full configuration space if
the acceptance is significant.

In Fig. 3 we show the scaling of autocorrelation times of the topological charge, 𝜏𝑄, from
simulations with the HMC and wHMC algorithms. While the autocorrelations of HMC scale
exponentially, as expected, the ones of wHMC eventually saturate, thus solving the topology
freezing problem in this model.

4. The sign problem and truncated polynomials

The sign problem is caused by the imaginary term in Eq. (4), which for 𝜃 ≠ 0 is highly
oscillatory and leads to uncertainties which grow exponentially with the volume of the system. A
conventional workaround is to define 𝜃𝐼 ≡ 𝑖𝜃 ∈ R so that the integrand becomes real and the system
can be simulated using standard sampling algorithms. By performing simulations at different
imaginary values of 𝜃, one can then use the analiticity of an observable,

𝑂 (𝜃) = 𝑂 (0) +𝑂 (1)𝜃 +𝑂 (2)𝜃2 + O(𝜃3), 𝑂 (𝑛) =
1
𝑛!
𝜕𝑛𝑂

𝜕𝜃𝑛

���
𝜃=0
, (15)
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Figure 4: The 𝜃𝐼 dependence of 𝐼 𝜒𝑡 at 𝐼 = 5 and 𝑇 = 100 computed with different methods for periodic
boundary conditions and the standard definitions of the action and topological charge. (Left): results
(orange circles) from five different simulations with 100k uncorrelated configurations each, along with
their fit to the functional form 𝑓 (𝜃𝐼 ) = 𝑎 + 𝑏𝜃𝐼 + 𝑐𝜃2

𝐼
. (Right): results from single simulations with 500k

uncorrelated configurations using reweighting and HAD (red and green points) at 𝜃𝐼 = 0, along with the curve
𝐼 𝜒

(0)
𝑡 + 𝐼 𝜒 (1)

𝑡 𝜃𝐼 + 𝐼 𝜒 (2)
𝑡 𝜃2

𝐼
(light-red and thick-green bands) obtained from the use of truncated polynomials.

The reweighting was performed on a simulation with periodic boundary condition, while HAD was used with
open boundary conditions. In both panels the analytic result from open boundary conditions is displayed
(dashed line).

along with analytic continuation to obtain the expansion coefficients by performing fits to data. This
is depicted in Fig. 4 (left), we show results of 𝐼 𝜒𝑡 for different values of 𝜃𝐼 .

An alternative method that allows to obtain arbitrarily high derivatives of 𝜃 just from a single
simulation at 𝜃 = 0 relies on the fact that a differentiable function 𝑓 can be Taylor expanded around
𝑥 (0) . The construction of such Taylor expansion can be automatized for any arbitrarily complex
function 𝑓 by using the algebra of truncated polynomials [19]: if 𝑥 = 𝑥 (0)+𝑥 (1)𝜖+𝑥 (2)𝜖2+. . . 𝑥 (𝐾 )𝜖𝐾

is a truncated polynomial of order 𝐾 and we code all elementary mathematical functions of these
polynomials, 𝑓 (𝑥) will be a truncated polynomial containing the first 𝐾 derivatives of 𝑓 . Truncated
polynomials are a particular automatic differentiation technique and for our computations we use
FormalSeries.jl [20], which can be used for any arbitrarily complicated function 𝑓 , such as a
computer program implementing reweighting or the HMC algorithm.

A particularly simple application of truncated polynomials to extract higher order derivatives
from an existing simulation at 𝜃 = 0 is by reweighting to 𝜃 ≠ 0 via the identity

⟨𝑂 (𝜙)⟩𝜃 =
⟨𝑒𝑖 𝜃𝑄𝑂 (𝜙)⟩𝜃=0

⟨𝑒𝑖 𝜃𝑄⟩𝜃=0
. (16)

By replacing 𝜃 with the truncated polynomial 𝜃 =
∑𝐾
𝑘=0 𝜃

(𝑘 )𝜃𝑘 with 𝜃 (1) = 1 and 𝜃 (𝑘≠1) = 0, one
automatically obtains the full analytical dependence of the Taylor expansion of ⟨𝑂 (𝜙)⟩𝜃 with respect
to 𝜃 up to order 𝐾 from a single ensemble. This is shown in Fig. 4 (right), where by reweighting
a single standard simulation at 𝜃𝐼 = 0 with periodic boundary conditions we automatically obtain
𝐼 𝜒

(𝑘 )
𝑡 ; particularly, we see that 𝐼 𝜒 (0)

𝑡 + 𝐼 𝜒 (1)
𝑡 𝜃𝐼 + 𝐼 𝜒 (2)

𝑡 𝜃2
𝐼

agrees with the analytical result obtained
with open boundary conditions.
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Method 𝜒
(0)
𝑡 × 10−3 𝜒

(2)
𝑡 × 10−6

Fit 4.5238(16) -6.08(48)
Reweighting 4.52501(76) -5.99(25)

HAD 4.52604(83) -5.980(34)

Table 1: Comparison of errors between different methods to obtain the 𝜃𝐼 -dependence, namely, the quadratic
fit to the results from direct simulations at 𝜃𝐼 (Fig. 4 left), reweighting, and HAD (Fig. 4 right). These results
correspond to simulations with 𝐼 = 5 and𝑇 = 100, using the standard definitions of the action and topological
charge.

However, a drawback of reweighting is that the denominator in Eq. (16) has disconnected
contributions that are exponentially noisier with the size of the system. To solve this, one can apply
the truncated polynomials directly into the HMC algorithm. Using the standard discretization of
the model, the HMC equations of motion read

¤𝜙𝑡 =
𝜕𝐻 [𝜋, 𝜙]
𝜕𝜋𝑡

= 𝜋𝑡 , (17)

¤𝜋𝑡 = −𝜕𝐻 [𝜋, 𝜙]
𝜕𝜙𝑡

= −𝐼 [sin(𝜙𝑡 − 𝜙𝑡−1) − sin(𝜙𝑡+1 − 𝜙𝑡 )] +
𝜃𝐼

2𝜋
[cos(𝜙𝑡 − 𝜙𝑡−1) − cos(𝜙𝑡+1 − 𝜙𝑡 )] ,

where 𝐻 [𝜋, 𝜙] = ∑�̂�−1
𝑡=0 𝜋2

𝑡 /2 + 𝑆st [𝜙] − 𝜃𝐼𝑄st [𝜙] is the Hamiltonian of the system. By replacing
𝜃𝐼 by a truncated polynomial, 𝜃𝐼 , we obtain a Markov chain of 𝑁 samples, {𝜙 (𝑖) }𝑁𝑖=1, that carry the
derivatives with respect to 𝜃𝐼 , and we denote this algorithm as Hamiltonian Automatic Differenti-
ation (HAD). The Taylor expansion of observables is obtained by the computation of conventional
expectation values using the samples {𝜙 (𝑖) }𝑁𝑖=1, and does not contain the noisy disconnected contri-
butions of the reweighting technique.2 In Fig. 4 (right), we show the curve 𝐼 𝜒 (0)

𝑡 + 𝐼 𝜒 (1)
𝑡 𝜃𝐼 + 𝐼 𝜒 (2)

𝑡 𝜃2
𝐼

obtained from a single HAD simulation, and one can appreciate that the predictions for high 𝜃𝐼 are
more accurate than the ones obtained by reweighting. The comparison can be seen more transpar-
ently in Tab. 1, where the error of the HAD algorithm is reduced by an order of magnitude with
respect to the other methods at equivalent statistics.

5. Results

Fig. 5 (left) shows our results of a local version of the topological susceptibility, 𝜒𝑡 = ⟨(𝜙1 −
𝜙0)2⟩—with which the choice of boundary conditions and the quantization of the topological
charge is irrelevant—from simulations with periodic boundary conditions with both the standard
and classical perfect discretizations at different values of the lattice spacing. The wHMC algorithm
allowed us to perform simulations very close to the continuum, and our results agree with the
analytical results obtained with open boundary conditions. All choices of boundary conditions and
discretization lead to the continuum result in Eq. (10), validating the conventional order of limits.

Finally, in Fig. 5 we show our results of the linear 𝜃-dependence of the ground state of the
spectrum for different values of the lattice spacing, which from Eq. (6) reads Δ𝐸1 ≡ 𝐸1 − 𝐸0 =

2However, the Metropolis accept-reject step is not differentiable and cannot be used with this method, so one must
integrate the equations of motion with high enough precision to avoid systematic effects.
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0.16

0.17

0.18

I∆E
(1)
1

Continuum

O1,Reweighting (PBC)

O2,Reweighting (PBC)
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Figure 5: (Left) Continuum extrapolation of 𝜒𝑡 computed from ⟨(𝜙1 − 𝜙0)2⟩ at various {𝑇, 𝐼} at constant
𝑇/𝐼 = 20 with the standard action and classical topological charge (red, filled circles), with the classical
action and topological charge (green, open circles) and from master field simulations with the standard
action and topological charge (orange, open squares), all with periodic boundary conditions. The dashed
lines represent the corresponding analytical results with open boundary conditions. (Right) Linear 𝜃-
correction to the first energy level, Δ𝐸1, for a periodic lattice with the standard discretization of the action
at different values of 𝐼 with constant 𝑇/𝐼 = 20. The results were obtained using the interpolating operator
𝑂1 (𝑡) = 𝜙𝑡 with reweighting on a simulation with periodic boundary conditions (green, open circles), and
using 𝑂2 (𝑡) = sin(𝜙𝑡 ) with HAD (yellow, open squares) and reweighting (red, filled circles) with open and
periodic boundary conditions, respectively.

1
2𝐼

(
1 − 𝜃

𝜋

)
, obtained through the usual spectral decomposition of an interpolator with the same

symmetries as the ground state. We use both reweighting and the HAD algorithm, for different
choices of boundary conditions and interpolating operators, and conclude that the continuum limit
agrees with the results from quantum mechanics—and disagree with the claims of Refs. [6, 7].

6. Conclusions

We have studied a recently proposed order of limits to study infinite-volume quantities which
makes 𝜃 disappear from all physical observables of the theory. We have studied the continuum limit
of the topological susceptibility and the first 𝜃-dependence correction to the ground energy state of
the quantum rotor, validating the conventional wisdom on the strong 𝐶𝑃 problem. Even though the
system suffers from topology freezing and the sign problem, these were successfully overcome by
the use of the wHMC algorithm and truncated polynomials. The generalization of these proposed
algorithms to more complicated models is work in progress.
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