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1. Introduction

The axial form factors 𝐺𝐴(𝑄2) of the nucleon plays a key role in understanding its (quasi-)
elastic interactions with neutrinos. In particular, the isoscalar channel is sensitive to elastic scattering
mediated by a 𝑍 , namely the strange axial form factor 𝐺𝑠

𝐴
(𝑄2), whereas the isovector channel

𝐺𝑢−𝑑
𝐴

(𝑄2) is sensitive to the𝑊 boson exchange. The strange form factor can be obtained combining
the isoscalar singlet 𝐺𝑢+𝑑+𝑠

𝐴
(𝑄2) and isoscalar octect 𝐺𝑢+𝑑−2𝑠

𝐴
(𝑄2) contributions. Furthermore, the

strange form factor provides information about the nucleon spin, which can be decomposed into
contributions from the intrinsic quark spin, which is related to the axial charge 𝑔𝐴, the quark angular
momentum and the gluon angular momentum [1, 2].

While the isovector contribution has recently received much attention from the community
(see [3, 4] for a review), the isoscalar counterpart has not yet been adressed extensively [5]. However,
a theoretical input for 𝐺𝑠

𝐴
(𝑄2) is becoming timely, since experiments such as MicroBooNE [6, 7]

are aiming to extract the strange form factor in the range 𝑄2 [GeV2] ∈ [0.08, 1]. In this work, we
focus on the computation of the axial form factor in the non-singlet channel for an extended range of
𝑄2. We report preliminary results for the connected data 𝑢 + 𝑑 to illustrate the complete procedure
and give a preview of the full 𝑢 + 𝑑 − 2𝑠 case on a few ensembles.

2. Lattice setup

The form factor appears in the parametrisation of the nucleon-nucleon matrix element with the
isoscalar current insertion 𝐴𝑢+𝑑−2𝑠

𝜇 = �̄�𝛾𝜇𝛾5𝑢 + 𝑑𝛾𝜇𝛾5𝑑 − 2𝑠𝛾𝜇𝛾5𝑠, as

⟨𝑁 (𝑝′, 𝑠′) | 𝐴𝑢+𝑑−2𝑠
𝜇 |𝑁 (𝑝, 𝑠)⟩ = �̄�𝑠′ (𝑝′)

[
𝛾𝜇𝛾5𝐺𝐴(𝑄2) −

𝑄𝜇

2𝑀𝑁

𝛾5𝐺𝑃 (𝑄2)
]
𝑈𝑠 (𝑝) , (1)

where 𝑈𝑠 (𝑝) is an isodoublet Dirac spinor with momentum 𝑝 and spin 𝑠.
To address 𝐺𝐴, we calculate nucleon two- and three-point correlation functions starting from

the nucleon interpolating operatorΨ𝛼 (𝑥) = 𝜖𝑎𝑏𝑐
(
�̃�𝑎 (𝑥)𝐶𝛾5𝑑𝑏 (𝑥)

)
�̃�𝛼
𝑐 (𝑥), with �̃�(𝑥) and 𝑑 (𝑥) being

the smeared up and down quark fields, respectively. In particular, for the three-point correlators we
distinguish connected and disconnected contributions as

𝐶3pt,𝑖 (𝒒, 𝑡, 𝑡𝑠) =
∑︁
𝒙,𝒚

𝑒𝑖𝒒 ·𝒚Γ𝛽𝛼

〈
Ψ̄𝛼 (𝒙, 𝑡𝑠) 𝐴𝑢+𝑑−2𝑠

𝑖 (𝒚, 𝑡) Ψ𝛽 (0)
〉

(2)

= 𝐶conn
3pt,𝑖 (𝒒, 𝑡, 𝑡𝑠) + 𝐶disc

3pt,𝑖 (𝒒, 𝑡, 𝑡𝑠)

with

𝐶disc
3pt,𝑖 (𝒒, 𝑡, 𝑡𝑠) =

〈
𝐿𝑖 (𝒒, 𝑡)𝐶2( 𝒑′, 𝑡𝑠)

〉
, 𝐿𝑖 (𝒒, 𝑡) = −

∑︁
𝒛

𝑒𝑖𝒒 ·𝒛Tr
[
𝐷−1

𝑞 (𝑧, 𝑧)𝛾𝑖𝛾5
]
, (3)

where the connected part contains only 𝑢 + 𝑑, and the strange quark 𝑠 appears only in disconnected
loops. We choose 𝒑′ = 0, 𝒒 = 𝒑′ − 𝒑 = − 𝒑, i.e. rest frame of the final state nucleon. We employ
smeared quark fields and APE-smeared gauge fields in constructing Ψ𝛼. For the multiplicative
renormalisation factor of the non-singlet current we refer to [8], and we take the factors 𝑍𝐴 from [9]
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Figure 1: Comparison of different 𝑧-fit procedures for the ansatz in Eq. (7) for 𝑢 + 𝑑 − 2𝑠 data on E300. The
blue points refer to the two-step procedure, and the orange points to the “direct” approach. The green bands
complement the latter considering the case where 𝑏0 is also parametrised by a 𝑧-expansion at order 𝑛𝑏 = 2.
The magenta points show the contribution of the connected and disconnected data in the two-step procedure
for illustration purposes.

and 𝑏𝐴 from [10], neglecting the coefficient �̃�𝐴 and 𝑓𝐴 (in the notation of [10]), which are assumed
to be small since they parametrise sea-quark effects.

The axial form factor 𝐺𝐴 is isolated considering the transverse component

𝐶𝑇
3pt,𝑖 (𝒒, 𝑡, 𝑡𝑠) = 𝜖 𝑖 𝑗𝑘𝑞 𝑗 𝐶3pt,𝑘 (𝒒, 𝑡, 𝑡𝑠) ∝ (𝒒 × 𝜸)𝑖𝛾5𝐺𝐴(𝑄2) , (4)

which is then projected into

𝐶3pt(𝒒, 𝑡, 𝑡𝑠) =
∑︁
𝑖

(𝒒 × 𝒔)𝑖
|𝒒 × 𝒔 |2

𝐶𝑇
3pt,𝑖 (𝒒, 𝑡, 𝑡𝑠) , 𝒔 = 𝒆3 , Γ =

1
2
(1 + 𝛾0) (1 + 𝑖𝛾5𝛾3) . (5)

The signal is improved considering only momenta |𝑞3 | ≤ min ( |𝑞1 |, |𝑞2 |), after which we can build
the ratio

𝑅(𝒒, 𝑡, 𝑡𝑠) =
𝐶3pt(𝒒, 𝑡, 𝑡𝑠)
𝐶2pt(0, 𝑡𝑠)

√︄
𝐶2pt(𝒒, 𝑡𝑠 − 𝑡)𝐶2pt(0, 𝑡)𝐶2pt(0, 𝑡𝑠)
𝐶2pt(0, 𝑡𝑠 − 𝑡)𝐶2pt(𝒒, 𝑡)𝐶2pt(𝒒, 𝑡𝑠)

, (6)

which is directly related to the effective form factor 𝐺eff
𝐴
(𝑄2) in the limit 𝑡𝑠 − 𝑡 ≫ 0.

The calculations are performed employing a set of 𝑁 𝑓 = 2 + 1 CLS ensembles [11] with
𝑂 (𝑎)-improved Wilson fermions [12, 13] and the Lüscher-Weisz gauge action [14], with lattice
spacings ranging from 0.05 fm to 0.086 fm and pion masses ranging from 130 MeV to 350 MeV.
We refer to [15] for the full details (see in particular Tab. I).

3. Analysis strategy

The analysis strategy follows and extends the one presented in [15]. We employ the summation
method [16, 17]

𝑆(𝒒, 𝑡𝑠) = 𝑎

√︄
2𝐸𝑞

𝑀𝑁 + 𝐸𝑞

𝑡𝑠−𝑎∑︁
𝑡=𝑎

𝑅(𝒒, 𝑡, 𝑡𝑠)
𝑡𝑠≫1
= 𝑏0(𝑄2) + 𝑡𝑠𝐺𝐴(𝑄2) + O(𝑡𝑠𝑒−Δ𝑡𝑠 ) , (7)
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Figure 2: Window average on the coefficients 𝑎0, 𝑎1, 𝑎2 (rows) of the 𝑧-expansion in Eq. (8) as a function
of the minimum source-sink separation 𝑡𝑠,min on the ensemble E300 for the connected case (left) and the full
octet case (right). The different colours refer to different approaches to regularise the covariance matrix, and
the red curve is a zoom on the window function in Eq. (9). The vertical lines correspond to the choices of
𝑡low
𝑤 and 𝑡

up
𝑤 and the horizontal bands indicate the final results of the window average on all points.

which allows us to extract the form factor 𝐺𝐴(𝑄2) through a linear fit of the above expression in the
source-sink separation 𝑡𝑠. We parametrise the form factor using the 𝑧-expansion at order 𝑛 = 2 as

𝐺𝐴(𝑄2) =
𝑛∑︁

𝑘=0
𝑎𝑘𝑧

𝑘 (𝑄2) , 𝑧(𝑄2) =
√︁
𝑡cut +𝑄2 − √

𝑡cut√︁
𝑡cut +𝑄2 + √

𝑡cut
, (8)

where we set 𝑡cut = (4𝑀𝜋)2 for all the ensembles and 𝑄2
max = 0.7 GeV2. The typical two-step

procedure consists in extracting 𝐺𝐴(𝑄2) from a linear fit to Eq. (7) for all 𝑡𝑠, and then performing
a 𝑧-fit over the selected points on the 𝑄2 range to extract 𝑎𝑖; instead, here we perform a single z-fit
on all data including all 𝑡𝑠 ∈ {𝑡𝑠,min, ...} and 𝑄2 ∈ {0, ..., 𝑄2

max} to extract directly the 𝑧-expansion
coefficients on each ensemble. This allows us to smoothen the analysis strategy, providing a solid
estimate of 𝑎𝑖 for each 𝑡𝑠,min with a single fit.

We compare these procedures in Fig. 1, considering both the case where 𝑏0(𝑄2) is treated as
a fit parameter for each 𝑄2 (orange and blue points) or the case where it is also parametrised with
a 𝑧-expansion 𝑏0(𝑄2) = ∑𝑛𝑏

𝑘=0 𝑑𝑘𝑧
𝑘 (𝑄2) at order 𝑛𝑏 = 2. The plot shows that all approaches are

compatible within errors.
The fits are performed starting from a minimum value of the source-sink separation 𝑡𝑠,min, such

that the coefficients 𝑎𝑖 of the 𝑧-expansion depend on this choice. To obtain the final coefficients we

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
3
4

The isoscalar non-singlet axial form factor of the nucleon from lattice QCD Alessandro Barone

0.2

0.4

0.6

0.8

1.0

a
0

ansatz 2 + FV
M cut

π =285 MeV
method=svd

−3

−2

−1

0

1

a
1

p-value=0.084
χ2/Ndof[15]=1.532

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

M 2
π [GeV2]

−6

−4

−2

0

2

4

6

8

a
2

fit (a = 0, L =∞)

original data

corrected data

Conn (u+d)

Pre
lim

in
ar

y 0.2

0.4

0.6

0.8

1.0

a
0

ansatz 2 + FV
M cut

π =285 MeV
method=svd

−3

−2

−1

0

1

a
1

p-value=0.084
χ2/Ndof[15]=1.532

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

a2 [fm2]

−6

−4

−2

0

2

4

6

8

a
2

fit (Mπ = Mphys
π )

original data

corrected data

Conn (u+d)

Pre
lim

in
ar

y 0.2

0.4

0.6

0.8

1.0

a
0

ansatz 2 + FV
M cut

π =285 MeV
method=svd

−3

−2

−1

0

1

a
1

p-value=0.084
χ2/Ndof[15]=1.532

2 3 4 5 6 7
L [fm]

−6

−4

−2

0

2

4

6

8

a
2

fit (a = 0, Mπ = Mphys
π )

original data

corrected data

Conn (u+d)

Pre
lim

in
ar

y

Figure 3: Example of chiral-continumm extrapolation for the 𝑢 + 𝑑 case with ansatz 2 and finite-volume
effect with a cut 𝑀cut

𝜋 = 285 MeV, shown for all the three coefficients (rows) as a function of 𝑀2
𝜋 (left), 𝑎2

(centre) and the spatial lattice size 𝐿 (right). The blue points are the original data and the red points and band
correspond to the corrected version for the continuum parameters as specified in the legend.

perform a weighted average over all these values assigning the weights according to the window
function

𝑊 =
1
𝑁𝑤

[
tanh

(
𝑡min
𝑠 − 𝑡low

𝑤

Δ𝑡𝑤

)
− tanh

(
𝑡min
𝑠 − 𝑡

up
𝑤

Δ𝑡𝑤

)]
, (9)

where 𝑁𝑤 is a normalisation factor and 𝑡low
𝑠 = 0.8 fm, 𝑡up

𝑠 = 1 fm, Δ𝑡𝑤 = 0.08 fm on each ensemble,
in order to reduce the human bias in the procedure.

While the direct 𝑧-fit provides a simple solution to fitting simultaneously a large amount of data,
it comes with the downside of dealing with a sizeable 𝑁 ×𝑁 covariance matrix, with 𝑁 = 𝑁𝑄2 ×𝑁𝑡𝑠

being respectively the number of 𝑄2 and source-sink separations 𝑡𝑠 entering the fit. We therefore
explore two different ways of regulating such a matrix. The first one consists in introducing a
small damping 𝛼 ∈ [0.985, 1] on the off-diagonal elements [15]; the second relies on an svd cut
to decrease the condition number of the matrix. We compare the methods in Fig. 2 against the
unregulated matrix (“correlated”) to demonstrate that the estimation of the covariance is solid, as
different regularisations provide negligible differences. We quote our final results using the svd
approach.

4. Preliminary results

In this section we highlight the final steps of the analysis on the connected data, namely the
chiral-continuum extrapolation of the coefficients of the 𝑧-expansion and the model average, and

5
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Figure 4: Model average through AIC for the 𝑢 + 𝑑 case. The red points correspond to the results of the
fits entering the model average, and the blue line is the cumulative distribution in Eq. (12), with the vertical
bands indicating the final results obtained from the 16th and 84th percentiles.

compare with preliminary results on the full dataset of two of our most chiral ensembles.
We consider three ansätze:

1. linear in 𝑀2
𝜋 and 𝑎2 for each coefficient 𝑎𝑖;

2. same as ansatz 1 with the addition of an 𝑀3
𝜋 term and a log term for the axial charge 𝑎0;

3. same as ansatz 2 with the addition of 𝑀3
𝜋 terms for 𝑎1 and 𝑎2.

To account for finite-volume effects, we also consider all the previous ansätze with the correction
term

𝑀2
𝜋√

𝑀𝜋𝐿
𝑒−𝑀𝜋𝐿 (10)

for 𝑎0. We show an example of the chiral-continuum extrapolation of the connected data with ansatz
2 and finite-volume effects in Fig. 3, as a function of 𝑀2

𝜋 , 𝑎2 and the spatial lattice size 𝐿. The plot
shows that the behaviour is quite flat for all the three variables, suggesting that the simple ansatz 1
would be enough to describe the data. In addition, finite-volume effects appear to be negligible.

We perform multiple fits with cuts in the pion mass, 𝑀cut
𝜋 [MeV] = {300, 285, 265}, and cuts

in the coarsest lattice spacing, while preserving the correlations among the three coefficients on
each ensemble. We then obtain the final result through model average exploiting the version of the
Akaike Information Criterion proposed in [18], i.e. assigning to each 𝑘-th fit the weight

𝑤AIC
𝑘 ∝ 𝑒−

1
2 (𝜒

2
𝑘
+2𝑛par,𝑘−𝑛data,𝑘 ) , (11)

6
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Figure 5: Final results on the isoscalar axial form factor 𝐺𝐴(𝑄2) on the ensembles E300 and D200 after
window average for both connected (right) and full case (left), compared with the final AIC average for the
connected case only in green.

with 𝑛par,𝑘 being the number of parameters and 𝑛data,𝑘 the number of data points entering the fit,
and obtaining the final results exploiting the 16th, 50th and 84th percentiles of the cumulative
distributions

𝑃(𝑎𝑖) =
∫ 𝑎𝑖

−∞
d𝑎′𝑖

∑︁
𝑘

𝑤AIC
𝑘 N(𝑎′𝑖; ⟨𝑎

(𝑘 )
𝑖

⟩, 𝜎
𝑎
(𝑘)
𝑖

) (12)

obtained from a weighted sum of normal distributions centered on ⟨𝑎 (𝑘 )
𝑖

⟩ and variance 𝜎2
𝑎
(𝑘)
𝑖

for

each 𝑧-expansion coefficient 𝑎𝑖 and fit 𝑘 . The procedure is shown in Fig. 4. The correlations
are taken into account repeating the same procedure for the cumulative distributions 𝑃(𝑎𝑖𝑎 𝑗) and
extracting them from the standard relations between the variances var[𝑎𝑖𝑎 𝑗], var[𝑎𝑖] and var[𝑎 𝑗].

We illustrate the preliminary results in Fig. 5, where we compare the connected𝑢+𝑑 contribution
after model average to two of the most chiral ensembles E300 and D200 (right); the full 𝑢 + 𝑑 − 2𝑠
from factor is displayed on the left for these two ensembles. We can see that for the connected
case the two ensembles already seem to provide a good description of the physical case. The
disconnected pieces contribute mainly at low 𝑄2 (cf. Fig. 1) yielding a shift of the form factor
mainly in that region. While this preliminary evaluation is obtained only on two ensembles, i.e
without accounting for lattice artifacts, these provide a value of the axial charge compatible with
𝑔𝑢+𝑑−2𝑠
𝐴

= 0.46(5) obtained using the Cloudy Bag model [19], as well as the most recent result
from the ETM collaboration 𝑔𝑢+𝑑−2𝑠

𝐴
= 0.490(20) [20].

5. Outlook and conclusions

In this proceedings contribution we have outlined our analysis strategy for the non-singlet
isoscalar axial form factor, reporting some preliminary results for both the connected and the full
case on a few ensembles. In particular, we exploit the summation method combined with a direct
𝑧-expansion to order 𝑛 = 2, comparing various techniques to regulate the large covariance matrix,
namely off-diagonal damping and svd cuts. The 𝑧-expansion coefficients are obtained from each
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ensemble through a window average of the minimum source-sink separations - which have been
kept in physical units across all ensembles in order to reduce the human bias - and then extrapolated
to the chiral-continuum limit with different ansätze and cuts both in pion mass and lattice spacing.
The final result is then obtained through a model average.

To complete the analysis, several steps have to be taken. First of all, we will include the
disconnected contributions on all ensembles to extend the analysis to the full 𝑢 + 𝑑 − 2𝑠 case.
We plan to explore more fit ansätze (e.g. dipole) to cross-check the quality of our data and the
performance of our analysis. Once complete, this study will provide a first physical result for the
isoscalar octect of the nucleon axial form factor in a large 𝑄2 range accessible by experiments.
Furthermore, it will provide a first step into the flavour decomposition of the form factor, for which
we require a similar analysis for the singlet 𝑢 + 𝑑 + 𝑠 contribution.
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