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Final results from the PNDME calculations of the flavor diagonal charges of the nucleons, 𝑔𝑢,𝑑,𝑠
𝐴,𝑆,𝑇

,
the pion-nucleon sigma term, 𝜎𝜋𝑁 = 𝑚𝑢,𝑑𝑔

𝑢+𝑑
𝑆

, and the strangeness content of the nucleons 𝜎𝑠 =

𝑚𝑠𝑔
𝑠
𝑆
, obtained using eight 2+1+1-flavor HISQ ensembles generated by the MILC collaboration

are presented. To remove excited-state contributions, we have carried out both the “standard” and
“𝑁𝜋” analyses and use physics or 𝜒PT based reasoning for picking between the two for the final
result. To renormalize the charges, we have carried out the calculation of the full mixing matrix
for the 2+1-flavor theory using the RI-SMOM scheme on the lattice and then using perturbative
results to match to 𝑀𝑆 scheme and run to a common scale of 2 GeV. The chiral-continuum-finite-
volume (CCFV) extrapolation is carried out keeping the leading corrections in each. The results
for 𝑔𝑢,𝑑,𝑠

𝐴,𝑆,𝑇
are summarized in Table 2 and for the sigma terms in Eq. (4).
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1. Introduction

We present results for the flavor diagonal nucleon charges, 𝑔𝑢,𝑑,𝑠
𝐴,𝑆,𝑇

, extracted from the ma-
trix elements of axial, scalar, and tensor quark bilinear operators, 𝑞Γ𝑞 with the Dirac matrix
Γ = 𝛾𝜇𝛾5, 𝐼, 𝜎𝜇𝜈 , respectively, within ground state nucleons. They represent a culmination of
the PNDME collaboration’s lattice QCD calculations of nucleon charges done using Wilson-clover
fermions for valence quarks on eight ensembles generated by the MILC collaboration with 2+1+1-
flavors of highly improved staggered quarks (HISQ) [1], and supersede those in our earlier pub-
lications [2–4] and updates in conference proceedings [5, 6]. Our previous results for 𝑔𝑢,𝑑,𝑠

𝐴,𝑇
in

Refs. [2–4] constitute the FLAG values in the 2024 FLAG report [7] for the 2+1+1-flavor theory.
Recent results from the ETM collaboration (also for the 2+1+1-flavor theory using the twisted mass
formalism) are consistent with these and our final results except for 𝑔𝑢,𝑑

𝐴
and 𝜎𝜋𝑁 as discussed later.

The motivation for these calculations and much of the methodology used has already been
published for 𝑔𝑞

𝐴
in Ref. [2], 𝑔𝑞

𝑇
in [3] and for the pion-nucleon sigma term, 𝜎𝜋𝑁 = 𝑚𝑢,𝑑 × 𝑔𝑢+𝑑

𝑆
,

in [4]. The charges 𝑔𝑢,𝑑,𝑠
𝐴

give the contributions of the intrinsic spin of the quarks to the nucleon
spin; the 𝑔

𝑢,𝑑,𝑠

𝑇
give the contribution of the quark electric dipole moment (EDM) operator to the

nucleon EDM; and all three, 𝑔𝑢,𝑑,𝑠
𝐴,𝑆,𝑇

, give the coupling of dark matter or Higgs-like interactions
with nucleons in the respective channels. In addition, with 𝑔

𝑢,𝑑,𝑠

𝑆
in hand, we calculate the pion-

nucleon sigma term, 𝜎𝜋𝑁 = 𝑚𝑢,𝑑𝑔
𝑢+𝑑
𝑆

and the strangeness content of the nucleons 𝜎𝑠 = 𝑚𝑠𝑔
𝑠
𝑆
.

These results include a number of improvements over those in our earlier publications [2–4] and
conference proceedings [5, 6].

• The calculation has been extended to eight ensembles described in Table 1. The point
𝑎06𝑚220 is new.

• The disconnected contributions on all ensembles except 𝑎12𝑚220 are now calculated with
operator insertion at all intermediate points 𝑡 between the nucleon source and the sink points
separated by Euclidean time 𝜏.

• The statistics on most of the ensembles have been increased.

• Results for 𝑔𝑢,𝑑,𝑠
𝑆

are new. In Ref. [4], result for only the renormalization group invariant
pion-nucleon sigma term, 𝜎𝜋𝑁 = 𝑚𝑢,𝑑 × 𝑔𝑢+𝑑

𝑆
, was presented.

• The calculation of the renormalization of quark bilinears in the 2+1-flavor theory, 𝑍𝐴,𝑆,𝑇 ,
has been done nonperturbatively for the clover-on-HISQ formulation using the regularization
independent symmetric momentum subtraction (RI-sMOM) scheme [8, 9]. These 𝑍s are then
matched to the 𝑀𝑆 scheme and run to 2 GeV using perturbation theory. Our previous calcu-
lations [2–4] used 𝑍isoscalar ≈ 𝑍isovector, i.e., 𝑍u+d ≈ 𝑍u-d for the renormalization constants of
the axial and tensor operators. We now confirm that this is a very good approximation having
completed the full calculation.

• Resolving and removing the contributions of excited states to nucleon correlation function
continues to be a leading systematic. These artifacts have to be removed to get ground state
matrix elements. In our recent lattice QCD calculation of the nucleon axial vector form
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Ensemble 𝑎 (fm) 𝑀𝜋 (MeV) 𝛽 𝐶SW 𝑎𝑚𝑢𝑑 𝑎𝑚𝑠 𝐿3 × 𝑇 𝑀𝜋𝐿

𝑎15𝑚310 0.1510(20) 320.6(4.3) 5.8 1.05094 -0.0893 -0.0210 163 × 48 3.93
𝑎12𝑚310 0.1207(11) 310.2(2.8) 6.0 1.05094 -0.0695 -0.018718 243 × 64 4.55
𝑎12𝑚220 0.1184(10) 227.9(1.9) 6.0 1.05091 -0.075 -0.02118 323 × 64 4.38
𝑎09𝑚310 0.0888(8) 313.0(2.8) 6.3 1.04243 -0.05138 -0.016075 323 × 96 4.51
𝑎09𝑚220 0.0872(7) 225.9(1.8) 6.3 1.04239 -0.0554 -0.01761 483 × 96 4.79
𝑎09𝑚130 0.0871(6) 138.1(1.0) 6.3 1.04239 -0.058 -0.0174 643 × 96 3.90
𝑎06𝑚310 0.0582(4) 319.6(2.2) 6.72 1.03493 -0.0398 -0.01841 483 × 144 4.52
𝑎06𝑚220 0.0578(4) 235.2(1.7) 6.72 1.03493 -0.04222 -0.01801 643 × 144 4.41

Table 1: The lattice spacing 𝑎, the valence pion mass 𝑀𝜋 , gauge coupling 𝛽, the Sheikholeslami-Wohlert
coefficient 𝐶𝑆𝑊 defining the clover term in the action, the light quark mass 𝑎𝑚𝑢𝑑 = 1/2𝜅𝑢𝑑 − 4, the strange
quark mass 𝑎𝑚𝑠 = 1/2𝜅𝑠 − 4, the lattice volume 𝐿3 × 𝑇 , and the lattice size in units of 𝑀𝜋 for the eight
ensembles analyzed for flavor diagonal charges 𝑔𝑞

Γ
.

factor 𝐺𝐴(𝑄2) [10–13] and of the pion-nucleon sigma term 𝜎𝜋𝑁 [4], we presented evidence
of larger-than-expected excited-state contributions (ESC) from 𝑁𝜋 and 𝑁𝜋𝜋 multihadron
excited states to the nucleon 3-point correlation functions. Motivated by these works, we
continue to study the impact of including 𝑁𝜋/𝑁𝜋𝜋 states in the analysis of all the flavor
diagonal nucleon matrix elements.

For correlation functions with resolvable signal of ESC, fits to get ground state matrix el-
ements (GSME) now include two excited states in the spectral decomposition, and in each
case we compare fits with and without including the 𝑁𝜋 excited state. These fits have been
made using the full covariance matrix. To reduce ESC, we vary 𝑡skip, the number of points
skipped adjacent to the source and the sink, and the range of source-sink separations (𝜏 val-
ues) included in the fits. For final results we take the average of various fits, weighted by the
Akaika Information Criteria (AIC) score [14]. For the choice of which strategy (“standard”
using first excited-state mass from the 2-point function versus that of the 𝑁𝜋 state) to use for
final results, we incorporate input from 𝜒PT and physics since the data and the 𝜒2 of fits, by
themselves, do not resolve between the two.

• The renormalized axial, 𝑔𝑢,𝑑,𝑠
𝐴

, and tensor, 𝑔𝑢,𝑑,𝑠
𝑇

, charges are extrapolated to the physical
point, 𝑎 → 0, 𝑀𝜋 = 135 MeV, and 𝑀𝜋𝐿 → ∞, using the ansatz

𝑔(𝑎, 𝑀𝜋 , 𝑀𝜋𝐿) = 𝑐0 + 𝑐𝑎𝑎 + 𝑐2𝑀
2
𝜋 + 𝑐3

𝑀2
𝜋𝑒

−𝑀𝜋𝐿

√
𝑀𝜋𝐿

, (1)

that includes the leading corrections, pertinent to our lattice setup, in the 3 variables
{𝑎, 𝑀𝜋 , 𝑀𝜋𝐿}. The chiral corrections to 𝑔

𝑢,𝑑

𝑆
and 𝜎𝜋𝑁 are discussed in Sec. 5 [4], and

finite-volume corrections are neglected in fits to 𝜎𝜋𝑁 to avoid overparameterization.
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2. Resolving excited states: standard method versus including 𝑁𝜋

The 3-point correlation functions used to extract the relevant matrix elements, and from them
the charges, have large ESC as illustrated in Fig. 2. These are removed by making fits to their
spectral decomposition that we truncate at 𝑛 = 2 excited states, dictated by the quality of the data.
In fact, current data are not precise enough to make unconstrained fits with even 𝑛 = 1. We use
additional information, as described below, to make 𝑛 = 1 and 𝑛 = 2 fits. The key external inputs
needed are the masses of excited states, of which even the mass gap (Δ𝑀1 = 𝑀1 − 𝑀0) is poorly
known for many ensembles.

There are 3 types of fits we consider. (i) Take the ground state amplitude 𝐴0 and masses 𝑀𝑖

from fits to the nucleon 2-point correlation functions constructed using the same interpolating oper-
ators, (ii) Take the 𝑀𝑖 from some other related 3-point functions, or (iii) from the phenomenological
values of these excited states. Since the excited states that can contribute significantly can be radial
excitations or multihadron states (𝑁𝜋, 𝑁𝜋𝜋, . . .) with nucleon quantum numbers, we need to decide
which gives the larger ESC. The challenge arises because 𝑀1 ≈ 1250 MeV for 𝑁𝜋 and ≈ 1500 MeV
for the radial excitation. Consequently, even 𝑛 = 1 ES fits give significantly different 𝜏 → ∞
values for these two inputs for 𝑀1. (In all our work, the 𝑁 ( ®𝑝 = 1)𝜋( ®𝑝 = −1) and 𝑁 (0)𝜋(0)𝜋(0)
are approximately degenerate. We, therefore, use the label “𝑁𝜋” to imply their joint contribution.)

In general, the coupling of the nucleon interpolating operator is suppressed by 1/𝐿3 for each
additional particle created (assuming “local” sources which applies to our Wuppertal smeared
sources). As a result, the “𝑁𝜋” state gives a tiny contribution to 2-point functions and has proven
challenging to extract its mass from fits. On the other hand, “𝑁𝜋” contributions to certain matrix
elements (thus the corresponding 3-point functions) are sufficiently enhanced to compensate for
the 1/𝐿3 suppression in the wavefunction. Unfortunately, in these cases, the current data do not, a
priori, provide guidance as the 𝜒2 of the fits with the “2-point = standard” versus “𝑁𝜋” value of
𝑀1 are very similar.

There are two cases in which 𝜒PT suggests this enhanced contribution from “𝑁𝜋” states:
(i) the pseudoscalar, 𝐺𝑃, and induced pseudoscalar, 𝐺𝑃, form factors and (ii) the scalar charges
𝑔
𝑢,𝑑

𝑆
. The quark line diagrams illustrating why are shown in Fig. 1 (left and middle). One also

expects, in 𝜒PT, 1-loop contribution to all charges from the diagram in Fig. 1 (right). In the case
of the extraction of the axial FF, an enhanced contribution has been confirmed by the analysis of
the 𝐴4 correlator and the resulting FF satisfy the (necessary) PCAC relation to within expected
discretization effects [10, 12]. Such a data driven confirmation has not yet been achieved for 𝑔𝑢,𝑑

𝑆
!

The final challenge is that 𝑀𝑁 (1) 𝜋 (−1) becomes smaller than 𝑀r𝑎𝑑𝑖𝑎𝑙 only for 𝑀𝜋 ≲ 200 MeV.
Thus, results are expected to be sensitive to the choice of 𝑀1 only for ensembles with 𝑀𝜋 ≲
200 MeV, which in our case implies that only the 𝑎09𝑚130 point qualifies.

Our current strategy is to compare results from two 3-state fits: (i) “standard” with 𝑀1 and 𝑀2

taken from the simultaneouly fit to 2-point function within the jackknife/bootstrap procedure, and
(ii) “𝑁𝜋” with 𝑀1 = 𝑀𝑁 𝜋 , the energy of the non-interacting state with lattice masses and input
it using narrow priors, and 𝑀2 the first excited state mass in the 2-point fit. As mentioned above,
the charges with possible enhanced ESC are 𝑔

𝑢,𝑑

𝐴,𝑆
. The data from the 𝑎09𝑚130 ensemble for 𝑔𝑑

𝐴
,

𝑔𝑢
𝑆
, 𝑔𝑑

𝑆
are shown in Fig. 2. While the “standard” and the “𝑁𝜋” fits give significantly different

extrapolated (𝜏 → ∞) values, the 𝜒2 are similar. Clearly, more high statistics data and points with
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𝑀𝜋 ≲ 200 MeV are needed to resolve between using the “standard” versus “𝑁𝜋” state analyses.
Our final choice, to take the average of the two fits for 𝑔𝑢,𝑑

𝐴
, “𝑁𝜋” for 𝑔𝑢,𝑑

𝑆
, and the “standard”

for the rest, is based on the arguments given above.

N N
𝜋

N

Figure 1: Quark line diagrams illustrating the contribution of 𝑁𝜋 states. (Left) The current 𝐴𝜇 annihilates
the pion in the 𝑁𝜋 state produced by the nucleon source. Since the pion is light, the 𝐴𝜇 can couple to it
anywhere on the time slice , i.e., giving a compensating enhancement of 𝐿3. See Ref. [13] for a review.
(Middle—relevant to 𝑔

𝑢,𝑑

𝑆
) the scalar current couples to a light quark loop creating an enhanced 𝑁𝜋 state [4].

(Right) The standard pion loop contribution to all charges that could be 𝑂 (5%) be as suggested by 𝜒PT.
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Figure 2: In the absence of ESC, the data for the ratio 𝐶
3pt
O (𝑡, 𝜏)/𝐶2pt (𝑡)𝐶2pt (𝜏− 𝑡) in the limits (𝜏− 𝑡) → ∞

and 𝑡 → ∞, should be independent of 𝜏 and 𝑡, i.e., lie on a horizontal line about 𝑡 = 𝜏/2 with value that is
the desired ground-state value. Current data show large ESC, and the gray band is the estimate of GSME
given by a 𝑛 = 2 fit to the truncated spectral function. In each column, the data are the same but the top panel
shows a fit without the 𝑁𝜋 state and the bottom with. The 𝜒2 of these fits are similar.

3. Renormalization

The renormalization constants, 𝑍 , for the flavor diagonal quark bilinear operators O 𝑓 = 𝜓̄ 𝑓 Γ𝜓 𝑓

with Dirac matrix Γ and the flavor index 𝑓 = {𝑢, 𝑑, 𝑠} are calculated in the 𝑁 𝑓 = 2 + 1 theory.
The lattice calculation, including the mixing, is done in the RI-sMOM scheme [8, 9] on four
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ensembles, 𝑎15𝑚310, 𝑎11𝑚310, 𝑎09𝑚310, and 𝑎06𝑚310, i.e., at the four values of the lattice
spacing 𝑎 used in this study. These are used for all values of 𝑀𝜋 for that 𝑎, i.e., assuming the quark
mass dependence can be neglected. Second, the lattice calculation is not fully 𝑂 (𝑎) improved in
either the action or the operators and all the lattice spacing dependent improvement terms in the
operators are neglected. Consequently, the results for the renormalized charges are extrapolated
to the continuum limit using an ansatz starting with a term linear in 𝑎. The calculation is done
using momentum source propagators on Landau gauge fixed lattices and includes the mixing of the
singlet axial current with the 𝑈 (1)𝐴 anomaly, for which we use the 2-loop result in Ref. [15].

Two methods, labeled 𝑍1 and 𝑍2, are used to calculate the quark field renormalization factor
𝑍𝜓. In 𝑍1, it is taken from the 2-point function and in 𝑍2 using the conserved vector charge 𝑔𝑉 .
These are observed to have different dependence on the quark masses and lattice spacing, however,
the results for them and the renormalized charges after extrapolation to the continuum limit using
a term linear in 𝑎, are consistent. The final results for all charges are taken to be the average of the
two estimates.

4. Chiral-continuum-finite-volume extrapolation (CCFV)

For 𝑔𝑢,𝑑,𝑠
𝐴,𝑇

, the CCFV fit ansatz is given in Eq. (1). In 𝑔
𝑢,𝑑

𝑆
, the leading chiral contribution is

from a term ∝ 𝑀𝜋 , so we use

𝑔
𝑢,𝑑

𝑆
(𝑎, 𝑀𝜋 , 𝑀𝜋𝐿) = 𝑑0 + 𝑑𝑎𝑎 + 𝑑2𝑀𝜋 + 𝑑3𝑀

2
𝜋 + 𝑑4𝑀𝜋

(
1 − 2

𝑀𝜋𝐿

)
𝑒−𝑀𝜋𝐿 . (2)

Note that the finite-volume term is also modified [4].
In all cases, we find no significant evidence for finite-volume corrections. So we compare

results obtained with CCFV versus CC fits. To account for the difference, we have added a
systematic uncertainty labeled CC in the results given in Table 2.

5. Pion-nucleon sigma term 𝜎𝑁𝜋

Results for the renormalization group invariant pion-nucleon sigma term were presented in
Ref. [4] where it was calculated on each ensemble using the bare quantities 𝜎𝜋𝑁 = 𝑚bare

𝑙
𝑔
𝑢+𝑑,bare
𝑆

and the data were extrapolated to the physical point using the N2LO 𝜒PT expression [16]:

𝜎𝜋𝑁 = (𝑑2 + 𝑑𝑎2 𝑎)𝑀
2
𝜋 + 𝑑3𝑀

3
𝜋 + 𝑑4𝑀

4
𝜋 + 𝑑4𝐿𝑀

4
𝜋 log

𝑀2
𝜋

𝑀2
𝑁

. (3)

Our 𝜒PT analysis and the CC fit in Ref. [4] suggested that all five terms contribute significantly.
With data at only three values of 𝑀𝜋 ≈ 135, 220, 310 MeV, we can only explore the chiral part
of the ansatz with a maximum of three terms. We make a second fit by including one more term,
𝑑
𝜒

3 𝑀
3
𝜋 , but fix the coefficient 𝑑𝜒

3 to its 𝜒PT value evaluated with 𝑀𝑁 = 0.939GeV, 𝑔𝐴 = 1.276, and
𝐹𝜋 = 92.3MeV [4]. Having addressed the mixing, matching and running pertinent to renormalizing
the charges in our Clover-on-HISQ calculation, we now extrapolate 𝑔𝑢+𝑑

𝑆
and 𝑔𝑠

𝑆
using CCFV (and

CC) fits and multiply their physical point value by the renormalized quark masses, (𝑚𝑢 + 𝑚𝑑)/2

6
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𝑞 𝑔
𝑞

𝐴
𝑔
𝑞

𝑇
𝑔
𝑞

𝑆
|𝑁 𝜋 𝑔

𝑞

𝑆
|Standard

𝑢 0.781(22) (11)𝐶𝐶 0.782(26) (11)𝐶𝐶 9.36(88) (4)𝐶𝐶 6.34(57) (1)𝐶𝐶

𝑢(PNDME) 0.777(25) (30) 0.784(28) (31)
𝑑 −0.440(29) (9)CC(24)𝑁 𝜋 −0.195(10) (2)𝐶𝐶 8.84(93) (1)𝐶𝐶 6.04(63) (1)𝐶𝐶

𝑑(PNDME) −0.438(18) (30) −0.204(11) (10)
𝑠 −0.055(9) (1)CC −0.0016(12) (1)𝐶𝐶 0.66(17) (5)𝐶𝐶 0.37(13) (6)𝐶𝐶

𝑠(PNDME) −0.053(8) −0.027(16)

Table 2: Final results for the flavor diagonal charges. The subscript 𝐶𝐶 denotes the systematic uncertainty
assigned to account for the difference between the CCFV and CC fit values; and 𝑁𝜋 for that between the the
“standard” and 𝑁𝜋 strategies where appropriate. These values are the average of those obtained with the 𝑍1
and 𝑍2 renormalization methods. Results for 𝑔𝑞

𝐴
and 𝑔

𝑞

𝑇
supersede those published previously, 𝑔𝑞

𝐴
in Ref. [2]

and 𝑔
𝑞

𝑇
in [3], and reproduced here in rows labeled PNDME. We note that the improvements made in this

final analysis have not shifted the central values or the errors significantly.

and 𝑚𝑠, respectively, taken from 2024 FLAG report [7] to get the sigma terms. The results are

𝜎𝜋𝑁 |standard = 42(6) MeV

𝜎𝜋𝑁 |𝑁 𝜋 = 61(6) MeV

𝜎𝑠 |standard = 35(13) MeV . (4)

Our preferred value is 𝜎𝜋𝑁 |𝑁 𝜋 = 61(6) MeV based on the guidance from 𝜒PT that 𝑁𝜋 states make
an enhanced contribution to 𝑔

𝑢,𝑑

𝑆
[4].

6. Conclusions

Our final results are summarized in Table 2. Current data do not resolve between the “standard”
and “𝑁𝜋” analyses based on the 𝜒2 of the ES fits. The charges for which there is a significant
difference between the two analyses are 𝑔𝑑

𝐴
and 𝑔

𝑢,𝑑,𝑠

𝑆
. For 𝑔𝑑

𝐴
, the difference is about one combined

sigma. An “𝑁𝜋” analysis is motivated for 𝑔𝑢,𝑑
𝐴

, because of the large contribution of 𝑁𝜋 states to
the axial form factors [10, 12]. The 𝑔

𝑢,𝑑,𝑠

𝑆
from the “𝑁𝜋” analysis are almost 50% larger and lead

to a similarly larger value for 𝜎𝜋𝑁 (see Eq. (4)). The motivation for enhanced contribution of 𝑁𝜋

states in 𝑔
𝑢,𝑑,𝑠

𝑆
comes from our 𝜒PT analysis in Ref. [4].

The goal is to obtain matrix elements of the various operators within the nucleon ground state
using a data driven analysis that also resolves between the “standard” and “𝑁𝜋” analyses . One
approach is to include all the states that make a significant contribution and calculate the full matrix
of correlation functions and then carry out a generalized eigenvalue analysis. The other is to increase
the statistical precision of the data to reach values of the source-sink separation 𝜏 large enough so
that ES fits (i.e., their 𝜒2) discriminate between different choices of excited-state masses, 𝑀𝑖 . While
the data for all the charges show large ESC, as the statistics are increased, it is already showing the
two theoretically required behaviors and achieving which is necessary for robust fits—symmetry
of the data about 𝜏/2 and its monotonic convergence with 𝜏. In our ongoing calculations, we are
increasing the statistics on two physical mass HISQ ensembles, 𝑎09𝑚135 and 𝑎06𝑚135, by 4–6X
to extend the signal from 𝜏 ≈ 1.3 to 1.6 fm. Hopefully, these data will yield a data-driven analysis.
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