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We compute the electromagnetic form factors of the proton and neutron using lattice QCD with
𝑁 𝑓 = 2 + 1 + 1 twisted mass clover-improved fermions and quark masses tuned to their physical
values. Three ensembles with lattice spacings of 𝑎=0.080 fm, 0.068 fm, and 0.057 fm, and
approximately the same physical volume allow us to obtain the continuum limit directly at the
physical pion mass. Several values of the source-sink time separation ranging from 0.5 fm to
1.5 fm are used, enabling a thorough analysis of excited state effects via multi-state fits. The
disconnected contributions are analyzed using high statistics for the two-point functions combined
with low-mode deflation and hierarchical probing for the fermion loop estimation. We study the
momentum dependence of the form factors using the z-expansion and dipole Ansaetze, thereby
enabling the extraction of the electric and magnetic radii, as well as the magnetic moments in the
continuum limit, for which we provide preliminary results.
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1. Introduction

The proton and neutron electromagnetic form factors offer insights into the rich internal
electromagnetic structure of these nucleons. Over the years, several experimental probes have
investigated these form factors, leading to a very precise determination of the charges, moments, and
radii of these nucleons [1–5]. In these proceedings, we provide a calculation of the electromagnetic
form factors of the nucleon using lattice QCD on three ensembles of clover-improved twisted mass
fermions with two degenerate light, strange, and charm quarks (𝑁 𝑓 = 2 + 1 + 1) with masses tuned
to their physical values (physical point). The lattice spacings span a=0.080 fm, 0.068 fm, and 0.057
fm, allowing a continuum limit directly at the physical pion mass, while source-sink time separation
ranging from 0.5 fm to 1.5 fm are used for analysis of excited states. Including disconnected
contributions, we obtain the proton and neutron electric and magnetic form factors in the isospin
limit and study their momentum dependence to extract the electric and magnetic radii, as well as
the magnetic moments in the continuum limit.

2. Nucleon Electromagnetic form factors

In the flavor isospin limit, the electromagnetic form factors are given in terms of the matrix
element of the electromagnetic current between nucleon states,

⟨𝑁 (𝑝′, 𝑠′) |O𝑉
𝜇 |𝑁 (𝑝, 𝑠)⟩ =

√︄
𝑚2

𝑁

𝐸𝑁 ( ®𝑝′)𝐸𝑁 ( ®𝑝) 𝑢̄𝑁 (𝑝′, 𝑠′)Λ𝜇 (𝑞2)𝑢𝑁 (𝑝, 𝑠)

with 𝑁 (𝑝, 𝑠) a nucleon state of momentum 𝑝 and spin 𝑠, 𝐸𝑁 ( ®𝑝) = 𝑝0 its energy and 𝑚𝑁 its mass,
𝑢𝑁 a nucleon spinor, and 𝑞 = 𝑝′− 𝑝 the momentum transfer from initial (𝑝) to final (𝑝′) momentum.
The matrix element is expressed in terms of the Dirac (𝐹1) and Pauli (𝐹2) form factors,

Λ𝜇 (𝑞2) = 𝛾𝜇𝐹1(𝑞2) +
𝑖𝜎𝜇𝜈𝑞

𝜈

2𝑚𝑁

𝐹2(𝑞2), (1)

or alternatively in terms of the nucleon electric (𝐺𝐸) and magnetic (𝐺𝑀 ) Sachs form factors via
𝐺𝐸 (𝑞2) = 𝐹1(𝑞2) + 𝑞2

(2𝑚𝑁 )2 𝐹2(𝑞2) and 𝐺𝑀 (𝑞2) = 𝐹1(𝑞2) + 𝐹2(𝑞2). At zero momentum transfer
(𝑞2 = 0), the electric form factor yields the nucleon charge and the magnetic its magnetic moment,

𝐺
𝑝

𝐸
(0) = 1, 𝐺𝑛

𝐸 (0) = 0, 𝐺
𝑝

𝑀
(0) = 𝜇𝑝, and 𝐺𝑛

𝑀 (0) = 𝜇𝑛, (2)

where the superscripts 𝑝 and 𝑛 are used to denote the proton and neutron form factors respec-
tively. The electric and magnetic root-mean-squared (r.m.s) radii are defined as the slope of the
corresponding Sachs form factor as 𝑞2 → 0, namely

⟨𝑟2
𝑋⟩q =

−6
𝐺

q
𝑋
(0)

𝜕𝐺
q
𝑋
(𝑞2)

𝜕𝑞2

���
𝑞2=0

, (3)

with 𝑋 = 𝐸, 𝑀 and q = 𝑝, 𝑛.
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3. Lattice setup

On the lattice, we compute the nucleon three-point correlation function,

𝐶𝜇 (Γ𝜈 , ®𝑞, ®𝑝 ′; 𝑡𝑠, 𝑡ins, 𝑡0)=
∑︁
®𝑥ins, ®𝑥𝑠

𝑒𝑖 ( ®𝑥ins− ®𝑥0 ) · ®𝑞𝑒−𝑖 ( ®𝑥𝑠− ®𝑥0 ) · ®𝑝 ′
Tr[Γ𝜈 ⟨𝜒𝑁 (𝑥𝑠) 𝑗𝜇 (𝑥ins) 𝜒̄𝑁 (𝑥0)⟩], (4)

where 𝑥0, 𝑥ins, and 𝑥𝑠 are referred to as the source, insertion, and sink respectively, and 𝜒𝑁 is the
standard nucleon interpolating field [6]. The local vector current 𝑗𝜇 is given by, 𝑗𝜇 =

∑
q=𝑢,𝑑 𝑒q 𝑗

q
𝜇 =∑

q=𝑢,𝑑 𝑒qq̄𝛾𝜇q where the sum over q runs over the up- (q = 𝑢) and down- (q = 𝑑) quark flavors
and 𝑒q is the electric charge of the quark with flavor q. We will refer to the isovector and isoscalar
flavor combinations of the form factors, for which we use 𝑗𝑢−𝑑𝜇 = 𝑗𝑢𝜇 − 𝑗𝑑𝜇 and 𝑗𝑢+𝑑𝜇 = 𝑗𝑢𝜇 + 𝑗𝑑𝜇

respectively. The twisted mass formulation we employ allows the definition of a lattice conserved
vector current which we use for the case of the connected three-point correlation functions. Γ𝜈 is
a projector acting on dirac indices, with Γ0=

1
2 (1+𝛾0) yielding the unpolarized and Γ𝑘=Γ0𝑖𝛾5𝛾𝑘 the

polarized matrix elements. Without loss of generality we will take 𝑡𝑠 and 𝑡ins relative to the source
time 𝑡0 in what follows. The three-point function yields,

𝐶𝜇 (Γ𝜈 , ®𝑞, ®𝑝′; 𝑡𝑠, 𝑡ins) =
∑︁
𝑛,𝑚

A𝑛,𝑚
𝜇 (Γ𝜈 , ®𝑞, ®𝑝′)𝑒−𝐸𝑛 ( ®𝑝′ ) (𝑡𝑠−𝑡ins )−𝐸𝑚 ( ®𝑞)𝑡ins , (5)

where the desired ground state matrix element is A0,0
𝜇 (Γ𝜈 , ®𝑞, ®𝑝′) multiplied by unknown overlaps

of the nucleon state with 𝜒𝑁 . To cancel these overlaps, we use the two-point nucleon correlation
function,

𝐶 ( ®𝑝, 𝑡𝑠) =
∑︁
®𝑥𝑠

𝑒−𝑖 ®𝑥𝑠 · ®𝑝Tr [Γ0⟨𝜒𝑁 (𝑥𝑠) 𝜒̄𝑁 (0)⟩] =
∑︁
𝑛

𝑐𝑛 ( ®𝑝)𝑒−𝐸𝑛 ( ®𝑝)𝑡𝑠 , (6)

and form the ratio,

Π𝜇 (Γ𝜈; ®𝑝′, ®𝑞) =
A0,0

𝜇 (Γ𝜈 , ®𝑞, ®𝑝′)√︁
𝑐0( ®𝑝)𝑐0( ®𝑝′)

. (7)

Ensemble ( 𝐿
𝑎
)3 × ( 𝑇

𝑎
) 𝑎 [fm] 𝑚𝜋 [MeV] 𝑚𝜋𝐿 𝑛conf

cB211.072.64 643 × 128 0.07957(13) 140.2(2) 3.62 749
cC211.060.80 803 × 160 0.06821(13) 136.7(2) 3.78 401
cD211.054.96 963 × 192 0.05692(12) 140.8(2) 3.90 496

Table 1: Parameters of the three 𝑁 𝑓 = 2 + 1 + 1 ensembles used. We provide the name of the ensemble,
the lattice volume, 𝛽 = 6/𝑔2 with 𝑔 the bare coupling constant, the lattice spacing, the pion mass, the value
of 𝑚𝜋𝐿, and the number of configurations. The lattice spacing values and pion masses are as obtained in
Ref. [7].

We use ensembles simulated with 𝑁 𝑓 = 2 + 1 + 1 twisted mass, clover-improved fermions with
quark masses tuned to approximately their physical values. A summary of the parameters for the
ensembles is provided in Table 1. The two- and three-point functions are computed using multiple
source positions per gauge configuration. For two-point functions, we use 477, 650, and 480 source
positions for the ensembles with decreasing 𝑎 respectively. For the connected three-point functions,
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we employ seven to ten different sink-source time separations ranging from approximately 0.5 fm
to 1.5 fm with the number of source positions per configuration increasing with separation to
maintain approximately constant statistical errors. We also compute the disconnected contributions
to the isoscalar contribution employing the one-end trick [8], full dilution in color and spin, and
hierarchical probing [9] to distance eight in the 4-dimensional volume for the calculation of the
fermion loop. We also use eigenvector deflation for the two ensembles at coarser lattice spacings.
The disconnected contributions are computed using the local vector current and therefore need to be
renormalized. The renormalization is carried out non-perturbatively in the RI’-MOM scheme [10]
employing momentum sources, following the procedures described in Refs. [11, 12]. We refer to
Ref. [13] for details on the statistics of each sink-source separation and on the precise approach for
computing the disconnected contributions.

4. Extraction of form factors

The bare form factors at each value of the momentum transfer squared (𝑄2) are obtained by
appropriate combinations of Γ𝜈 and 𝜇 depending on the momenta ®𝑝′ and ®𝑞 in Π𝜇 (Γ𝜈; ®𝑝′, ®𝑞) of
Eq. (7) in order to isolate 𝐺𝐸 and 𝐺𝑀 . For the connected contributions we employ the standard
fixed sink approach [6] and therefore fix ®𝑝′ = 0. For this case, the expressions yielding 𝐺𝐸 and
𝐺𝑀 can be disentangled. For the disconnected contributions we combine ®𝑝′ = 2𝜋

𝐿
®𝑘 for ®𝑘2 = 0, 1,

and 2. In this case, the expressions yielding 𝐺𝐸 and 𝐺𝑀 cannot be disentangled (see Appendix of
Ref. [6]) and we therefore use a Singular Value Decomposition to solve the overconstrained set of
equations that emerge, as in the case of the Generalized Form Factors in Ref. [14].

Ensemble 𝑡
low,3pt
𝑠 𝑡

low,2pt
𝑠 𝑡max

ins
cB211.072.64 8, 10, 12, 14 1, 2, 3 2, 3, 4
cC211.060.80 8, 10, 12, 14 1, 2, 3, 4 2, 3, 4
cD211.054.96 8, 10, 12, 14 1, 2, 3, 4, 5 2, 3, 4

Table 2: Values of the variations used in the fit ranges for each ensemble. For each 𝑡max
ins , the 𝑡min

ins takes values
𝑡max
ins , 𝑡max

ins + 1 or 𝑡max
ins + 2.

To obtain the ground-state contribution to Π𝜇 (Γ𝜈; ®𝑝′, ®𝑞), we perform combined fits to the two-
and three-point functions. We include two excited states (three-state fits) when fitting the two-point
functions and the first excited state (two-state fits) when fitting the three-point function. In our fitting
procedure, we first fit the two-point functions at ®𝑝2 = 0 and ®𝑝2 = ( 2𝜋

𝐿
)2 to extract the model-averaged

ground-state energy, 𝐸0(0), which is used as prior to all subsequent fits. For the ground-state energy
at finite ®𝑝 we use the dispersion relation throughout, namely 𝐸0( ®𝑝) =

√︁
𝐸0(0)2 + ®𝑝2. We proceed

to fit each value of 𝑄2, allowing for different excited state energies between two- and three-point
functions and between the connected isovector and isoscalar cases. In these fits, we vary the smallest
separation in the two- and three-point function fits (𝑡low,2pt

𝑠 and 𝑡
low,3pt
𝑠 respectively) and the values

of the insertion time included according to 𝑡ins ∈ [𝑡min
ins , 𝑡𝑠 − 𝑡max

ins ]. The combinations used for each
ensemble are provided in Table 2.

An example of this analysis is shown in Fig. 1, where for visualization purposes we plot the
ratio of three- to two-point functions of Ref. [6]. The results for each choice of fit ranges are model-
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Figure 1: Extraction of the isovector (left) and isoscalar (right) electric (top) and magnetic (bottom) form
factors for the second non-zero 𝑄2 value for the cD211.054.96 ensemble. The left column of each plot shows
the ratio of three- to two-point functions described in the text for the source-sink separations indicated in the
header of the figure. The center column shows the ratio for 𝑡ins = 𝑡𝑠/2, and the right column gives the result
of each fit versus its fit probability. The bands show the most probable fit, which is also shown with the open
symbol in the right column.

averaged according to the Akaike Information Criterion (AIC) [15, 16] following the approach also
employed in Ref. [17] for the axial form factors computed on the same ensembles.

5. Results for form factors

The connected and disconnected contribution to the isoscalar form factors and the isovector
form factors are shown in Fig. 2 as a function of 𝑄2 for the three ensembles analyzed here. For each
value of 𝑄2, the connected contributions are obtained via the analysis procedure described in the
previous section. For the disconnected contributions, we do not observe significant excited state
contamination within the statistical accuracy achieved and we therefore use results from plateau fits.
The proton and neutron form factors are obtained from the isoscalar and isovector form factors,

𝐺
𝑝

𝑋
(𝑞2) = 1

2
𝐺𝑢−𝑑

𝑋 (𝑞2) + 1
6
𝐺𝑢+𝑑

𝑋 (𝑞2) and 𝐺𝑛
𝑋 (𝑞2) = −1

2
𝐺𝑢−𝑑

𝑋 (𝑞2) + 1
6
𝐺𝑢+𝑑

𝑋 (𝑞2), (8)

where 𝑋 = 𝐸, 𝑀 . We model the 𝑄2 dependence and take the continuum limit using the proton and
neutron form factors directly and fit to both dipole and z-expansion forms. The dipole is given by

𝐺 (𝑄2) = 𝐺 (0)
1 + 𝑄2

𝑀2

, (9)

with 𝐺 (0) and 𝑀2 the fitting parameters. The radius is obtained via ⟨𝑟2⟩ = 12
𝑀2 . The z-expansion

is given by

𝐺 (𝑄2) =
𝑘𝑚𝑎𝑥∑︁
𝑘=0

𝑎𝑘𝑧
𝑘 (𝑄2), (10)

with 𝑧 =

√
𝑡cut+𝑄2−√𝑡cut√
𝑡cut+𝑄2+√𝑡cut

. The radius is ⟨𝑟2⟩ = − 3𝑎1
2𝑎0𝑡𝑐𝑢𝑡

and we take 𝑡cut=(2𝑚𝜋)2. For the proton

electric form factor we fix 𝐺 (0) = 1 for the dipole and 𝑎0 = 1 for the z-expansion. For neutron
electric form factor, we use the Galster-like parameterization [18] instead of the dipole. The
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Figure 2: 𝐺𝐸 (left) and𝐺𝑀 (right), connected isovector (top), connected isoscalar (center) and disconnected
isoscalar (bottom) form factors as a function of 𝑄2 for the three ensembles analyzed here.

continuum limit is taken in two ways, namely i) via a “two-step approach”, where each ensemble’s
𝑄2-dependence is fitted separately and the radius and magnetic moment are then extrapolated to the
continuum in a second step or ii) via a “one-step approach”, where the 𝑎2 dependence is included in
the fit of either the dipole or z-expansion and all three ensembles are fitted together using a similar
approach to that in Ref. [17]. We will quote results using both approaches for the dipole case while
for the z-expansion we use the one-step approach. When fitting the z-expansion, we demand that
the form factor approaches zero as 𝑄2 → ∞ which fixes one parameter, and take the order of the
z-expansion such that the fit has three free parameters, i.e. 𝑘max = 4 for the case of the electric form
factors and 𝑘max = 3 for the magnetic.

Our results for the proton and neutron electromagnetic form factors are shown in Fig. 3, where
we also show representative continuum extrapolations using either the z-expansion or dipole forms
in the one-step approach. For the case of the neutron electric form factor (𝐺𝑛

𝐸
(𝑄2)) the data are

consistent with the experimental values within errors. However, we do not include 𝑎2 dependence
because of large statistical errors, and restrict the maximum value of 𝑄2 used in the fit (𝑄2

cut) to 𝑄2
cut
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Figure 3: 𝐺𝐸 (left) and 𝐺𝑀 (right), proton (top) and neutron (bottom) form factors as a function of 𝑄2

for the three ensembles analyzed. The light red and blue bands indicate the continuum limit band using the
dipole and z-expansion respectively. The black dashed lines for the proton case and the black circles for the
neutron case correspond to the experimental results.

= 0.3 GeV2 as shown in Fig. 3. For the other three form factors we vary the 𝑄2
cut in the z-expansion

and use 𝑄2
cut = 0.4 GeV2 for the dipole. In Fig. 3, we also show representatively 𝑄2

cut=0.4 GeV2 for
dipole and 𝑄2

cut=1 GeV2 for z-expansion with 𝑘max as explained in the previous section. The dashed
black curves for the proton form factors are from z-expansion fits to experimental data [19]. Our
results for the radii and magnetic moments are shown in Fig. 4 for all 𝑄2

cut used and for both one-
or two-step approaches for the case of the dipole form. We overall observe consistent results when
varying the fit ansatz and the 𝑄2

cut used. The model average result, also shown, is consistent with
the PDG values [20] for these quantities.

6. Conclusions

We have carried out an analysis of the electromagnetic form factors of the nucleon using three
ensembles of 𝑁 𝑓 = 2 + 1 + 1 twisted mass fermions at three lattice spacings and with physical
pion mass. Our excited state analysis employs multi-state fits allowing for a different first excited
state in the two- and three-point functions and combine multiple fit ranges via a model-average.
Our results for the form factors obtained on each ensemble and the experimental results are overall
compatible with each other, indicating very small cutoff effects and overall good agreement. We
carry out a preliminary continuum extrapolation in 𝑎2 within a combined fit of the 𝑄2-dependence
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Figure 4: Electric and magnetic radii and magnetic moments of the proton and neutron for all 𝑄2
cut and, in

the dipole case, using both one- or two-step approaches. The red point and band denoted “Model average”
is obtained by weighting according to the AIC as explained in the text.

using both dipole and z-expansion ansaetze. Our preliminary results for the radii and magnetic
moments are consistent with the PDG values for these quantities within our combined statistical and
systematic errors shown in Fig. 4. The analysis of the excited state contamination, 𝑄2-dependence
and continuum limit is continuing in order to obtain a more robust model average. We note that a
fourth ensemble with lattice spacing 𝑎 = 0.049 fm and approximately same physical volume as the
three ensembles used here is available and its analysis is ongoing, with first results for the charges
presented in Ref. [21].
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