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1. Introduction

Electromagnetic polarizabilities are fundamental properties that encode information on the
internal structure of hadrons. Understanding electromagnetic polarizabilities from first principles has
been a long-term goal of lattice QCD. The standard approach is the background field method which
introduces classical static electromagnetic fields to interact with quarks in hadrons. The appeal of
the method lies in its simplicity: only two-point correlation functions are needed to measure the
energy shift with or without the external field, which amounts to a standard calculation of a hadron’s
mass. The linear shift is related to dipole moments, and the quadratic shift to polarizabilities. The
method is fairly robust and has been widely applied (see [1] for a recent review and a complete list of
references). It has enjoyed the most success for neutral hadrons. When it comes to charged hadrons,
however, the method faces new challenges. The reason is rather rudimentary: a charged particle
accelerates in an electric field and exhibits Landau levels in a magnetic field. Such collective motion
of the hadron is unrelated to polarizabilities and must be disentangled from the total energy shift in
order to isolate the deformation energy on which the polarizabilities are defined. The Euclidean
two-point correlation function no longer has a single-exponential behavior at large times. Special
techniques have to be developed to analyze such functions for electric fields [2, 3] and magnetic
fields [4–7].

Partly spurred by the challenges for charged particles, an alternative approach based on four-point
functions in lattice QCD has received renewed interest in recent years. It offers a transparent physical
picture that treats neutral and charged particles on equal footing; the latter simply having additional
elastic contributions in the form of charge radii. The potential of using four-point functions to access
polarizabilities has been investigated in the early days of lattice QCD [8–10]. An intermediate
method based on a perturbative expansion in the background field at the action level was employed
later [11], leading to the same diagrammatic structure as the standard four-functions discussed
here. A reexamination of the formalism in Ref. [10] was carried out in Ref. [12] in which new
formulas were derived in momentum space for electric and magnetic polarizabilities of both a
charged pion and the proton. Proof-of-principle simulations applying the formulas for charged pion
electric polarizability [13] and magnetic polarizability [14] have demonstrated the promise of such
methods. At the same time, position-space-based four-point function simulations have also emerged
for pions [15] and proton and neutron [16].

In this work, we focus on applying the four-point function method to a neutral pion. Outside
lattice QCD, chiral perturbation theory (ChPT) as constrained by phenomenology provides most solid
information on pion polarizabilities [17, 18]. At leading order, ChPT predicts 𝛼𝐸 + 𝛽𝑀 = 0 for both
charged and neutral pions. Specifically, 𝛼𝐸 = −𝛽𝑀 = 3.0 for a charged pion and 𝛼𝐸 = −𝛽𝑀 = −0.5
for a neutral pion in standard units of 10−4 fm3. At two-loop order it gives for a neutral pion,

𝛼𝐸 + 𝛽𝑀 = 1.1 ± 0.3, 𝛼𝐸 − 𝛽𝑀 = −1.9 ± 0.2, 𝛼𝐸 = −0.40 ± 0.18, 𝛽𝑀 = 1.5 ± 0.27. (1)

For a charged pion, it gives

𝛼𝐸 + 𝛽𝑀 = 0.16, 𝛼𝐸 − 𝛽𝑀 = 5.7 ± 0.1, 𝛼𝐸 = 2.93 ± 0.05, 𝛽𝑀 = −2.77 ± 0.11. (2)
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We see significant differences (opposite signs) in polarizabilities between a neutral and a charged pion.
This offers a good testing case for the four-point function method on the lattice. A comprehensive
review on pion polarizabilities from non-lattice approaches and experiment can be found in Ref. [19].

2. Methodology

A matching procedure similar to Ref. [12] for a charged pion in the zero-momentum Breit frame
(see Fig. 1) leads to the following formula,

𝛼𝐸 = lim
𝒒→0

2𝛼
𝒒 2

∫ ∞

0
𝑑𝑡 𝑄44(𝒒, 𝑡), (3)

for electric polarizability, and

𝛽𝑀 = lim
𝒒→0

2𝛼
𝒒 2

∫ ∞

0
𝑑𝑡

[
𝑄11(𝒒, 𝑡) −𝑄11(0, 𝑡)

]
, (4)

for magnetic polarizability. The formulas are in discrete Euclidean spacetime but we keep the time
axis continuous for notational convenience.

Figure 1: Zero-momentum Breit frame in Euclidean space. The four-momentum conservation is recast as
(𝑚𝜋 , ®0) = (0,−®𝑞) + (0, ®𝑞) + (𝑚𝜋 , ®0) on the lattice. The four time points are placed at 𝑡0 (source), 𝑡1 (current
1), 𝑡2 (current 2), 𝑡3 (sink).

Comparing with the formulas for a charged pion [12], there are a number of differences. For 𝛼𝐸 ,
there is no elastic contribution for 𝜋0. Both the charge radius term 𝛼 𝑟2

𝐸
/(3𝑚𝜋) and 𝑄𝑒𝑙𝑎𝑠

44 vanish,
leading to a much simpler formula. The sign of 𝛼𝐸 for 𝜋0 is directly given by the sign of the time
integral over 𝑄44. For 𝛽𝑀 , the charge radius term is also absent, making its sign solely dependent
on the sign of the subtracted time integral over 𝑄11. Since there is no elastic contributions for 𝜋0, we
remove the redundant ‘inel’ label from 𝑄𝑖𝑛𝑒𝑙

11 that is used in the formula for 𝜋+. Finally, the four-point
correlation function at the quark level will be different due to the different interpolating field for a
neutral pion. The four-point function is defined on the lattice by (𝜇 = 1 and 4 in this work),

𝑄𝜇𝜇 (𝒒, 𝑡3, 𝑡2, 𝑡1, 𝑡0) ≡

∑︁
𝒙3 ,𝒙2 ,𝒙1 ,𝒙0

𝑒−𝑖𝒒 ·𝒙2𝑒𝑖𝒒 ·𝒙1 Ω|𝜓(𝑥3) : 𝑗𝐿𝜇 (𝑥2) 𝑗𝐿𝜇 (𝑥1) : 𝜓† (𝑥0) |Ω∑︁
𝒙3 ,𝒙0

Ω|𝜓(𝑥3)𝜓† (𝑥0) |Ω
. (5)

The interpolating field for a neutral pion is given by,

𝜓𝜋0 (𝑥) = 1
√

2

[
𝑢̄(𝑥)𝛾5𝑢(𝑥) − 𝑑 (𝑥)𝛾5𝑑 (𝑥)

]
. (6)
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The resulting correlation function has self-contracting quark loops at the source and sink whereas
that of a charged pion does not.

For the lattice version of electromagnetic current density 𝑗𝐿𝜇 , we consider two options. One is a
local current (or Point Current) built from up and down quark fields,

𝑗
(𝑃𝐶 )
𝜇 ≡ 𝑓 𝑍𝑉 𝜅

(
𝑞𝑢𝑢̄𝛾𝜇𝑢 + 𝑞𝑑𝑑𝛾𝜇𝑑

)
with 𝑓 = {1, 𝑖} for 𝜇 = {4, 1}. (7)

The extra factor of 𝑖 in the magnetic case is needed to ensure that the spatial component 𝑗 (𝑃𝐶 )
1 is

hermitian. The reason is that (𝑢̄𝛾1𝑢)† = −𝑢̄𝛾1𝑢 whereas (𝑢̄𝛾4𝑢)† = 𝑢̄𝛾4𝑢 (recall 𝑢̄ ≡ 𝑢†𝛾4). The
factor 𝜅 is to account for the quark-field rescaling 𝜓 →

√
2𝜅𝜓 in Wilson fermions. The factor of

2 is canceled by the 1/2 factor in the definition of the vector current 1
2 𝜓̄𝛾𝜇𝜓. The charge factors

are 𝑞𝑢 = 2/3 and 𝑞𝑑 = −1/3 where the resulting 𝑒2 = 4𝜋𝛼 (in the unit system of ℏ = 𝑐 = 𝜖0 = 1)
in the four-point function has been absorbed in the definition of 𝛼𝐸 in Eq.(3) and 𝛽𝑀 in Eq.(4).
The advantage of the local operator is that it leads to relatively simple correlation functions. The
drawback is the issue of renormalization constant 𝑍𝑉 for vector current on the lattice. The other
option is the conserved vector current (or Point-Split current) for Wilson fermions,

𝑗
(𝑃𝑆)
𝜇 (𝑥) ≡ 𝑓 𝑞𝑢𝜅𝑢

[
− 𝑢̄(𝑥) (1 − 𝛾𝜇)𝑈𝜇 (𝑥)𝑢(𝑥 + 𝜇̂) + 𝑢̄(𝑥 + 𝜇̂) (1 + 𝛾𝜇)𝑈†

𝜇 (𝑥)𝑢(𝑥)
]

+ 𝑓 𝑞𝑑𝜅𝑑
[
− 𝑑 (𝑥) (1 − 𝛾𝜇)𝑈𝜇 (𝑥)𝑑 (𝑥 + 𝜇̂) + 𝑑 (𝑥 + 𝜇̂) (1 + 𝛾𝜇)𝑈†

𝜇 (𝑥)𝑑 (𝑥)
]
.

(8)

Although the conserved current explicitly involves gauge fields and leads to more complicated
correlation functions, it has the advantage of circumventing the renormalization issue (𝑍𝑉 ≡ 1). All
numerical results in this work are based on conserved current.

Wick contractions of quark-antiquark pairs in 𝑄𝜇𝜇 in Eq.(5) lead to topologically distinct
quark-line diagrams shown in Fig. 2. Compared to diagrams for a charged pion [13, 14], two new
disconnected diagrams (G and H) emerge for a neutral pion. They are responsible for the leading
1/𝑚𝜋 behavior in neutral pion polarizabilities with a model-independent coefficient in ChPT [20].
The total contribution is simply the algebraic sum of the normalized individual terms,

𝑄𝜇𝜇 (𝒒, 𝑡2, 𝑡1) =
∑︁

𝑘=𝐴,𝐵,𝐶,𝐷,𝐸,𝐹,𝐺,𝐻

𝑄
(𝑘 )
𝜇𝜇 . (9)

It holds for either local current or conserved current. The charge factors and flavor-equivalent
contributions have been included in each diagram. One can examine the diagrams one by one,
building a transparent physical picture for the polarizabilities. For numerical results, we focus on
the connected contributions (diagrams A,B,C) in the isospin limit (𝜅𝑢 = 𝜅𝑑) in this study. The
disconnected contributions (diagrams D,E,F,G,H) are more challenging and are left for future work.

3. Results

As a proof-of-principle test, we use the same lattice parameters and ensembles used in Ref. [12]
for a charged pion. In Fig. 3 we show in lattice units the connected contribution 𝑄44 and 𝑄11 at
different 𝒒 values as a function of current separation 𝑡 = 𝑡2 − 𝑡1. Only results for 𝑚𝜋 = 600 MeV are
shown as an example; the graphs at the other pion masses look similar. The time integrals in the
formulas Eq.(3) and Eq.(4) for 𝜋0 polarizabilities are given by the shaded areas. For 𝑄44, the area is
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Figure 2: Quark-line diagrams of a four-point function contributing to polarizabilities of a neutral pion.
Each diagram represents a distinct topology, with flavor and additional time orderings assumed as well as
gluon lines that connect the quark lines. Current insertions are represented by crosses. Zero-momentum pion
interpolating fields are represented by vertical bars (wall sources).

under a single curve and is positive at all 𝒒2 values. For 𝑄11, the area is from the difference between
𝑄11(𝒒) and 𝑄11(0) curves, and there is a switch over of the two curves, indicating a sign change
from positive to negative. Note the difference plotting scales in left and right panels: the signal is on
the same order of magnitude. One detail to notice is that the curves include the 𝑡 = 0 point which is
the unphysical contact term mentioned earlier. We would normally avoid this point and only start the
integral from 𝑡 = 1. However, the chunk of area between 𝑡 = 0 and 𝑡 = 1 is the largest piece in the
integral. To account for this contribution, we linearly extrapolated both 𝑄44 and 𝑄11 back to 𝑡 = 0
using the two points at 𝑡 = 1 and 𝑡 = 2. As the continuum limit is approached, the 𝑡 = 0 point will
become regular and the chunk will shrink to zero.

The 𝒒2-extrapolated values as a function of pion mass are given in Fig. 4. We perform a
chiral extrapolation to the physical point using two different forms. One is a polynomial form
𝑎0 + 𝑎1𝑚𝜋 + 𝑎3𝑚

3
𝜋 . The other is 𝑎0/𝑚𝜋 + 𝑎1𝑚𝜋 + 𝑎3𝑚

3
𝜋 with a leading 1/𝑚𝜋 term to account for

possible divergencies. The spread between the two different forms can be regarded a systematic
uncertainty. Although the uncertainty from each fit is comparable, the spread is much smaller for
𝛽𝑀 than for 𝛼𝐸 , indicating a mild dependence on the 1/𝑚𝜋 term for 𝛽𝑀 . The extrapolation leads to
a sign change for 𝛼𝐸 and the extrapolated value is consistent with that from ChPT. On the other
hand the extrapolation for 𝛽𝑀 leads to a small but positive value that is significantly smaller than
that from ChPT. As a result, the sum of electric and magnetic polarizabilities 𝛼𝐸 + 𝛽𝑀 also tuns

5
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Figure 3: Connected contributions to 𝑄44 (𝒒, 𝑡) (left panel) and 𝑄11 (𝒒, 𝑡) (right panel) at different values of 𝒒
and 𝑚𝜋 = 600 MeV. The shaded areas are the dimensionless signal contributing to 𝜋0 polarizabilities.
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Figure 4: Chiral extrapolation of neutral pion polarizabilities. The stars at the physical point are from ChPT
given in Eq.(1). The spread is from two different forms described in the text.

negative at the physical point, also at variance with ChPT.
In Fig. 5, we compare 𝛼𝐸 from various lattice calculations in the background field method [2,

21, 22] and the four-point function method. In addition to our result in this work, there exists another
study using four-point function in position space and physical pion mass [15]. By and large, the
results are consistent with each other and with ChPT. So far both methods neglect disconnected
contributions. Furthermore, they are electro-quenched in the sea quarks.

In contrast, the situation for 𝛽𝑀 is rather different. We show calculations from the background
field method [5, 23–27], and the sole result in the four-point function method from this work. We see
large disagreements within the background field method, except Ref. [24, 26] which agree with each
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Figure 5: Neutral pion electric (left) and magnetic (right) polarizability from background field method and
four-point function method (labeled by 4pt). The star at the physical point is from ChPT.

other. Notably, the four-point function result agrees with Ref. [25] but disagrees with Ref. [5] which
is an improved analysis of Ref. [25] based on eigenmode projection. The situation calls for more
studies in order to understand the physics mechanisms. A step in this direction is taken in Ref. [20]
(also recognized in Ref. [28]) in which a chiral extrapolation of the results in Ref. [5] is performed
using partially-quenched ChPT. In this approach, the neutral pion is dressed by pion cloud at various
orders. It identifies the equivalent terms missing in current lattice QCD simulations and estimates
the correction to be as large as 1.06 in the standard units.

We would like to mention that a potential source of systematic uncertainty among different
calculations in Fig. 5 is discretization errors in the fermion action. Some of the discrepancies may
be due to O(a) errors in the Wilson action and not at all related to difficulties encountered in the
polarizability analysis methods.

In the four-point function formalism, we can decompose the polarizabilities into quark compo-
nents. Since the formulas for 𝜋0 in Eq.(3) and Eq.(4) are proportional to 𝑄44 or 𝑄11, the relations
found in the Wick contractions in the appendix directly translate to polarizabilities,

𝛼𝐸 = 𝛼
(𝐶𝐼 )
𝑢𝑢 + 𝛼

(𝐷𝐼 )
𝑢𝑢 + 𝛼

(𝐶𝐼 )
𝑑𝑑

+ 𝛼
(𝐷𝐼 )
𝑑𝑑

+ 𝛼
(𝐷𝐼 )
𝑢𝑑

, (10)

𝛽𝑀 = 𝛽
(𝐶𝐼 )
𝑢𝑢 + 𝛽

(𝐷𝐼 )
𝑢𝑢 + 𝛽

(𝐶𝐼 )
𝑑𝑑

+ 𝛽
(𝐷𝐼 )
𝑑𝑑

+ 𝛽
(𝐷𝐼 )
𝑢𝑑

. (11)

The diagonal uu and dd terms have both connected and disconnected contributions, whereas the ud
cross term has only disconnected contributions (it is also absent of diagram D in Fig. 2). Furthermore,
there is an exact relation between the diagonal terms,

𝛼
(𝐶𝐼 )
𝑢𝑢 = 4𝛼 (𝐶𝐼 )

𝑑𝑑
and 𝛼

(𝐷𝐼 )
𝑢𝑢 = 4𝛼 (𝐷𝐼 )

𝑑𝑑
, (12)

𝛽
(𝐶𝐼 )
𝑢𝑢 = 4𝛽 (𝐶𝐼 )

𝑑𝑑
and 𝛽

(𝐷𝐼 )
𝑢𝑢 = 4𝛽 (𝐷𝐼 )

𝑑𝑑
. (13)

We emphasize that the relations in Eq.(10) to Eq.(13) are specific to a neutral pion. For a charged pion,
a different decomposition into charge radius, connected, and disconnected contributions exists [13, 14].
For 𝛽𝑀 , we evaluated in this work the connected contributions 𝛽

(𝐶𝐼 )
𝑢𝑢 + 𝛽

(𝐶𝐼 )
𝑑𝑑

= 5𝛽 (𝐶𝐼 )
𝑑𝑑

= 0.18(2).
If we regard the value 𝛽𝑀 = 1.50(27) from ChPT in Eq.(1) as the full QCD result, then the
difference between ChPT and our result implies a fairly large contribution from the disconnected

7
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diagrams 5𝛽 (𝐷𝐼 )
𝑑𝑑

+ 𝛽
(𝐷𝐼 )
𝑢𝑑

= 1.32(27) for 𝜋0 magnetic polarizability. This compares well with the
1.06 estimated in Ref. [20].

4. Conclusion

A neutral pion’s electromagnetic polarizabilities offer a unique opportunity to test the QCD-
based methods employed to extract them. This is mainly due to the different operator structure at the
quark level: 𝑢̄𝛾5𝑢 − 𝑑𝛾5𝑑 for 𝜋0 versus 𝑑𝛾5𝑢 for 𝜋+. The former has self-contracting disconnected
loops (see the Appendix), while the latter does not. This is true either in two-point or four-point
functions.

In this work, we derived new formulas in Eq.(3) and Eq.(4) for a neutral pion in the four-point
function formalism. We applied the formulas in a proof-of-concept lattice simulation using the same
parameters as for a charged pion [13, 14]. The results for 𝛼𝐸 as summarized in Fig. 5 are largely
consistent with existing calculations and with ChPT. The results for 𝛽𝑀 as summarized in Fig. 5, on
the other hand, are widely inconsistent.

The situation puts a spotlight on the disconnected contributions in neutral pion magnetic
polarizability. Our result from the four-point function method hints a potentially large contribution
from the disconnected diagrams. It is also supported by a ChPT-based estimate [20]. Our argument is
based on a straightforward decomposition of the polarizabilities in the four-point function formalism.
Due to the absence of elastic contributions for 𝜋0, the polarizabilities in Eq.(3) and Eq.(4) are
proportional to the four-point functions𝑄44 and𝑄11 (albeit under time integrals). Since the four-point
functions can be decomposed into quark components of various types (uu, dd, ud) according to
their charge factors, the relations in the Appendix translate directly to polarizabilities as given in
Eq.(10) to Eq.(13) in which connected and disconnected contributions can be further separated.
Consequently, one can examine the terms one by one to see their impact on the polarizabilities. In
contrast, such contributions are indirectly present via exponential or more complicated functions in
the two-point functions used in the background field method.

Looking forward, the most important issue is to directly simulate the disconnected diagrams on
the lattice. In the meantime, some systematic effects in the current simulation should be addressed,
such as 𝑂 (𝑎) scaling violations in Wilson fermions, and the quenched approximation in the gauge
ensembles. Work is under way to use the 𝑂 (𝑎)-improved two-flavor nhyp-clover ensembles [29, 30]
to repeat the analysis for both neutral and charged pions. The six dynamical ensembles described in
Ref. [30] with elongated geometries also afford the opportunity to study finite-volume effects as well
as to reach smaller momentum and pion mass.
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