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coupling constant, and for the induced pseudoscalar form factor at the muon capture point.
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1. Introduction

The nucleon axial form factors are fundamental quantities that characterize the nucleon’s
response to weak interactions and play a crucial role in neutrino scattering experiments. They are
particularly relevant for current and upcoming neutrino experiments such as NO𝜈A, MINER𝜈A,
and DUNE. At Fermi Lab, the MINER𝜈A experiment has recently provided new measurements of
neutrino interactions [1]. While the axial charge 𝑔𝐴 is well determined from neutron beta decay
experiments [2–5], the momentum dependence of the axial form factor 𝐺𝐴(𝑄2) and the induced
pseudoscalar form factor 𝐺𝑃 (𝑄2) are less well constrained by experiment.

Lattice QCD provides a first-principles approach to computing these quantities directly from the
QCD Lagrangian. Recent progress has enabled simulations at physical quark masses, eliminating
the need for chiral extrapolation which can introduce uncontrolled systematic uncertainties. Early
lattice studies were limited to the quenched approximation [6, 7] or heavier than physical pion
masses [8]. In this work, we present the first calculation to use solely simulations at physical pion
mass to take the continuum limit, using three ensembles generated with twisted mass fermions [9].
The ensembles span lattice spacings from 0.08 fm to 0.057 fm, enabling a controlled continuum
extrapolation of all quantities. We perform a thorough analysis of excited-state contributions and
examine important relations such as the partially conserved axial-vector current (PCAC) and pion
pole dominance (PPD).

2. Axial and pseudo-scalar form factors

The nucleon matrix element of the isovector axial-vector current 𝐴𝜇 = �̄�𝛾𝜇𝛾5𝑢 − 𝑑𝛾𝜇𝛾5𝑑 can
be decomposed in terms of two form factors,

⟨𝑁 (𝑝′, 𝑠′) |𝐴𝜇 |𝑁 (𝑝, 𝑠)⟩ = �̄�𝑁 (𝑝′, 𝑠′)
[
𝛾𝜇𝐺𝐴(𝑄2) −

𝑄𝜇

2𝑚𝑁

𝐺𝑃 (𝑄2)
]
𝛾5𝑢𝑁 (𝑝, 𝑠), (1)

where 𝐺𝐴(𝑄2) is the axial and 𝐺𝑃 (𝑄2) the induced pseudoscalar form factor. Here 𝑄2 = −𝑞2

with 𝑞 = 𝑝′ − 𝑝 the momentum transfer and 𝑚𝑁 the nucleon mass. The axial form factor at zero
momentum transfer gives the axial charge, 𝑔𝐴 ≡ 𝐺𝐴(0), while its slope determines the axial radius,

⟨𝑟2
𝐴⟩ = − 6

𝑔𝐴

𝜕𝐺𝐴(𝑄2)
𝜕𝑄2

����
𝑄2→0

. (2)

The nucleon matrix element of the pseudoscalar current 𝑃 = �̄�𝛾5𝑢 − 𝑑𝛾5𝑑 defines the pseu-
doscalar form factor,

⟨𝑁 (𝑝′, 𝑠′) |𝑃 |𝑁 (𝑝, 𝑠)⟩ = 𝐺5(𝑄2)�̄�𝑁 (𝑝′, 𝑠′)𝛾5𝑢𝑁 (𝑝, 𝑠). (3)

These form factors are related through the partially conserved axial-vector current (PCAC)
relation,

𝐺𝐴(𝑄2) − 𝑄2

4𝑚2
𝑁

𝐺𝑃 (𝑄2) =
𝑚𝑞

𝑚𝑁

𝐺5(𝑄2), (4)
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where 𝑚𝑞 is the light quark mass. Near the pion pole, assuming pion pole dominance (PPD), the
induced pseudoscalar form factor can be expressed as,

𝐺𝑃 (𝑄2) =
4𝑚2

𝑁

𝑄2 + 𝑚2
𝜋

𝐺𝐴(𝑄2), (5)

where 𝑚𝜋 is the pion mass. Both PCAC and PPD relations will be examined in the continuum limit
of our lattice calculation. We also compute the induced pseudoscalar coupling determined at the
muon capture point,

𝑔∗𝑃 =
𝑚𝜇

2𝑚𝑁

𝐺𝑃 (0.88𝑚2
𝜇), (6)

where 𝑚𝜇 is the muon mass, as well as the pion-nucleon coupling constant 𝑔𝜋𝑁𝑁 defined through
the pseudoscalar form factor at the pion pole.

3. Lattice setup and statistics

We describe the ensembles used in this work and detail the statistics for computing correlation
functions.

We use three 𝑁f=2+1+1 twisted mass fermion ensembles at the physical point with lattice
spacings spanning from 0.08 fm to 0.057 fm. The parameters of these ensembles are given in
Table 1. The bare light quark mass parameter 𝜇𝑙 is tuned to reproduce the isosymmetric pion mass
𝑚𝜋 = 135 MeV, while the heavy quark parameters 𝜇𝑠 and 𝜇𝑐 are tuned via the ratio of D-meson
mass to decay constant and the ratio of the strange to charm quark mass [10, 11].

Table 1: Parameters of the 𝑁f=2+1+1 ensembles analyzed in this work. We give the lattice volume, 𝛽 = 6/𝑔2

with 𝑔 the bare coupling constant, the lattice spacing 𝑎, the number of gauge configurations 𝑁conf , the pion
mass 𝑚𝜋 , and 𝑚𝜋𝐿. Lattice spacings and pion masses are taken from Ref. [12].

Ensemble 𝑉/𝑎4 𝛽 𝑎 [fm] 𝑁conf 𝑚𝜋 [MeV] 𝑚𝜋𝐿

cB211.072.64 643 × 128 1.778 0.07957(13) 750 140.2(2) 3.62
cC211.060.80 803 × 160 1.836 0.06821(13) 400 136.7(2) 3.78
cD211.054.96 963 × 192 1.900 0.05692(12) 500 140.8(2) 3.90

For each ensemble, we compute two- and three-point correlation functions using multiple
source positions per gauge configuration. For two-point functions, we use 477, 650, and 480
source positions for the three ensembles respectively. For three-point functions, we employ seven
to ten different sink-source time separations ranging from approximately 0.5 fm to 1.5 fm. The
number of source positions per configuration is increased with the sink-source separation to maintain
approximately constant statistical errors, ranging from O(1) for the shortest separation to O(100)
for the largest [9].

We neglect disconnected quark loop contributions in the present work since in the twisted mass
formulation these contributions to isovector matrix elements are of order 𝑎2 and thus vanish in the
continuum limit [13].

The matrix elements are renormalized non-perturbatively using methods based on Ward iden-
tities, which are fully non-perturbative and require no gauge fixing [12]. This approach provides
much more accurate results on the renormalization constants compared to the standard RI′ scheme.

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
3
0

Isovector axial FFs Giannis Koutsou

4. Extraction of Form Factors

The nucleon matrix elements are determined from two- and three-point correlation functions.
The spectral decomposition of the two-point function is given by

𝐶 (Γ0, ®𝑝, 𝑡𝑠) =
𝑁𝑠𝑡−1∑︁

𝑖

𝑐𝑖 ( ®𝑝)𝑒−𝐸𝑖 ( ®𝑝)𝑡𝑠 (7)

and the three-point function by

𝐶𝜇 (Γ𝑘 , ®𝑞, 𝑡𝑠, 𝑡ins) =
𝑁𝑠𝑡−1∑︁
𝑖, 𝑗

A𝑖, 𝑗
𝜇 (Γ𝑘 , ®𝑞)𝑒−𝐸𝑖 (®0) (𝑡𝑠−𝑡ins )−𝐸 𝑗 ( ®𝑞)𝑡ins , (8)

with 𝑡𝑠 the sink time and 𝑡ins the current insertion time. The coefficients 𝑐𝑖 ( ®𝑝) are overlap terms of
the interpolating operator with the 𝑖-th state while A𝑖, 𝑗

𝜇 contain the matrix elements between states

𝑖 and 𝑗 . The desired ground-state matrix element is obtained by A0,0
𝜇 (Γ𝑘 , ®𝑞)√
𝑐0 (®0)𝑐0 ( ®𝑞)

. The coefficients 𝑐𝑖 ( ®𝑝)

and A𝑖, 𝑗
𝜇 are determined by simultaneous fits to two- and three-point functions at multiple 𝑡𝑠. The

sums of Eqs. (7) and (8) are truncated at either 𝑁𝑠𝑡 = 2 (two-state fits) or 𝑁𝑠𝑡 = 3 (three-state fits).
For the lowest non-zero momentum transfer, we perform combined fits to matrix elements of the
axial current including both spatial and temporal components, to better constrain the excited state
energies in the fits. For each fit we vary i) the minimum value of 𝑡𝑠 included in the fit range of the
two-point function (𝑡2pt, min), ii) the minimum value of 𝑡𝑠 included in the fit range of the three-point
function (𝑡3pt, min), iii) the number of insertion time slices kept near the source (𝑡ins, 0) and sink
(𝑡ins, S), and iv) for three-state fits, we include either only the terms A0,0

𝜇 , A1,0
𝜇 , A0,1

𝜇 , A1,1
𝜇 , A2,0

𝜇 ,
A0,2

𝜇 (𝑁𝑂 = 6), or all terms of the three-state fit, i.e. including A2,1
𝜇 , A1,2

𝜇 , A2,2
𝜇 (𝑁𝑂 = 9).

The results from different fit ranges are combined using the Akaike Information Criterion
(AIC). To each fit 𝑖 we assign a weight

log(𝑤𝑖) = −
𝜒2
𝑖

2
+ 𝑁dof,𝑖 , (9)

where 𝑁dof = 𝑁data−𝑁params is the number of degrees of freedom [14, 15]. The model averaged value
of an observable O is then given by ⟨O⟩ = ∑

𝑖 Ō𝑖𝑝𝑖 and its error squared by
∑

𝑖 (𝜎2
𝑖
+ Ō2

𝑖
)𝑝𝑖 − ⟨𝑂⟩2,

where 𝑝𝑖 = 𝑤𝑖/
∑

𝑗 𝑤 𝑗 and Ō𝑖 and 𝜎𝑖 are the central value and error from fit 𝑖.
In Fig. 1 we provide an example analysis for the intermediate lattice spacing, with results for

all ensembles given in Ref. [9]. For visualization purposes, we construct the ratio,

𝑅′
𝜇 (Γ𝑘 ; ®𝑞; 𝑡𝑠, 𝑡ins) =

𝐶𝜇 (Γ𝑘 , ®𝑞; 𝑡𝑠, 𝑡ins)√︃
𝐶 (Γ0, ®0; 𝑡𝑠)𝐶 (Γ0, ®𝑞; 𝑡𝑠)

, (10)

which at large time-separations 𝑡𝑠 − 𝑡ins ≫ and 𝑡𝑠 ≫ yields the ground-state matrix element. Both
two- and three-state fits yield consistent results, with the most probable fits having probabilities
between 10% and 50%.
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Figure 1: The ratio of Eq. (10) for the ensemble cC211.060.80 and for three cases, namely that yielding
𝑔𝐴 (top), that yielding a linear combination of the axial and induced pseudoscalar form factor at the first
non-zero momentum transfer (middle) and that yielding the pseudoscalar form factor at the first non-zero
momentum transfer (bottom). In the left column we plot the ratio versus the insertion time, in the middle we
plot for 𝑡ins = 𝑡𝑠/2 and in the right column we show the asymptotic value of the two- (blue) or three- (red)
state fits versus the fit probability. In the left and middle columns, the curves correspond to the fit results
which have the largest probability.

5. Results for axial and pseudoscalar form factors

We analyze the 𝑄2-dependence of the axial form factor using both dipole and z-expansion
parameterizations. The dipole Ansatz is given by 𝐺 (𝑄2) = 𝑔

(1+𝑄2

𝑚2 )2
, with the axial radius given by

⟨𝑟2⟩ = 12/𝑚2.

The z-expansion is given as 𝐺 (𝑄2) = ∑𝑘max
𝑘=0 𝑎𝑘 𝑧𝑘 (𝑄2), where 𝑧(𝑄2) =

√
𝑡cut+𝑄2−√𝑡cut+𝑡0√
𝑡cut+𝑄2+√𝑡cut+𝑡0

, with

𝑡cut = (3𝑚𝜋)2 and 𝑡0 = 0. The coefficients 𝑎𝑘 are constrained using Gaussian priors centered at
zero with width that falls like 1/𝑘 to ensure smooth convergence at large 𝑄2.

For both parameterizations, we account for cut-off effects by allowing a linear 𝑎2 dependence
in the parameters. The analysis is performed in two ways, namely fitting the 𝑄2-dependence for
each ensemble separately followed by continuum extrapolation of the parameters (two-step), or
fitting all ensembles simultaneously (one-step). Both approaches yield consistent results. We find

5
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Figure 2: Left: The axial form factor 𝐺𝐴(𝑄2) determined from two-state fits (red band) with systematic
uncertainty from the difference with three-state fits (yellow band). Results at finite lattice spacing shown in
blue, orange and green bands. Right: Results for the axial charge 𝑔𝐴 and radius ⟨𝑟2

𝐴
⟩ obtained using different

analysis approaches.

convergence of the z-expansion at 𝑘max = 3 and verify stability with respect to the prior width and
maximum 𝑄2 included in the fits. The analysis is performed separately for the matrix elements
extracted using two- and three-state fits. The two-state fits allow analysis up to 𝑄2 = 1 GeV2,
while three-state fits become unstable beyond 𝑄2 ≃ 0.5 GeV2. The results from both analyses are
consistent within the range where three-state fits are stable. The resulting form axial factor using a
two-state fit analysis is shown in the left panel of Fig. 2.

Our final results use the z-expansion fits to the two-state data as central values, with a systematic
error taken as the difference between the central values when using two- or three-state fits. The
values for 𝑔𝐴 and ⟨𝑟2

𝐴
⟩ using this approach are in the right panel of Fig. 2, where the direct

extraction is also shown, i.e. by computing the radius from 𝑄2 = 0 and the lowest non-zero 𝑄2.
The consistency among these different approaches, particularly between the direct approach and
z-expansion which uses data at all 𝑄2, demonstrates the robustness of our analysis.

The induced pseudoscalar 𝐺𝑃 (𝑄2) and pseudoscalar 𝐺5(𝑄2) form factors exhibit a pion pole
at 𝑄2 = −𝑚2

𝜋 . For 𝐺5(𝑄2) we analyze the scaled quantity, �̃�5(𝑄2) =
4𝑚𝑁

𝑚2
𝜋
𝑚𝑞𝐺5(𝑄2), where

the combination 𝑚𝑞𝐺5(𝑄2) is scale-independent and renormalizes with 𝑍𝑆/𝑍𝑃. The scaling by
1/𝑚2

𝜋 accounts for slight variations in the simulated pion masses, while 𝑚𝑁 makes the combination
dimensionless. We perform a combined fit of both form factors using a third-order z-expansion after
factoring out the pion pole. Since the pion pole dominance relation is satisfied at the continuum
limit, we enforce the value of the pion-nucleon coupling constant 𝑔𝜋𝑁𝑁 extracted from both form
factors to be the same. The resulting form factors are shown in Fig. 3, where the inner panels
highlight the behavior near the pion pole.

6. PCAC and pion pole dominance

We examine the PCAC and PPD relations by constructing the ratios

𝑟PCAC(𝑄2) =
𝑚𝑞

𝑚𝑁
𝐺5(𝑄2) + 𝑄2

4𝑚2
𝑁

𝐺𝑃 (𝑄2)

𝐺𝐴(𝑄2)
and 𝑟PPD(𝑄2) = 𝑚2

𝜋 +𝑄2

4𝑚2
𝑁

𝐺𝑃 (𝑄2)
𝐺𝐴(𝑄2)

. (11)

The PCAC relation requires 𝑟PCAC = 1 for all 𝑄2, while PPD predicts 𝑟PPD = 1 near the pion pole.

6
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Figure 3: Left: The induced pseudoscalar form factor 𝐺𝑃 (𝑄2) and right: the pseudoscalar form factor
�̃�5 (𝑄2) at finite lattice spacing (blue, orange and green bands) and in the continuum limit (red band).
Results are obtained using two-state fits and z-expansion of order 3. The inner panels show the region near
the pion pole enlarged.
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Figure 4: Left: Ratio testing the PCAC relation. Right: Ratio testing pion pole dominance. Results at finite
lattice spacing shown in blue, orange and green bands and in the continuum limit with red band. The yellow
band includes systematic uncertainties from excited states.

In the twisted mass formulation at finite lattice spacing, we observe sizable cut-off effects in
both ratios. These arise from O(𝑎2) effects in the pion mass that enter through the pion pole in
𝐺𝑃 (𝑄2) and 𝐺5(𝑄2). The pion pole mass obtained using valence Osterwalder-Seiler quarks in
the mixed action formulation shows significant cut-off effects, much larger than the mass splitting
between the unitary charged and neutral pion. However, as shown in Fig. 4, both relations are
restored in the continuum limit where the pion pole mass agrees with the physical pion mass. Thus,
at the continuum limit, our results reproduce these fundamental relations that follow from chiral
symmetry.

7. Summary

We have presented a lattice QCD calculation of the nucleon isovector axial, induced pseu-
doscalar, and pseudoscalar form factors using three ensembles simulated with quark masses that
reproduce the physical pion mass. The use of ensembles simulated solely at the physical point
eliminates systematic uncertainties from chiral extrapolation. The three ensembles span lattice
spacings from 0.08 fm to 0.057 fm with approximately equal physical volumes, enabling a con-

7
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trolled continuum extrapolation. Our analysis shows that both the PCAC relation and pion pole
dominance are satisfied in the continuum limit, despite sizable cut-off effects at finite lattice spacing
arising from the pion pole in the twisted mass formulation.

Through a careful analysis of excited states and model averaging of multiple fit variations,
we obtain, in the continuum limit, the axial charge (𝑔𝐴), axial radius (⟨𝑟2

𝐴
⟩), induced pseudoscalar

coupling (𝑔∗
𝑃

), and pion-nucleon coupling constant (𝑔𝜋𝑁𝑁 ),

𝑔𝐴 = 1.245(28) (14), ⟨𝑟2
𝐴⟩ = 0.339(48) (06) fm2,

𝑔∗𝑃 = 8.99(39) (49), and 𝑔𝜋𝑁𝑁 = 13.25(67) (69),
(12)

where the first error is statistical from the model average of two-state fits and the second is systematic
from excited states. The analysis presented here will be further improved by including a fourth
ensemble with lattice spacing 𝑎 = 0.049 fm and approximately same physical volume as the three
ensembles used here, with lattice volume 1123 × 224. This will provide an additional point in the
continuum extrapolation at an even finer lattice spacing, helping to further constrain cut-off effects
and improve the precision of our final results. The analysis of this ensemble is ongoing, with first
results for charges presented in Ref. [16].
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