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1. Introduction

The internal structure of nucleons has always been an important topic in both experimental and
theoretical explorations. There are many aspects of the explorations, for example, the form factors,
the general parton distributions (GPDs), the transverse-momentum-dependent parton distributions
(TMDPDFs). TMDPDFs describe the parton distribution of colinear momentum fraction 𝑥 with
transversal momentum 𝑘T, are one of the important parts of so-called nucleon tomograph [1].

At leading-twist accuracy, quark TMDPDFs can be decomposed into eight correlations accord-
ing to polarizations of nucleon and parton. The Boer-Mulders TMDPDF [2] reflects the distribution
of transversely polarized quarks in unpoarized nucleon or pion, which is at the center of our research
interests.

There are some investigations on TMDPDFs using lattice calculation [3–5]. However, all
these works only calculate the moments of TMDPDFs. Making use of large momentum effective
theory (LaMET), the extraction of TMDPDFs becomes direct and practical. The LaMET provides a
systematic method to calculate both TMDPDFs and colinear PDFs on lattice. It relates the physical
TMDPDFs defined on light cone to equal-time quasi correlations, which can be calculated using
lattice QCD [6]. One example of application of LaMET to lattice calculations TMDPDFs, is the
nucleon unpolarized TMDPDF in [7].

In our reseach, we calculate the Boer-Mulders TMDPDF in lattice QCD on ensemble X650
generated by CLS collaboration and adopt the framework of LaMET to analyze our results. We
start from the definition of the leading-twist TMDPDF matrix element of the proton on light-cone
coordinate system [8],

Φ̃0(𝑥, 𝑃+, 𝑏⊥, 𝜇, 𝜁 , Γ) =
∫

𝑑𝑏−

4𝜋
𝑒−𝑖𝑏

− (𝑥𝑃+ ) ⟨𝑃, 𝑆 | [�̄�(𝑏𝜇)ΓW⊏ (𝑏⊥, 0)𝜓(0)]𝜇,𝜁 |𝑃, 𝑆⟩, (1)

where the superscript 0 denotes that the matrix element is unrenormalized. |𝑃, 𝑆⟩ denotes nucleon
with spin 𝑆 and momentum 𝑃 along the 𝑧-direction, 𝑥 is the momentum fraction carried by the
quark, 𝑏⊥ is the Fourier conjugate of parton transverse momentum 𝑘⊥, 𝜇 is the renormalization
scale in the MS scheme, 𝜁 is the rapidity scale, W⊏ (𝑏⊥, 0) is the staple-shaped gauge link along
the light-cone direction ensuring gauge invariance of the non-local quark bilinear correlator. In the
following part of this article, we would omit 𝜇 and 𝜁 in Eq. (1). Γ is Dirac matrix inserted in the
matrix element,

Γ ∈ {𝛾+, 𝛾+𝛾5, 𝑖𝜎
𝛼+𝛾5}. (2)

Φ̃0 can be decomposed in eight TMDPDFs. The Boer-Mulders function is one of the terms in the
decomposition of the TMDPDF matrix element. We only show the decomposition from which the
Boer-Mulders function appears,

Φ̃0 = 𝑆𝛼𝑇 ℎ̃1 − 𝑖𝑆𝐿𝑏𝛼⊥𝑀ℎ̃⊥1𝐿 + 𝑖𝜖
𝛼𝜌𝑏⊥𝜌𝑀ℎ̃

⊥
1 + 1

2
𝑏2
⊥𝑀

2(1
2
𝑔
𝛼𝜌

𝑇
+
𝑏𝛼⊥𝑏

𝛽
⊥

𝑏2
⊥

)𝑆⊥𝜌 ℎ̃⊥1𝑇 , (3)

with Γ = 𝑖𝜎𝛼+𝛾5. Among the four terms, Boer-Mulders TMDPDF is denoted as ℎ̃⊥1 . In the case of
unpolarized nucleon external state 𝑆 = 0, only ℎ̃⊥1 leaves. This gives a convenience to extract out
Boer-Mulders TMDPDF.
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On the aspect of lattice QCD, what we need to calculate is an unsubstracted bare quasi-TMD
matrix element defined as,

Φ̃0(𝑧, 𝑃, 𝑏⊥, 𝐿, 𝑎) = ⟨𝑃, 𝑆 |�̂�⊏ (𝑧, 𝐿, 𝑏⊥) |𝑃, 𝑆⟩,
�̂�⊏ (𝑧, 𝐿, 𝑏⊥) = �̄�(𝑏𝜇)𝑖𝜎𝑦𝑡𝛾5W⊏ (𝑏, 𝐿, 𝑧)𝜓(0), (4)

where the staple-shaped Wilson gauge link W⊏ is lied along 𝑧 direction and transverse 𝑥 direction
in Euclidean spacetime. W⊏ is defined as

W⊏ (𝑏⊥, 𝐿, 𝑧) = 𝑈†
𝑧 ((𝑧 + 𝐿)�̂�𝑧 + 𝑏⊥�̂�⊥, 𝑏⊥�̂�⊥) ×𝑈⊥((𝑧 + 𝐿)�̂�𝑧 + 𝑏⊥�̂�⊥, (𝑧 + 𝐿)�̂�𝑧)

×𝑈𝑧 ((𝑧 + 𝐿)�̂�𝑧 , 𝑧�̂�𝑧),

𝑈𝑖 (𝜂 + 𝑠�̂�𝑖 , 𝜂) = Pexp
[
− 𝑖𝑔

∫ 𝑠

0
𝑑𝑡 �̂�𝑖 · 𝐴(𝜂𝜇 + 𝑡�̂�𝜇𝑖 )

] (5)

which would take infinite limitat 𝐿 → +∞ in renormalization. �̂�𝑧 , �̂�⊥ are unit vectors along the
spatial 𝑧 and transverse directions, respectively. The unsubtracted bare matrix element (4) contains
logarithmic ultraviolet (UV) divergences, linear divergence coming from self-energy corrections to
the gauge link [9, 10], as well as the pinch-pole singularity [11, 12], which is related to the heavy
quark effective potential term.

After renormalization, we then transform Φ̃0(𝑧, 𝑃, 𝑏⊥, 𝐿, 𝑎) from coordinate space into mo-
mentum space quasi-TMD matrix element Φ̃(𝑥, 𝑃, 𝑏⊥, 𝜇, 𝜁) by

Φ̃(𝑥, 𝑏⊥, 𝑃, 𝜇, 𝑎) = lim
𝐿→∞

∫
𝑑𝑧

2𝜋
𝑒−𝑖𝑧 (𝑥𝑃

𝑧 ) Φ̃0(𝑧, 𝑏⊥, 𝑃, 𝐿, 𝑎)√︁
𝑍𝐸 (2𝐿 + 𝑧, 𝑏⊥, 𝑎)𝑍𝑂 (𝑎, 𝜇, Γ)

, (6)

where 𝑍𝐸 (𝑟 = 2𝐿 + 𝑧, 𝑏⊥, 𝑎) is the rectangular Wilson loop with side length equal to 𝑏⊥ and 2𝐿 + 𝑧.
𝑍𝐸 is obtained by calculating the expectation value of closed rectangular gauge loop. 𝑍𝑂 (𝑎, 𝜇, Γ)
is a logarithmic divergence factor depending on some Dirac matrix Γ and used to remove UV
divergence and transfer from lattice shceme to MS scheme. 𝑍𝑂 is expressed as

𝑍𝑂 (𝑎, 𝜇, Γ) = lim
𝐿→∞

Φ̃0(𝑧, 𝑏⊥, 0, 𝐿, 𝑎)√︁
𝑍𝐸 (2𝐿 + 𝑧, 𝑏⊥, 𝑎) ℎ̃MS

Γ
(𝑧, 𝑏⊥, 𝜇)

, (7)

the range of 𝑧 and 𝑏⊥ are chosen in a perturbative range. ℎ̃MS
Γ

(𝑧, 𝑏⊥, 𝜇) is a perturbative matrix
element of zero momentum up to one-loop order in MS scheme [13]

ℎ̃MS
Γ (𝑧, 𝑏⊥, 𝜇) = 1 + 𝛼𝑠 (𝜇)𝐶𝐹

2𝜋

[1
2
+ 3

2
ln(

𝜇2(𝑏2
⊥ + 𝑧2)𝑒𝛾𝐸

4
) − 2

𝑧

𝑏⊥
arctan

𝑧

𝑏⊥
)
]
, (8)

After renormalization and Fourier transform, we can extract out Boer-Mulders TMDPDF by Eq. (3).
The LaMET allows us to related the quasi-TMDPDF 𝑓 to physical TMDPDF 𝑓 defined on light
cone by a matching formular as,

𝑓 (𝑥, 𝑏⊥, 𝜁𝑧 , 𝜇)
√︁
𝑆𝐼 (𝑏⊥, 𝜇) = 𝐻Γ

( 𝜁𝑧
𝜇2

)
e

1
2 ln

(
𝜁𝑧/𝜁

)
𝐾 (𝑏⊥,𝜇)

𝑓 (𝑥, 𝑏⊥, 𝜁 , 𝜇) + O(
Λ2

QCD

𝜁𝑧
,
𝑀2

𝑃2
𝑧

,
1

𝑏2
⊥𝜁𝑧

),

(9)
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Ensemble 𝑎(fm) 𝐿3 × 𝑇 𝑚𝜋(MeV) 𝑚𝜋𝐿 𝑁conf.

X650 0.098 483 × 48 338 8.1 1250

Table 1: The simulation setup, including lattice spacing 𝑎, lattice size 𝐿3 × 𝑇 , the pion masses and the
number of configurations.

where 𝑆𝐼 denotes the intrinsic soft function [14–16], 𝐾 is the Collins-Soper kernel [17], 𝜇 is the
renormalization scale and 𝜁 is the rapidity scale. 𝜁𝑧 = (2𝑥𝑃𝑧)2. The O term denotes power
corrections of the factorization. 𝐻Γ = eℎ is the hard kernel function at NLO, with

ℎ (1) =
𝛼𝑠𝐶𝐹

2𝜋

(
− 2 + 𝜋

2

12
+ ln

𝜁

𝜇2 − 1
2

ln2 𝜁

𝜇2

)
. (10)

2. Lattice calculation settings

In this project, we use lattice ensemble of X650 generated by the CLS collaboration with lattice
spacing 𝑎 = 0.098 fm and pion mass equal to 338 MeV. In order to improve the signal-to-noise ratio
of calculations, the following steps have been done: (1) we employ the momentum smearing source
technique [18] to improve calculations with high-momentum nucleon states. (2) we apply HYP
smearing to further improve the signal. (3) we also use the sequential source method with fixed
sink to calculate the quark three-point correlator as illustrated in Fig. 1. (4) we adopt multi-source
in our calculation. We put two sources on temporal direction and for spatial shell, we put 2, 2, 1
source(s) respectively on 𝑥, 𝑦, 𝑧 axis. We calculate several source-sink separations with hundreds
to thousands of measurements among 1250 gauge configurations. Details of the lattice setup and
parameters are collected in Table 1.

L

z
b

t

z

⊥

Figure 1: Illustration of three-point function. The temporal direction is from source to sink. 𝑆𝑞 denotes
quark propagators. The staple-shaped gauge link is put at 𝑡. The source-sink seperations are set to range
from 6𝑎 to 10𝑎.

We set the momenta carried by nucleon external state to be 𝑃𝑧 = {1.32, 1.58, 1.84, 2.11} GeV.
We also calculate the zero-momentum bare matrix elements, which are used in the renormalization
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factor at short distance. We choose temperal source-sink separations of the following: 𝑡sep =

{6, 7, 8, 9, 10}𝑎. We calculate unsubtracted bare matrix element with 𝑏⊥ in Eq. (4) up to 3𝑎. Two-
point function 𝐶2pt(𝑃𝑧 , 𝑡sep) and three-point function 𝐶3pt(𝑃𝑧 , 𝑡sep, 𝑡) are calculated to extract out
unsubtracted bare matrix element in Eq. (4):

𝐶2pt(𝑃𝑧 , 𝑡𝑠𝑒𝑝) = 𝑐0𝑒
−𝐸0𝑡𝑠𝑒𝑝 (1 + 𝑐1𝑒

−Δ𝐸𝑡𝑠𝑒𝑝 ), (11)
𝐶3pt(𝑃𝑧 , 𝑡sep, 𝑡) = 𝑐0𝑒

−𝐸0𝑡𝑠𝑒𝑝 (𝑐2 + 𝑐3(𝑒−Δ𝐸𝑡 + 𝑒−Δ𝐸 (𝑡sep−𝑡 ) ) + 𝑐4𝑒
−Δ𝐸𝑡sep), (12)

where 𝐸0 denotes the ground state energy of nucleon and is dependent on 𝑃𝑧 . Δ𝐸 is the energy
difference between the first excited state and ground state. The staple-shaped gauge link is inserted
in time slices 𝑡.

3. Lattice results

After calculating two- and three-point functions, the first thing that we check is the dispersion
relation of ground state energy 𝐸0(𝑃𝑧). Considering the discrete effect of lattice, the dispersion
relation of ground state is modified to be

𝐸0(𝑃𝑧) =
√︁
𝑚2 + 𝑐1(𝑃𝑧)2 + 𝑐2(𝑃𝑧)4𝑎2. (13)

which should return to the continuous dispersion relation as lattice spacing 𝑎 → 0. By fitting
two-point function data of various momenta using Eq. (11) we get ground state energies, and by
Eq. (13) we can check whether discrete dispersion relation is satisfied.

0.0 0.5 1.0 1.5 2.0
Pz/GeV

1.2

1.4

1.6

1.8

2.0

2.2

2.4

E 0
/G

eV

m = 338MeV

Figure 2: Illustration of the discrete dispersion relation of all 𝑃𝑧’s. This fitting works well even for largest
𝑃𝑧 . The fitted nucleon mass is 1.087(6) GeV. The fitted parameters 𝑐1 = 1.073(40), and 𝑐2 = −0.094(50).

We plot the dispersion relations in FIG. 2. It shows that the discrete dispersion relation is
satisfied well. And the fitted results of dimensionless parameters 𝑐1 and 𝑐2 are consistent with our
expection that 𝑐1 ≈ 1, 𝑐2 ≈ 0. The static mass of nucleon is 1.087(6) GeV. The fitted parameters
𝑐1 = 1.073(40), and 𝑐2 = −0.094(50).
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We then adopt joint fitting of two-point function and ratio of 3𝑝𝑡/2𝑝𝑡 to get parameters 𝑐0 ∼ 𝑐4

as well as 𝐸0 and Δ𝐸 in Eq. (11) and Eq. (12). We denote ratio of 3𝑝𝑡/2𝑝𝑡 as 𝑅(𝑃𝑧 , 𝑡, 𝑡sep),

𝑅(𝑃𝑧 , 𝑡, 𝑡sep) =
𝐶3pt(𝑃𝑧 , 𝑡sep, 𝑡)
𝐶2pt(𝑃𝑧 , 𝑡𝑠𝑒𝑝)

=
𝑐2 + 𝑐3(𝑒−Δ𝐸𝑡 + 𝑒−Δ𝐸 (𝑡sep−𝑡 ) ) + 𝑐4𝑒

−Δ𝐸𝑡sep

1 + 𝑐1𝑒−Δ𝐸𝑡𝑠𝑒𝑝
(14)

where it can be checked that the parameter 𝑐2 = ⟨𝑃, 𝑆 |�̂�⊏ (𝑧, 𝐿, 𝑏⊥) |𝑃, 𝑆⟩/2𝐸0(𝑃𝑧). 𝑐2 is dependent
on (𝑧, 𝐿, 𝑏⊥). Bootstrap resampling is applied in our analysis to obtain correlations in the dataset
before joint fitting. We exclude the pionts at 𝑡 = 0 and 𝑡 = 𝑡sep in order to reduce the contamination
effects from excited states. Considering the bad signal-to-noise ratio of larger 𝑡sep, for 𝑃𝑧 =

{0, 1.32, 1.58} GeV we use 𝑡sep = {6, 7, 8, 9}𝑎; for 𝑃𝑧 = {1.84, 2.11} GeV we use 𝑡sep = {6, 7, 8}𝑎.
We use the Wilson loop and logrithmic factor 𝑍𝑂 in the integrated part of Eq. (6) to fulfill

the renormalization. After that, we get the subtracted quasi-TMDPDF matrix element denoted
as Φ̃(𝑧, 𝑏⊥, 𝑃𝑧 , 𝐿, 𝑎). For fixed (𝑧, 𝑏⊥, 𝑃𝑧), we observe a convergence tendency with 𝐿 varying.
Considering the signal-to-noise ratio decreases with 𝐿 increasing, we find that the convergence
shows itself the best in the interval [6, 10]𝑎. In Fig. 3, we take 𝑃𝑧 = 1.32 GeV and 1.84 GeV and
𝑏⊥ = 1𝑎 and 2𝑎 as example to show the convergence trend of large 𝐿. The convergence indicates
the existence of infinite 𝐿 limit of Φ̃(𝑧, 𝑏⊥, 𝑃𝑧 , 𝐿, 𝑎).
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Figure 3: Illustration of the subtracted quasi-TMDPDF Φ̃(𝑧, 𝑏⊥, 𝑃𝑧 , 𝐿, 𝑎). The upper panel is plotted for
𝑃𝑧 = 1.32 GeV, 1.58 GeV, 1.84 GeV with 𝑏⊥ = 1𝑎, 2𝑎; the lower panel is for 𝑃𝑧 = 1.84 GeV with 𝑏⊥ = 1𝑎, 2𝑎.
The convergence with 𝐿 increasing has shown in the plots, which indicates existence of infinite limit of 𝐿.

For 𝐿 larger than 10𝑎, the errors become so large that all 𝐿 data is consistent in one sigma. In
practice, regarding both the convergence and magnitude of error, we consider to use data of 𝐿 = 8𝑎
as an estimate of infinite 𝐿. We then step to the Fourier transform by Eq. (6). Before doing Fourier
transform, we use extrapolated values instead of original Φ̃(𝑧, 𝑏⊥, 𝑃𝑧 , 𝐿, 𝑎) in the range of large
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𝜆 = 𝑧𝑃𝑧 . By this replacement we try to get rid of unphysical oscilations in quasi-TMDPDFs. The
extrpolation is done by the form as [19],

Φ̃extra(𝜆) =
[ 𝑚1
(−𝑖𝜆)𝑛1

+ 𝑒𝑖𝜆 𝑚2
(𝑖𝜆)𝑛2

]
𝑒−𝜆/𝜆0 , (15)

where parameters 𝑚1,2, 𝑛1,2 and 𝜆0 are by default dependent on 𝑏⊥. We fit separately each 𝑏⊥
making use of Eq. (15). After that we Fourier transform Φ(𝑧, 𝑏⊥, 𝑃𝑧 , 𝐿 = 8𝑎, 𝑎) from coordinate
space to momentum space by Eq. (6). We get the quasi-Boer-Mulders TMDPDF ℎ̃⊥1 (𝑥, 𝑏⊥, 𝑃

𝑧 , 𝑎)
according to the decomposition shown in Eq. (3).

The matching of quasi-TMDPDF ℎ̃⊥1 (𝑥, 𝑏⊥, 𝑃
𝑧 , 𝑎) to physical TMDPDF ℎ⊥1 (𝑥, 𝑏⊥, 𝑃

𝑧 , 𝑎) done
by Eq. (9) use lattice calculated intrinsic soft function 𝑆𝐼 and Collins-Soper kernel 𝐾 (𝑏⊥, 𝜇) on
ensemble X650 [20]. The method of error-propagation is used to obtain error of ℎ⊥1 (𝑥, 𝑏⊥, 𝑃

𝑧 , 𝑎).
In FIG. 4, we show priliminarily results of ℎ⊥1 (𝑥, 𝑏⊥, 𝑃

𝑧 , 𝑎) for 𝑏 = 1 ∼ 3𝑎, with all momenta
plotted together. We see a convergent trend of various 𝑃𝑧 , which gives a trend that large momentum
extrapolation can be implemented to get rid of momentum dependence and get a final Boer-Mulders
TMDPDF defined on light cone. Note that the results at small 𝑥 is unreliable with exploring errors.
For fixed 𝑥, it shows a decaying trend with 𝑏⊥ getting larger. This suggests that the Boer-Mulders
function might receive smaller higher-twist contributions.
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Figure 4: Illustration of the subtracted physical Boer-Mulders TMDPDF ℎ⊥1 (𝑧, 𝑏⊥, 𝑃
𝑧 , 𝐿, 𝑎) for 𝑏⊥ =

1𝑎, 2𝑎, 3𝑎. With 𝑃𝑧 getting larger, ℎ⊥1 (𝑥, 𝑏⊥, 𝑃
𝑧 , 𝑎) is getting convergent.

4. Summary

In this proceeding, we introduce the theoretical framework of lattice calculation on TMDPDF,
the LaMET is used as the tool to extract physically defined Boer-Mulders TMDPDF. We show the
settings of lattice calculations on the momenta and source-sink separations and how we improve
the signal-to-noise ratio. Combined fit of two- and three-point function to obtain the quasi-matrix
elements is used. We do the renormalization and show the convergence of large 𝐿. Fourier
transformation and matching are done to get physical TMDPDF.

We will do a more detailed analysis to get more accurate results. We will apply resumma-
tion method using NNLO results of Eq. (8) and Eq. (10). Finally, we will do large momentum
extrapolation by fitting and analyze the 𝑏⊥ dependence of ℎ⊥1 (𝑥, 𝑏⊥, 𝑃

𝑧 , 𝑎).
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