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In this study, we explore the renormalization of a comprehensive set of gauge-invariant gluon
nonlocal operators on the lattice. We calculate the renormalization factors for these operators
in the modified Minimal Subtraction (MS) scheme up to one-loop, using both dimensional and
lattice regularizations in the Wilson gluon action. To facilitate a non-perturbative renormalization
approach, we examine an appropriate version of the modified regularization-invariant (RI′) scheme
and determine the conversion factors from this scheme to MS. As an integral part of this procedure,
by employing symmetry arguments on the lattice, we identify the mixing pattern of these operators
under renormalization.
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1. Introduction

Quark Parton Distribution Functions (PDFs) have been widely studied, but research on gluon
PDFs has been more limited. Nonetheless, gluons play a crucial role in understanding key physical
phenomena, such as the proton’s spin [1–3]. Accurate calculations of gluon-dependent quantities
are essential for processes like Higgs boson production, heavy quarkonium, and jet production
[4–7]. Moreover, gluon PDFs dominate over quark PDFs in the small-𝑥 region, as observed in
phenomenological studies [8]. Therefore, a robust framework for first-principles calculations of
gluon PDFs using lattice QCD is necessary to complement experimental research.

Lattice QCD methods developed to extract the x-dependence of quark distributions are also
applied to gluon PDFs. These methods include the study of quasi-PDFs [9–12] and pseudo-ITDs
[13–15], where a thorough understanding of their nonperturbative renormalization is essential.
Lattice studies on quark quasi-PDFs [16] reveal both linear and logarithmic divergences in the
Wilson-line operator matrix elements, as well as mixing among certain subsets of operators un-
der renormalization. The renormalization of gluon PDFs is expected to face similar challenges.
Recently, it has been demonstrated that different components of nonlocal gluon operators have non-
trivial renormalization patterns by employing the auxiliary field approach [17]. Additional relevant
studies can be found in Refs. [9, 18–21].

In these proceedings, we summarize the key points of the original paper [22], omitting technical
details; please refer to the paper for those. We present the one-loop renormalization factors for
gluon nonlocal Wilson-line operators in the MS scheme, analyze their symmetry properties and
mixing patterns, and provide conversion factors to the RI′ scheme.

2. Theoretical setup

2.1 Definition of nonlocal gluon operators

The nonlocal gluon operators in the fundamental representation are expressed as:

𝑂𝜇𝜈𝜌𝜎 (𝑥 + 𝑧𝜏, 𝑥) ≡ 2 Tr
(
𝐹𝜇𝜈 (𝑥 + 𝑧𝜏)𝑊 (𝑥 + 𝑧𝜏, 𝑥)𝐹𝜌𝜎 (𝑥)𝑊 (𝑥, 𝑥 + 𝑧𝜏)

)
(1)

Here, 𝐹𝜇𝜈 is the gluon field strength tensor, and 𝑊 (𝑥, 𝑥 + 𝑧𝜏) represents the straight Wilson line of
length 𝑧. It is expressed as the path-ordered (P) exponential of the gauge field 𝐴𝜇, given by:

𝑊 (𝑥, 𝑥 + 𝑧𝜏) ≡ P exp
[
𝑖𝑔

∫ 𝑧

0
𝐴𝜇 (𝑥 + 𝜁𝜏) 𝑑𝜁

]
(2)

Henceforth, without loss of generality, we consider the case where 𝑥 = 0, with the origin positioned
at one endpoint of the operator. Additionally, we set 𝜏 = 3, so that the Wilson line lies along the
𝑧-direction. Under this fixed choice, the antisymmetry of 𝐹𝜇𝜈 leads to 36 nonlocal gluon operators,
determined by all possible index combinations of 𝑂𝜇𝜈𝜌𝜎 .

Nonlocal gluon operators may generally mix under renormalization, with their mixing pattern
imposed by the symmetries of the theory. The relation between the bare and renormalized operators
is given by the renormalization mixing matrix 𝑍 , defined as:

𝑂𝑅
(𝑖) =

∑︁
𝑗

(
𝑍−1

)
𝑖 𝑗
𝑂 ( 𝑗 ) (3)
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where the indices 𝑖 and 𝑗 label the operators within a specific mixing set. The renormalization
factors depend on both the regularization scheme 𝑋 (such as dimensional regularization (DR) or
lattice regularization (LR)) and the renormalization scheme 𝑌 (such as MS or RI′). These factors
should be explicitly written as 𝑍𝑋,𝑌 , unless the context is unambiguous. To determine the mixing
matrix elements 𝑍𝑖 𝑗 on the lattice, we compute the MS renormalized Green’s functions in both
dimensional and lattice regularization.

2.2 Renormalization scheme

Renormalization factors can be calculated nonperturbatively on the lattice within a suitably
defined variant of the RI′ scheme, unlike the MS scheme whose definition is inherently perturbative.
The transition to the MS scheme is achieved using conversion factors between the two schemes.
These conversion factors can only be determined through perturbation theory and are typically
computed in DR rather than LR, as they are independent of the regularization scheme. They depend
on the Wilson line length and the components of the renormalization-scale four-vector in the RI′

scheme. Their definition is provided by:

CMS,RI′ ≡
(
𝑍LR,MS

)−1 (
𝑍LR,RI′

)
=

(
𝑍DR,MS

)−1 (
𝑍DR,RI′

)
(4)

Note that when mixing occurs among 𝑛 operators, CMS,RI′ are represented as an 𝑛 × 𝑛 matrix.

2.3 Lattice action

We consider a nonabelian gauge theory of 𝑆𝑈 (𝑁𝑐) group and 𝑁 𝑓 fermion multiplets, described
by the following action:

𝑆 =
2
𝑔2

0

∑︁
plaq.

Re Tr {1 −𝑈plaq.} + 𝑆𝐹 (5)

The first term represents the gluonic contribution, where𝑈plaq. corresponds to the Wilson plaquette.
The gluon field strength tensor 𝐹𝜇𝜈 is obtained through the standard clover discretization while the
Wilson line can be discretized on the lattice in a standard manner using gluon link variables. The
second term of Eq. 5 is the fermionic part of the action, 𝑆𝐹 , which contributes to the one-loop
calculation only through the gluon field renormalization factor. We employ the clover-improved
Wilson fermions [23]; however, adapting the results to other fermion actions at one-loop order is
straightforward.

3. Results

3.1 Symmetries

By studying the theory’s symmetries, we can determine potential operator mixing under
renormalization, as operators with the same transformations are typically susceptible to mixing.

Initially, we found that all nonlocal gluon operators that mix under renormalization will take
the form of Eq. (1), with potentially different Lorentz indices 𝜇, 𝜈, 𝜌, 𝜎. There is no mixing with
other operators, such as nonlocal gluon operators with alternative Wilson line paths, nonlocal
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fermion operators, higher-dimensional operators, or non-gauge invariant operators (see [22] for
further explanation).

The operators remain invariant under charge conjugation. Additionally, there are four "parity"
transformations, corresponding to reflections P1, P2, P3, and P4 across each of the four axes in
Euclidean space. Since some of these transformations change the sign of 𝑧, it is useful to change
the basis of the nonlocal gluon operators, taking into account the translation invariance of the
Lagrangian and the cyclic permutations of the trace in Eq. (1). Therefore, we define the following
plus/minus basis, where these operators are now eigenstates of the parity transformations:

𝑂±
𝜇𝜈𝜌𝜎 (𝑧, 0) =

1
2
(
𝑂𝜇𝜈𝜌𝜎 (𝑧, 0) ±𝑂𝜌𝜎𝜇𝜈 (𝑧, 0)

)
(6)

We also study the rotational symmetry in the three dimensions perpendicular to the fixed direction
of the Wilson line (rotational octahedral group. By combining our results from the parity trans-
formation and the rotational analysis, we categorize the 36 operators into 16 groups, as shown in
Table 1.

N. Operators N. Operators N. Operators

1
2

𝑂+
3131 +𝑂+

3232 +𝑂+
3434

𝑂+
1212 +𝑂+

1414 +𝑂+
2424

9
©«
𝑂+

3212 +𝑂+
3414

𝑂+
3121 +𝑂+

3424
𝑂+

3141 +𝑂+
3242

ª®®¬
13
14

𝑂+
3124 +𝑂+

3241 +𝑂+
3412

𝑂−
3124 +𝑂−

3241 +𝑂−
3412

3

4

(
2𝑂+

3434 −𝑂+
3131 −𝑂+

3232
𝑂+

3131 −𝑂+
3232

)
(

2𝑂+
1212 −𝑂+

1414 −𝑂+
2424

𝑂+
1414 −𝑂+

2424

) 10
©«
𝑂−

3212 +𝑂−
3414

𝑂−
3121 +𝑂−

3424
𝑂−

3141 +𝑂−
3242

ª®®¬
15

16

(
2𝑂+

3412 −𝑂+
3241 −𝑂+

3124
𝑂+

3124 −𝑂+
3241

)
(

2𝑂−
3412 −𝑂−

3241 −𝑂−
3124

𝑂−
3124 −𝑂−

3241

)
{5,6}

©«
𝑂−

3132
𝑂−

3431
𝑂−

3234

ª®®¬ ,
©«
𝑂−

4142
𝑂−

2421
𝑂−

1214

ª®®¬ 11
©«
𝑂+

3212 −𝑂+
3414

𝑂+
3121 −𝑂+

3424
𝑂+

3141 −𝑂+
3242

ª®®¬
{7,8}

©«
𝑂+

3132
𝑂+

3431
𝑂+

3234

ª®®¬ ,
©«
𝑂+

4142
𝑂+

2421
𝑂+

1214

ª®®¬ 12
©«
𝑂−

3212 −𝑂−
3414

𝑂−
3121 −𝑂−

3424
𝑂−

3141 −𝑂−
3242

ª®®¬
Table 1: Groups of operators classified based on parity transformations and rotational symmetry. Operators
in parentheses support 2- or 3-dimensional irreducible representations of the octahedral group.

Operators in pairs {1, 2}, {3, 4}, {5, 6}, and {7, 8} have the potential to mix under renormaliza-
tion because they transform in the same way under parity and rotations. On the other hand, we find
that operators in groups 9-16 cannot mix as they do not share the same transformation properties.
It is worth noting that groups containing doublets or triplets have identical renormalization and
mixing coefficients for each component within the multiplet.

We stress that all the conclusions drawn above, which rely solely on symmetry properties,
hold true even beyond perturbation theory. Therefore, by employing appropriate operators listed in
Table 1, one can eliminate mixing effects in numerical simulations.
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3.2 Perturbative Calculations

The one-particle-irreducible (1-PI) two-point bare amputated Green’s functions under consid-
eration are:

𝛿 (4) (𝑞 + 𝑞′) Λ𝑂 (𝑞, 𝑧) = ⟨𝐴𝑎
𝛼 (𝑞)

(∫
𝑑4𝑥 𝑂𝜇𝜈𝜌𝜎 (𝑥 + 𝑧𝜏, 𝑥)

)
𝐴𝑏
𝛽 (𝑞′)⟩amp (7)

Here, 𝐴𝑎
𝛼 (𝑞), 𝐴𝑏

𝛽
(𝑞′) are two external gluon fields, and𝑂𝜇𝜈𝜌𝜎 is the nonlocal gluon operator defined

in Eq. 1. Superscripts (subscripts) denote color (Lorentz) indices. To study the renormalization
of the nonlocal gluon operators, we evaluate these Green’s functions in both DR and LR. The
calculations are carried out in a generic gauge, with off-shell gluons, and with general Lorentz
indices for the external gluons and the operator.

We find that the renormalization function of the operators is diagonal when using the MS
renormalization condition and the one-loop results for the MS renormalized Green’s functions in
DR. This holds both in the original basis (𝑂𝜇𝜈𝜌𝜎) and in the basis provided in Table 1. In the latter,
the diagonal matrix 𝑍

DR,MS
𝑖 𝑗

is given by:

𝑍
DR,MS
𝑖 𝑗

= 𝛿𝑖 𝑗

[
1 + 𝑔2

16𝜖𝜋2

((
5
3
+ 𝜔𝑖

)
𝑁𝑐 −

2
3
𝑁 𝑓

)]
, 𝜔𝑖 =


0 for 𝑖 = 2, 4, 6, 8

1 for 𝑖 = 9-16

2 for 𝑖 = 1, 3, 5, 7

(8)

It is independent of the gauge parameter, as expected from gauge invariance in MS. Furthermore,
Eq. 8 does not depend on the length of the Wilson line (𝑧), since no dimensionless quantity involving
𝑧 can appear in the pole part. This is expected to hold at all orders in perturbation theory.

Note that the renormalization factor is identical operators which are members of the same
multiple of the octahedral group.

3.2.1 RI′ renormalization prescription

The renormalization conditions for Green’s functions in the RI′ scheme can be defined in
different ways, which may differ by finite terms. This is particularly relevant for operator mixing,
where it is advantageous to consider the smallest possible set of operators that can mix under
renormalization, as dictated by symmetries. In our case, this minimal set of nonlocal gluon operators
consists of the groups {1, 2}, {3, 4}, {5, 6}, and {7, 8}, as shown in Table 1. Importantly, this
choice must remain independent of the regularization method while accounting for any potential
additional finite or power-divergent mixing, such as that encountered in lattice regularization.

Thus, we consider four 2 × 2 mixing matrices, corresponding to the four pairs of mixing
operators, along with eight 1 × 1 matrices for operators that are multiplicatively renormalizable.
An exception is operator 13, whose bare Green’s function (Eq. 7) vanishes, preventing its renor-
malization conditions from being directly defined. To address this, additional calculations would
be necessary involving other Green’s functions, such as three-point Green’s functions. In total,
23 conditions are needed to determine the elements of the aforementioned matrices. This choice
provides a suitable RI′-like scheme useful for nonperturbative studies.

5
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3.3 Conversion factors

We studied the conversion factors between the MS and RI′ renormalization schemes for the
groups of nonlocal gluon operators presented in Table 1. They can be easily derived by applying the
renormalization conditions of the RI′ scheme on the calculated MS-renormalized Green’s functions.
The 2 × 2 conversion factors for the operator mixing pairs are denoted as CMS,RI′

𝑖, 𝑗
, where 𝑖 and 𝑗

represent the operators in the mixing pair. For the multiplicatively renormalizable operators, a
single index is used, as in CMS,RI′

𝑖
.

Due to the complexity and length of the conversion factors, rather than presenting the explicit
expressions that involve integrals of modified Bessel functions of the second kind over a Feynman
parameter, we present plots for the parameters commonly used in lattice simulations. Specifically,
we have used the parameters of the 𝑁 𝑓 = 2 + 1 + 1 ensemble of twisted-mass clover-improved
fermions described in Ref. [24]. In this lattice configuration, the Landau gauge is used (𝛽 = 1)
with a lattice spacing of 𝑎 = 0.0938 fm, and a lattice volume of 323 × 64 in lattice units. The
MS scale is fixed at 𝜇 = 2 GeV, while 𝑔2 = 3.47625. In lattice units, the renormalization scale
of RI′ is defined as 𝑎𝑞 =

(
2𝜋
𝐿
𝑛1,

2𝜋
𝐿
𝑛2,

2𝜋
𝐿
𝑛3,

2𝜋
𝑇

(
𝑛4 + 1

2

))
, where 𝑛𝑖 are integers. To ensure the

antiperiodic boundary conditions are satisfied for the fermion fields in the temporal direction, we
select isotropic spatial directions (𝑛1 = 𝑛2 = 𝑛3) when possible; further, we set a nonzero twist of
1/2 in the temporal component.

As an example, to illustrate the behavior of the conversion matrix elements, we plot the elements
for some of the plus-type operators (i.e., mixing pairs {1, 2}, {3, 4}, and {7, 8} and multiplicatively
renormalized operators 9,11, and 15) in Fig.1. Additionally, the conversion matrix elements for
some minus-type operators (i.e., mixing pairs {5, 6} and multiplicatively renormalized operators
10,12,14 and 16) are shown in Fig.2.

[{7,8}]1,1

[{7,8}]2,2

0 2 4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

2.0

2.5

z/a


M
S
,R
I'

(a) Diagonal elements of CMS,RI′
{7,8} .

[{7,8}]1,2

[{7,8}]2,1

0 2 4 6 8 10 12 14 16

0.00

0.05

0.10

0.15

z/a


M
S
,R
I'

(b) Nondiagonal elements of CMS,RI′
{7,8} .

[{15}]1,1

0 2 4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

2.0

2.5

z/a


M
S
,R
I'

(c) Conversion factor of CMS,RI′
{15} .

Figure 1: Elements of conversion matrices of the plus-type operators as a function of 𝑧/𝑎 with values
𝑛1 = 𝑛2 = 3, 𝑛3 = 0, and 𝑛4 = −1/2. Other plus-type mixing pairs and plus-type multiplicatively
renormalized operators have similar qualitative behavior.

The plots display only the real part of the conversion factors as a function of the Wilson line
length rescaled by the lattice spacing (i.e., 𝑧/𝑎). For the plus-type operators, the imaginary part is
exactly zero, as a result of the chosen renormalization conditions, while the imaginary part for the
minus-type operators is nearly zero, at most 10−5.

The conversion factors for the plus-type and minus-type operators are plotted only in the
positive direction of the Wilson line, specifically for positive values of 𝑧 up to half the lattice size.
A singularity is expected at 𝑧 = 0, where the nonlocal operator becomes a local composite operator
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with additional contact singularities. As a result, we exclude the point 𝑧/𝑎 = 0. Furthermore, we do
not plot negative values of 𝑧 for the conversion matrix elements, as they are symmetric with respect
to 𝑧 = 0 by definition and due to the chosen RI′ renormalization conditions.

The markers on the plots represent the values of the conversion factors at integer values of 𝑧/𝑎
within the range from 1 to 𝐿/2 = 16. The dashed lines connecting these markers indicate the values
of the conversion factors for arbitrary, noninteger values of 𝑧/𝑎. Note that the conversion factors
can grow significantly depending on the chosen numerical values of 𝑞. Therefore, it is essential to
select these values appropriately to avoid this and to ensure that the tree-level Green’s functions are
invertible for all integer values of 𝑧/𝑎 in the range 1 ≤ 𝑧/𝑎 < 𝐿/2.

[{5,6}]1,1

[{5,6}]2,2

0 2 4 6 8 10 12 14 16

-2

-1

0

1

2

3

4

5

z/a


M
S
,R
I'

(a) Diagonal elements of CMS,RI′
{5,6} .

[{5,6}]1,2

[{5,6}]2,1

0 2 4 6 8 10 12 14 16

-0.4

-0.2

0.0

0.2

0.4

z/a


M
S
,R
I'

(b) Nondiagonal elements of CMS,RI′
{5,6} .

[{16}]1,1

0 2 4 6 8 10 12 14 16

-2

-1

0

1

2

3

4

5

z/a


M
S
,R
I'

(c) Conversion factor of CMS,RI′
{16} .

Figure 2: Elements of conversion matrices of the minus-type operators as a function of 𝑧/𝑎. The values
𝑛2 = 𝑛3 = 3, 𝑛1 = 0, and 𝑛4 = 5 are employed for the pair {5, 6} while for operator 16 we have selected
𝑛1 = 𝑛2 = 0, 𝑛3 = 3, and 𝑛4 = 5. The rest of the multiplicatively renormalizable minus-type operators follow
the same format as operator 16.

3.4 Lattice Regularization

Using lattice regularization, we now evaluate the bare Green’s functions at one loop, as given
by Eq. (7). The extraction of divergences from lattice integrals involves several subtleties, making
this calculation significantly more complex than in DR. In addition to the nontrivial dependence
on 𝑧 in the expressions, an overall factor of 1/𝑎2 arises due to the presence of external gluons in
the Green’s functions. To eliminate this factor, we carefully extracted two powers of the external
momentum (𝑎𝑞). Furthermore, many diagrams have more complex tensorial structures compared
to the tree level. These involve integrals over Bessel functions that depend on the momentum of the
Green’s function.

From these calculations, we find that the renormalization factors of the nonlocal gluon operators
are in diagonal form at one-loop calculations. This is true in both the original basis (𝑂𝜇𝜈𝜌𝜎) and
the basis shown in Table 1, as in DR. Therefore, the nonlocal gluon operators under study at one
loop level in lattice theory are multiplicatively renormalized. In the basis of Table 1, the matrix
𝑍

LR,MS
𝑖 𝑗

can be expressed as:

𝑍
LR,MS
𝑖 𝑗

= 𝛿𝑖 𝑗

[
1 + 𝑔2

16𝜋2

{
2𝜋2

𝑁𝑐

+ 𝑁 𝑓

(
𝑒1 + 𝑒2 𝑐𝑆𝑊 + 𝑒3 𝑐

2
𝑆𝑊 + 2

3
log(𝑎2 �̄�2)

)
+ 𝑁𝑐

(
𝑒4 + 𝑒5

|𝑧 |
𝑎

− 5
3

log(𝑎2 �̄�2) −
(
𝑒6 + log(𝑎2 �̄�2)

)
𝜔𝑖

) }]
(9)
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Here, 𝜔𝑖 is defined by Eq. 8, and the coefficient values are 𝑒1 = −1.05739, 𝑒2 = 0.79694,
𝑒3 = −4.71269, 𝑒4 = −17.81504, 𝑒5 = −19.95484, and 𝑒6 = −8.37940. Furthermore, the above
equation is independent of the gauge parameter. The accuracy of the numerical loop integration is
found to be up to O(10−5), as indicated by the precision of the coefficients and the cancellation of
gauge dependence. Note that the 𝑐𝑆𝑊 term arises because, in the renormalized Green’s function,
one must account for the gluon field renormalization function.

As in the case of nonlocal fermion operators, there is a linear divergence that depends on
the length of the Wilson line, with its coefficient |𝑒5 | matching the corresponding divergent term
in the quark nonlocal operators for an arbitrary Wilson line shape [25]. This occurs because the
linear divergence arises solely from Wilson-line self-energy diagrams. There are also logarithmic
divergences as expected which arise from the endpoints and contact points of the Wilson lines.

4. Conclusion

First, based on the symmetries of the theory, we categorize the nonlocal gluon operators into
the groups shown in Table 1. We find that the operator pairs {1, 2}, {3, 4}, {5, 6}, {7, 8} mix
under renormalization, while the remaining operators, 9–16, are multiplicatively renormalizable.

We evaluated the renormalization factors in the MS scheme using both dimensional and lattice
regularization at the one-loop level. In the continuum, these factors are diagonal, consistent
with previous studies employing the auxiliary-field formulation [17, 18, 21]. On the lattice, the
renormalization factors also exhibit a diagonal form. According to Eq. 9, all the nonlocal gluon
operators under consideration undergo multiplicative renormalization. However, as indicated by
the symmetry properties of the theory, we anticipate that mixing among operator pairs will emerge
at higher orders. Furthermore, the conversion factors of the nonlocal gluon operators between the
MS renormalization scheme and the RI′ scheme are calculated, with the RI′ scheme being defined
as suitable for nonperturbative studies and compatible with the mixing pattern of the operators.

By providing insights into the renormalization of nonlocal gluon operators, we expect that the
results of this study will contribute significantly to the investigation of gluon PDFs through lattice
QCD.
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