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We determine the nucleon axial, scalar and tensor charges at the continuum limit by analyzing
three 𝑁 𝑓 = 2+1+1 twisted mass fermion ensembles with all quark masses tuned to approximately
their physical values. We include all contributions from valence and sea quarks. We use the
Akaike Information Criterion to evaluate systematic errors due to excited states and the continuum
extrapolation. For the nucleon isovector axial charge we find 𝑔𝑢−𝑑

𝐴
= 1.250(24), in agreement

with the experimental value. We compute the axial, tensor and scalar charges for each quark
flavor. The axial charge provides crucial information on the intrinsic spin carried by quark in
the nucleon and the the latter two provide input for experimental searches of physics beyond the
standard model. Moreover, we extract the nucleon 𝜎-terms and find 𝜎𝜋𝑁 = 41.9(8.1) MeV, for
the strange 𝜎𝑠 = 30(17) MeV and for the charm 𝜎𝑐 = 82(29) MeV. We also present preliminary
results on the isovector quantities using a fourth ensemble at smaller lattice spacing.
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1. Introduction

The nucleon axial, tensor, and scalar charges, along with the 𝜎-terms, are fundamental quan-
tities that provide insights into nucleon structure. The axial charge, 𝑔𝑢−𝑑

𝐴
, governs neutron beta

decay and plays a critical role in neutrinoless double-beta decay and tests of CKM matrix unitarity.
Flavor-diagonal axial charges, 𝑔 𝑓

𝐴
, describe the intrinsic spin, 1

2ΔΣ𝑞, carried by quarks in the nu-
cleon, as measured in deep inelastic scattering at facilities, such as Jefferson Lab and CERN, and
also targeted at the future Electron-Ion Collider (EIC).

The isovector tensor and scalar charges, 𝑔𝑢−𝑑
𝑇

and 𝑔𝑢−𝑑
𝑆

, are crucial for constraining beyond the
Standard Model (BSM) interactions to be searched in experiments like DUNE [1], COHERENT [2],
GEMMA [3], and dark matter detection searches [4–6]. Accurate determination of the tensor charge
is key to understanding the transversity parton distribution function, while the nucleon 𝜎-terms
quantify quark mass contributions to the nucleon mass.

We compute the nucleon charges and 𝜎-terms using twisted mass fermion ensembles at three
lattice spacings and present preliminary results for the isovector charges at a fourth, finer lattice
spacing. These 𝑁 𝑓 = 2 + 1 + 1 ensembles, simulated by the Extended Twisted Mass Collaboration
(ETMC), use quarks fixed near their physical masses [7], allowing precise determinations without
chiral extrapolations.

2. Nucleon Matrix Elements

The nucleon axial, tensor, and scalar charges for each quark flavor 𝑓 , denoted as 𝑔 𝑓

A,T,S, are
extracted from the matrix elements of the corresponding axial, tensor, and scalar operators at zero
momentum transfer:

⟨𝑁 |𝜓̄ 𝑓 ΓA,S,T𝜓
𝑓 |𝑁⟩ = 𝑔 𝑓

A,T,S𝑢̄𝑁ΓA,S,T𝑢𝑁 , (1)

where 𝑢𝑁 is the nucleon spinor, and the operator structures are Γ𝐴 = 𝛾𝜇𝛾5 (axial-vector), Γ𝑆 = 1
(scalar), and Γ𝑇 = 𝜎𝜇𝜈 (tensor), with 𝜎𝜇𝜈 = 𝑖

2 [𝛾𝜇, 𝛾𝜈]. The renormalization group invariant
𝜎 𝑓 -term is given by 𝜎 𝑓 = 𝑚 𝑓 ⟨𝑁 |𝜓̄ 𝑓𝜓 𝑓 |𝑁⟩, with 𝑚 𝑓 the mass of the quark with flavor 𝑓 .

Table 1: Parameters of the 𝑁 𝑓 = 2 + 1 + 1 ensembles analyzed in this work. In the first column, we give
the name of the ensemble, in the second the abbreviated name, in the third the lattice volume, in the fourth
𝛽 = 6/𝑔2 with 𝑔 the bare coupling constant, in the fifth the lattice spacing and in the sixth the pion mass.
Lattice spacings and pion masses for B64, C80 and D96 are taken from Ref. [8] and for E112 from Ref. [9].
In the last column we list the number of configurations used per ensemble.

Ensemble Abrv. 𝑉/𝑎4 𝛽 𝑎 [ 𝑓 𝑚] 𝑚𝜋 [𝑀𝑒𝑉] Config.
cB211.072.64 B64 643 × 128 1.778 0.07957(13) 140.2(2) 749
cC211.060.80 C80 803 × 160 1.836 0.06821(13) 136.7(2) 400
cD211.054.96 D96 963 × 192 1.900 0.05692(12) 140.8(2) 494
cE211.044.112 E112 1123 × 224 1.960 0.04892(11) 136.5(2) 2581

The twisted-mass fermion discretization provides automatic O(𝑎) improvement [10, 11]. A
clover term [12] is included to reduce isospin-breaking effects. The parameters of the ensembles

1This ensemble is currently under production and in this proceeding we show preliminary results for a subset of the
configurations planned.
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used in this study are listed in Table 1. Lattice spacings and pion masses for the B64, C80 and
D96 are taken from Ref. [8] determined within the meson sector. These values agree with those
determined from the nucleon mass [13]. The lattice spacing and pion mass for the E112 ensemble
are taken from Ref. [9].

Nucleon charges are extracted by combining two- and three-point nucleon correlation functions.
To ensure consistent errors, statistics for three-point functions are increased as the source-sink time
separation is increased to keep the error approximately constant. The spectral decompositions of
the two- and three-point functions are:

𝐶 (Γ0, ®𝑝; 𝑡𝑠) =
∞∑︁
𝑖

𝑐𝑖 ( ®𝑝)𝑒−𝐸𝑖 ( ®𝑝)𝑡𝑠 , (2)

𝐶𝜇 (Γ𝑘 , ®𝑞; 𝑡𝑠, 𝑡𝑖𝑛𝑠) =
∞∑︁
𝑖, 𝑗

𝐴
𝑖, 𝑗
𝜇 (Γ𝑘 , ®𝑞)𝑒−𝐸𝑖 (®0) (𝑡𝑠−𝑡𝑖𝑛𝑠 )−𝐸 𝑗 ( ®𝑞)𝑡𝑖𝑛𝑠 , (3)

where 𝑡𝑠 is the source-sink time separation and 𝑡ins the time separation between current insertion and
source and ®𝑝 and ®𝑞 are the two-point function sink momentum and three-point function momentum
transfer respectively. The axial case, for example, is given as the ratio of the axial current three- to
two-point function for ®𝑝 = ®𝑞 = 0:

𝑅𝐴
𝜇 (𝑡𝑠, 𝑡𝑖𝑛𝑠) =

𝐶
3𝑝𝑡
𝜇 (Γ𝑘 ; 𝑡𝑠, 𝑡𝑖𝑛𝑠)
𝐶2𝑝𝑡 (𝑡𝑠)

𝑡𝑠−𝑡𝑖𝑛𝑠→∞−−−−−−−−−→
𝑡𝑖𝑛𝑠→∞

𝑔𝐴. (4)

In the large time separation limit, the ratio converges to the corresponding charge, e.g., 𝑔𝐴. We
analyze excited state contributions by performing two-state fits, where we explore a wide parameter
space and average results using the Akaike Information Criterion (AIC) [14, 15]. The calculated
nucleon matrix elements have been renormalized nonperturbatively by employing the RI′/MOM
scheme followed by perturbative conversion to the MS scheme at the reference scale of 2 GeV (see
Ref. [16] for more details).

3. Results

In Fig. 1 we present an example of a two-state fit analysis for the nucleon isovector axial charge
𝑔𝑢−𝑑
𝐴

. The isovector axial-vector operator is given by:

O𝑢−𝑑
𝐴 ≡ 𝐴𝜇 = 𝑢̄𝛾𝜇𝛾5𝑢 − 𝑑𝛾𝜇𝛾5𝑑, (5)

where 𝑢 and 𝑑 are the up and down quark fields, respectively. For the axial case, due to chiral
perturbation theory arguments [17, 18], to better estimate the isovector axial charge, we include in
the fit the three-point function of the temporal component of the axial-vector current with one unit
of momentum transfer, 𝐶0(Γ𝑘 ,

2𝜋
𝐿
𝑘̂; 𝑡𝑠, 𝑡𝑖𝑛𝑠) together with the corresponding two-point function, to

help extract the excited state energies 𝐸𝑖 ( ®𝑞), where 𝐿 is the spatial length of the lattice and 𝑘̂ a unit
vector in the 𝑘 spatial direction.

In our fitting procedure, we vary the smallest value of the sink time 𝑡𝑠 we use for the fitting of
the ratio, 𝑡low

𝑠 , as well as the lowest time slice in the fitting of the two-point functions, 𝑡𝑙𝑜𝑤2𝑝𝑡 . We also
vary the number of insertion time slices that we keep in the fits. We use 𝑡𝑖𝑛𝑠 ∈ [𝑡𝑖𝑛𝑠,0, 𝑡𝑠 − 𝑡𝑖𝑛𝑠,𝑠].
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Figure 1: We present the ratio and fit results for all ensembles, for the isovector axial charge. In the legend,
we give the symbols used to denote the various values of 𝑡𝑠/𝑎. The top row shows the analysis for 𝑔𝑢−𝑑

𝐴

for the B64 ensemble, the middle row for C80 and the bottom for D96. The first column shows results on
the ratio versus 𝑡𝑖𝑛𝑠 − 𝑡𝑠/2. The horizontal bands are the model averaged values. In the second column,
we show the ratio versus 𝑡𝑠 for 𝑡𝑖𝑛𝑠 = 𝑡𝑠/2. The gray band is the result of the two-state fit model with the
highest probability. In the third column, we show the extracted values as a function of the lowest value of 𝑡𝑠
included in the fits, where we give the results for the most probable model for a given value of 𝑡low

𝑠 . In the
last column, we present the weights for fit models whose probabilities exceed 1%. The open symbols are the
most probable models taking into account fits using all 𝑡low

𝑠 .

For the charges we work at𝑄2 = 0 so we fix 𝑡𝑖𝑛𝑠,0 = 𝑡𝑖𝑛𝑠,𝑠, removing an equal number of time slices
on the source and the sink sides. The extracted values show almost no dependence on on 𝑡low

𝑠 . The
results in the third column of Fig. 1 represent the highest probability model for each 𝑡low

𝑠 , varying
𝑡ins,0 and 𝑡low

2pt .
To extrapolate to the continuum limit (𝑎 → 0), we use the results from the ensembles B64,

C80 and D96. We carry out three types of extrapolation and evaluate a combined systematic and
statistical error via a model average over the three fits. Namely, we use a linear fit in 𝑎2 and a
constant fit either using all three ensembles or when omitting the coarser ensemble, B64. A strong
dependence on the lattice spacing will result in a model average favoring the linear fit, while a mild
𝑎2 dependence will lead to a model average favoring the two constant fits. The continuum limit
extrapolation for the isovector axial charge is shown in Fig. 2, along with the weights for each type
of extrapolation. In Table 2 we present our continuum limit results for the axial, scalar and tensor
2-, 3- and 4- flavor isovector and isoscalar combinations, as well as the single flavor charges for
each case. All results per ensemble and after continuum extrapolation can be found in Ref. [16].
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Figure 2: In the left panel, we show the continuum limit of the nucleon isovector axial charge (open symbol
and band) extrapolated using the B64, C80 and D96 ensembles (filled symbols). The extrapolation is the
result of a model average, which combines linear and constant fits as explained in the text. In the right panel,
we show the weights for each type of fit, namely the linear extrapolation is represented by a blue circle, the
constant extrapolation including all three ensembles by a green triangle and the constant extrapolation using
the C90 and D96 ensembles by an orange square. The red band is the model average value from the three
fits.
Table 2: Values for the 2-, 3-, and 4-flavor isovector and isoscalar combinations (top) and the extracted
single flavor charges (bottom) in the continuum limit, using the model average strategy described in the text.

𝑢 − 𝑑 𝑢 + 𝑑 𝑢 + 𝑑 − 2𝑠 𝑢 + 𝑑 + 𝑠 − 3𝑐 𝑢 + 𝑑 + 𝑠 + 𝑐
𝑔𝐴 1.250(24) 0.423(33) 0.490(20) 0.343(55) 0.382(70)
𝑔𝑆 1.08(31) 11.5(2.2) 11.2(2.1) 11.4(2.1) 12.2(2.2)
𝑔𝑇 0.955(29) 0.561(34) 0.561(33) 0.569(37) 0.557(34)

𝑢 𝑑 𝑠 𝑐

𝑔𝐴 0.832(28) -0.417(22) -0.037(18) 0.003(13)
𝑔𝑆 6.4(1.1) 5.30(98) 0.16(37) 0.09(26)
𝑔𝑇 0.756(29) -0.196(12) -0.0009(11) -0.0028(26)

In this work, we also calculated the nucleon 𝜎-terms, which are defined as

𝜎 𝑓 = 𝑚 𝑓 ⟨𝑁 |𝜓̄ 𝑓𝜓 𝑓 |𝑁⟩ , 𝜎𝑢+𝑑 = 𝑚𝑢𝑑 ⟨𝑁 |𝑢̄𝑢 + 𝑑𝑑 |𝑁⟩ , (6)

where 𝑚 𝑓 is the quark mass for a given flavor 𝑓 , 𝑚𝑢𝑑 is the average light quark mass, and |𝑁⟩ is the
nucleon state. The value of 𝜎𝑢+𝑑 , also referred to as 𝜎𝜋𝑁 , is determined from phenomenological
analyses using experimental inputs. These quantities are fundamental in QCD, providing insights
into the quark content of the nucleon and serving as a measure of chiral symmetry breaking.

The nucleon 𝜎-terms are extracted from the scalar matrix elements, including disconnected
quark loops. The twisted mass formulation simplifies renormalization compared to standard Wil-
son fermions, as it eliminates additive mass renormalization and ensures that the multiplicative
renormalization of the scalar current and quark mass cancel. Our results for 𝜎𝜋𝑁 , 𝜎𝑠, and 𝜎𝑐 are
presented in Table 3.

In Fig. 3, we compare our results for the isovector charges with recent results from other lattice
QCD studies, as well as with previous analyses of these quantities by ETMC. The results presented
in this work are the only ones obtained by taking the continuum limit using ensembles simulated

5
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Table 3: Results for the nucleon 𝜎-terms (in MeV) in the continuum limit. For 𝜎𝜋𝑁 and for 𝜎𝑠 we follow
the same extrapolation procedure as described in Fig. 2, while for 𝜎𝑐 we use a single constant extrapolation.

𝜎𝜋𝑁 41.9(8.1) 𝜎𝑠 30(17) 𝜎𝑐 82(29)

directly at the physical pion mass. In contrast, all other collaborations use ensembles with pion
masses heavier than physical or combine one or two physical point ensembles with heavier-than-
physical ones. Since results at the physical point typically have larger statistical uncertainties, their
extrapolations may be more influenced by the heavier-than-physical ensemble data.

We observe very good agreement among lattice QCD results by different collaborations for all
isovector charges. Moreover, our value for the isovector axial charge 𝑔𝑢−𝑑

𝐴
, is compatible with the

experimental value [19].
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Figure 3: Comparison of the results of this work with other lattice QCD results, for the isovector axial, scalar
and tensor charges. Our results are shown with the red square and red error band. The blue triangles show
previous ETMC results, for 𝑔𝑢−𝑑

𝐴
[20] and for 𝑔𝑢−𝑑

𝑇
[21], while Ref. [22] gives results on all three isovector

charges including 𝑔𝑢−𝑑𝑠 for the B64 ensemble. Open symbols represent results without a continuum limit
extrapolation. The magenta triangles show recent results from the Mainz group [23], the green triangles from
PNDME [24], the cyan triangles from RQCD [25], the black diamonds from the QCDSF/UKQCD/CSSM
collaboration [26], the orange crosses from NME [27], the pink cross from CalLat [28] and the yellow
hexagons from 𝜒QCD [29, 30]. For 𝑔𝑢−𝑑

𝐴
, the dashed line represents the experimental value [19].
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3.1 Preliminary results using the E112 ensemble with 𝑎 ≈ 0.05 fm.

In this section, we present preliminary results for our new physical point ensemble, simulated
at a finer lattice spacing (𝑎 ≈ 0.05 fm), that will aid in the continuum limit extrapolation of all
quantities. The details of the ensemble are listed in Table 1.

In Fig. 4, we show the ratios and preliminary fits for the isovector axial, scalar and tensor charges
for the E112 ensemble. We observe a good signal to noise ratio for the analyzed configurations.
We aim to use more than 500 configurations, increase statistics and the value of 𝑡𝑠. Moreover, we
will calculate the disconnected contributions and perform the continuum limit extrapolation using
all four ensembles.

Prelim
inary

8 11 14 17 20 23 26

Figure 4: Ratio and preliminary fit results for the currently available data of the E112 ensemble, for the
isovector charges. The notation is the same as in Fig. 1.

4. Conclusions

We present results on the nucleon axial, scalar and tensor charges, as well as on the nucleon
𝜎-terms, using three 𝑁 𝑓 = 2 + 1 + 1 twisted mass clover-improved fermions ensembles, with quark
masses tuned to reproduce their physical values. This enables us, for the first time, to determine
these charges and 𝜎-terms at the continuum limit using only physical point ensembles, avoiding any
chiral extrapolations. Our future goal is to include the fourth ensemble with a finer lattice spacing
of 𝑎 ≈ 0.05 fm for which we include preliminary results in this proceeding. This finer ensemble
will further refine our continuum limit extrapolations and increase the accuracy of our final values.

7
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