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The size of the proton is of lasting and high interest in the subatomic physics community. The
most well-known example is the electric radius which has been the subject of the proton radius
puzzle for more than a decade. While tremendous progress in 𝑒𝑝-scattering, atomic spectroscopy,
and lattice QCD has brought this puzzle closer to its resolution, one also finds discrepant results
for the magnetic radius. In light of the upcoming high-precision measurements of the hyperfine
splitting (HFS) in muonic hydrogen, other definitions of radii gain relevance as well. On the
one hand, to infer the electric radius from the observed Lamb shift in muonic hydrogen, higher-
order nuclear structure corrections need to be subtracted, which depend on the Friar radius of
the proton. The magnetic properties of the proton, on the other hand, only enter the HFS via the
proton’s Zemach radius. Based on our previous calculation of the electromagnetic form factors
of the proton and neutron, which includes both quark-connected and -disconnected contributions
and assesses all sources of systematic uncertainties, we now present results for the Zemach
and Friar radii. For the proton, we obtain 𝑟 𝑝

𝑍
= (1.013 ± 0.010 (stat) ± 0.012 (syst)) fm and

𝑟 𝑝
𝐹
= (1.301±0.012 (stat) ±0.014 (syst)) fm. These numbers suggest small values of the Zemach

and Friar radii of the proton, and have a precision which is sufficient to make a meaningful
comparison to data-driven evaluations.
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1. Introduction

The most accurate determination of the proton’s electric (charge) radius is derived from the
measurement of the Lamb shift in muonic hydrogen spectroscopy [1, 2]. This result exhibits a large
tension with some 𝑒𝑝-scattering experiments [3, 4], which is known as the “proton radius puzzle”.

To infer the electric radius from the observed Lamb shift, higher-order nuclear structure-
contributions need to be subtracted. The leading contribution is the two-photon exchange [5], the
dominant, elastic part of which depends on the third Zemach moment of the proton [6–8],

⟨𝑟3
𝐸⟩𝑝(2) =

24
𝜋

∫ ∞

0

𝑑𝑄2

(𝑄2)5/2

[
(𝐺 𝑝

𝐸
(𝑄2))2 − 1 + 1

3
⟨𝑟2

𝐸⟩𝑝𝑄2
]
. (1)

The associated radius is known as the Friar radius of the proton, 𝑟 𝑝
𝐹
= 3

√︃
⟨𝑟3

𝐸
⟩𝑝(2) .

While the traditional proton radius puzzle awaits its final resolution, the goal of reaching a
consistent picture of all the fundamental electromagnetic properties of the nucleon has attained a
new prominence. For the magnetic radius, for instance, a tension between dispersive approaches [9]
and 𝑧-expansion results [10] appeared, i.e., a separate puzzle beclouds the magnetic properties of the
proton. Underlining the importance of the magnetic properties of the proton, several experiments
are under way to measure these from spectroscopy on (muonic) hydrogen [11–14]. This can be
achieved by measuring, in addition to the Lamb shift, the hyperfine splitting (HFS).

The leading-order proton-structure contribution to the 𝑆-state HFS of hydrogen depends on the
Zemach radius of the proton [7, 15],

𝑟 𝑝
𝑍
= − 2

𝜋

∫ ∞

0

𝑑𝑄2

(𝑄2)3/2

[
𝐺 𝑝

𝐸
(𝑄2)𝐺 𝑝

𝑀
(𝑄2)

𝜇𝑝

𝑀

− 1

]
. (2)

Having a first-principles prediction of 𝑟 𝑝
𝑍

prior to the experimental measurement of the ground-state
(1𝑆) HFS in muonic hydrogen with ppm precision [11–14], from which the Zemach radius could
be extracted with sub-percent uncertainty, is highly desirable. Beyond helping in narrowing down
the frequency search range, such a prediction allows for a crucial consistency check.

In this contribution, we present our lattice-QCD calculation of the Zemach and Friar radii,
building on our results for the electromagnetic radii of the proton and neutron [16, 17]. Our results
for the Zemach and Friar radii of the proton have a total precision of 1.5 %, and are well compatible
with most of the experimental determinations [2, 9, 10, 18–20]. This presentation is based on
Ref. [21], to which we refer the interested reader for further details.

2. Lattice setup

In order to compute the Zemach and Friar radii of the proton and neutron, we need, according
to Eqs. (1) and (2), information on their electric and magnetic form factors. For our lattice
determination of the latter, we employ a set of ensembles with 𝑁 𝑓 = 2 + 1 flavors of non-
perturbatively O(𝑎)-improved Wilson fermions [22, 23], using the tree-level improved Lüscher-
Weisz gluon action [24], which have been generated as part of the Coordinated Lattice Simulations
(CLS) effort [25]. The ensembles entering our analysis are listed in Table 1 and cover four
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lattice spacings 𝑎 ∈ [0.050, 0.086] fm, as well as several pion masses down to slightly below the
physical one (E250). We include the contributions from quark-connected as well as -disconnected
diagrams. For further details concerning the setup of the simulations, the calculation of our raw
lattice observables, the extraction of the form factors, and the treatment of excited states, we refer
to Ref. [16].

ID 𝛽 𝑡
sym
0 /𝑎2 𝑇/𝑎 𝐿/𝑎 𝑀𝜋 [MeV]

C101 3.40 2.860(11) 96 48 227
N101a 3.40 2.860(11) 128 48 283
H105a 3.40 2.860(11) 96 32 283

D450 3.46 3.659(16) 128 64 218
N451a 3.46 3.659(16) 128 48 289

E250 3.55 5.164(18) 192 96 130
D200 3.55 5.164(18) 128 64 207
N200a 3.55 5.164(18) 128 48 281
S201a 3.55 5.164(18) 128 32 295

E300 3.70 8.595(29) 192 96 176
J303 3.70 8.595(29) 192 64 266

aThese ensembles are not used in the final fits but only to constrain discretization and finite-volume effects.

Table 1: Overview of the ensembles used in this study. For further details, see Table I of Ref. [16].

All dimensionful quantities are expressed in units of the gradient flow time 𝑡0 [26]. To this end,
we use the numerical determination at the flavor-symmetric point, 𝑡sym

0 /𝑎2, from Ref. [27]. Only
our final results for the radii are converted to physical units using the FLAG estimate for 𝑁 𝑓 = 2+1,√
𝑡0,phys = 0.14464(87) fm [28].

3. Fits to baryonic 𝜒PT

In Refs. [16, 17] we have combined the parametrization of the 𝑄2-dependence of the form
factors with the extrapolation to the physical point (𝑀𝜋 = 𝑀𝜋,phys, 𝑎 = 0, 𝐿 = ∞). For this
purpose, we have fitted our form factor data to the next-to-leading-order expressions resulting from
covariant baryon chiral perturbation theory (B𝜒PT) [29]. While explicit Δ degrees of freedom are
not considered in the fit, we include the contributions from the relevant vector mesons, as discussed
in detail in Ref. [16]. For the physical pion mass we use the value in the isospin limit [30].

We perform several such fits, applying different cuts in the pion mass (𝑀𝜋 ≤ 0.23 GeV and
𝑀𝜋 ≤ 0.27 GeV) and the momentum transfer (𝑄2 ≤ 0.3, . . . , 0.6 GeV2), and, at the same time,
varying our model for the lattice-spacing and/or finite-volume dependence, in order to estimate the
corresponding systematic uncertainties. The relatively strict cuts in 𝑄2 are required because the
B𝜒PT expansion, from which our fit formulae are derived, is only applicable for low momentum
transfers. By including the contributions from vector mesons, the range of validity of the resulting
expressions can be extended [29, 31, 32]. Nevertheless, as the heaviest vector meson we consider
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in the isovector channel is the 𝜌, momentum transfers larger than 𝑀2
𝜌 ≈ 0.6 GeV2 cannot safely

be described in this way. For further details on the B𝜒PT fits and an extensive cross-check of our
excited-state analysis as well as of the parametrization of the 𝑄2-dependence and the extrapolation
to the physical point, we refer to Ref. [16].

4. Extrapolation of the form factors and integration

Given that the Zemach radius and third Zemach moment are defined as integrals over all values
of 𝑄2 ∈ (0,∞) [cf., Eqs. (1) and (2)], an extrapolation of the B𝜒PT fits beyond their range of
applicability is required if they are to be employed to parametrize the form factors. For each model,
we evaluate the B𝜒PT formula for 𝐺 𝑝,𝑛

𝐸
and 𝐺 𝑝,𝑛

𝑀
, using the low-energy constants as determined

from the corresponding fit, at the physical point and at 20 evenly spaced points in 𝑄2 ∈ [0, 𝑄2
cut].

Here, 𝑄2
cut is the cut in the momentum transfer corresponding to the respective B𝜒PT fit variation.

Next, we fit a model which obeys the perturbative large-𝑄2 constraints on the form factors [33]
to these data points and their error estimates, using the model-independent 𝑧-expansion [34],

𝐺 𝑝,𝑛

𝐸
(𝑄2) =

𝑚∑︁
𝑘=0

𝑎𝑝,𝑛

𝑘
𝑧(𝑄2)𝑘 , 𝐺 𝑝,𝑛

𝑀
(𝑄2) =

𝑚∑︁
𝑘=0

𝑏𝑝,𝑛

𝑘
𝑧(𝑄2)𝑘 , (3)

with

𝑧(𝑄2) =
√︁
𝜏cut +𝑄2 − √

𝜏cut − 𝜏0√︁
𝜏cut +𝑄2 + √

𝜏cut − 𝜏0
, (4)

where we employ 𝜏0 = 0 and 𝜏cut = 4𝑀2
𝜋,phys. We truncate the 𝑧-expansion beyond 𝑚 = 9,

and incorporate the four sum rules from Ref. [35] for each form factor, which ensure the correct
asymptotic behavior of the latter for large 𝑄2. The normalization of the electric form factor is
enforced by fixing 𝑎𝑝

0 = 1 and 𝑎𝑛0 = 0, respectively. For the determination of the Zemach radius,
we fit 𝐺𝐸 and 𝐺𝑀 simultaneously, while for the third Zemach moment, where 𝐺𝑀 is not required,
we fit only 𝐺𝐸 . The extrapolation fits are performed for the proton and neutron independently.
Using more than 20 data points for each form factor or a higher degree of the 𝑧-expansion does not
increase the overlap between the original B𝜒PT fit and the extrapolation any further.

For the numerical integration of Eqs. (1) and (2), we smoothly replace the B𝜒PT parametrization
of the form factors by the 𝑧-expansion-based extrapolation in a narrow window around 𝑄2

cut.
Concretely, we use the following ansatz to estimate the form factor term,

𝐹 (𝑄2) = 1
2

[
1 − tanh

(
𝑄2 −𝑄2

cut

Δ𝑄2
𝑤

)]
𝐹𝜒 (𝑄2) + 1

2

[
1 + tanh

(
𝑄2 −𝑄2

cut

Δ𝑄2
𝑤

)]
𝐹𝑧 (𝑄2), (5)

where 𝐹 (𝑄2) ≡ 𝐺𝐸 (𝑄2)𝐺𝑀 (𝑄2)/𝜇𝑀 for the Zemach radius and 𝐹 (𝑄2) ≡ 𝐺2
𝐸
(𝑄2) for the third

Zemach moment, respectively. In Eq. (5), 𝐹𝜒 (𝑄2) represents our fit to B𝜒PT, while 𝐹𝑧 (𝑄2)
denotes the 𝑧-expansion parametrization of the form factors. For the width of the window in which
we switch between the two parametrizations, we choose Δ𝑄2

𝑤 = 0.0537𝑡−1
0 ≈ 0.1 GeV2. We remark

that the cancellation between the different terms of Eq. (1) at small 𝑄2 does not occur at the required
numerical accuracy on all our bootstrap samples. To facilitate the numerical integration, we therefore
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regulate the small-𝑄2 contribution to the integral for the proton by replacing 𝑡0𝑄2 → 𝑡0𝑄
2+1×10−7

in the denominator, which changes the result for ⟨𝑟3
𝐸
⟩𝑝(2) by less than 6 % of its statistical error.

The two parametrizations and their weighted average according to Eq. (5) are illustrated in
Fig. 1 for the case of the Zemach radius. While the breakdown of the B𝜒PT formula is clearly
visible, the 𝑧-expansion behaves well for arbitrarily large momenta, which is due to the sum rules
[35] we have included. However, in the region where we adjust the 𝑧-expansion to the B𝜒PT
parametrization (0 ≤ 𝑄2 ≤ 0.6 GeV2 for the case shown in Fig. 1), the two curves overlap extremely
well. The blue curve, which is the one we use for the integration, smoothly switches from the orange
(B𝜒PT) curve to the gray (𝑧-expansion) one in a tight window around 𝑄2

cut = 0.6 GeV2 = 0.322𝑡−1
0 .
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Figure 1: Product of the electric and normalized magnetic form factors of the proton (left panel) and neutron
(right panel) at the physical point evaluated with different parametrizations. The orange curve shows one of
the B𝜒PT fits to our lattice data with 𝑄2

cut = 0.6 GeV2 ≈ 0.322𝑡−1
0 , the gray curve the 𝑧-expansion-based

extrapolation, and the blue curve the weighted average of the two according to Eq. (5).

Replacing the B𝜒PT parametrization smoothly with a constant zero instead of the 𝑧-expansion-
based extrapolation [i.e., setting 𝐹𝑧 (𝑄2) ≡ 0 in Eq. (5)] allows one to estimate the contribution
of the form factors at 𝑄2 > 𝑄2

cut to the full integrals. For 𝑄2
cut = 0.6 GeV2 (our largest, i.e., least

stringent, value for the cut), we find that the relative difference of the thus obtained value for 𝑟 𝑝
𝑍

(⟨𝑟3
𝐸
⟩𝑝(2) ) to the full result using the corresponding variation of the B𝜒PT fits is less than 0.9 %

(0.3 %). In other words, the form factor terms at 𝑄2 > 0.6 GeV2 contribute less than 0.9 % (0.3 %)
to the proton’s Zemach radius (third Zemach moment).

Finally, we note that the major advantage of our approach based on the B𝜒PT fits over an
integration of the form factors on each ensemble is that the Zemach and Friar radii can be computed
directly at the physical point, so that an extrapolation of results for the radii to the physical point,
which would entail further significant systematic uncertainties, is not required.

5. Model average and final result

As in Refs. [16, 17], we do not have a strong a priori preference for one specific setup of
the B𝜒PT fits. Thus, we determine our final results as well as the statistical and systematic error
estimates from an average over the different fit models and kinematic cuts, using weights derived

5
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from the Akaike Information Criterion (AIC) [36–41]. More details on our procedure can be found
in section V of Ref. [16]. As our final results, we obtain

𝑟 𝑝
𝑍
= (1.013 ± 0.010 (stat) ± 0.012 (syst)) fm, (6)

⟨𝑟3
𝐸⟩𝑝(2) = (2.200 ± 0.060 (stat) ± 0.071 (syst)) fm3, (7)

𝑟𝑛𝑍 = (−0.0411 ± 0.0056 (stat) ± 0.0040 (syst)) fm, (8)
⟨𝑟3

𝐸⟩𝑛(2) = (0.0078 ± 0.0020 (stat) ± 0.0012 (syst)) fm3. (9)

This corresponds to Friar radii of 𝑟 𝑝
𝐹

= (1.301 ± 0.012 (stat) ± 0.014 (syst)) fm and 𝑟𝑛
𝐹

=

(0.198 ± 0.017 (stat) ± 0.010 (syst)) fm, respectively.
In Fig. 2, our numbers for the proton are compared to other determinations based on experi-

mental data. There are three main types of experiments which have been employed in the literature
to compute the Zemach radius of the proton: muonic hydrogen HFS [2], electronic hydrogen HFS
[42], and 𝑒𝑝 scattering. In order to extract the proton Zemach radius from an HFS measurement,
input on the proton-polarizability effect is required. This can be either taken from B𝜒PT [20] or
evaluated in a data-driven fashion, i.e., using information on the spin structure functions [43–45]
(as was done in Refs. [2, 18]). The form factors measured in 𝑒𝑝-scattering experiments, on the
other hand, can be analyzed with many different fit models, e.g., by employing a (modified) power
series [19], a 𝑧-expansion [10], or dispersion theory [9].

1.0 1.1
A
?
/ [fm]

This work

Lin et al. 2022
(disp. ana. of 4? scatt.)

Borah et al. 2020
(I-exp. ana. of 4? scatt.)

Distler et al. 2011
(A1 4? scatt.)

Volotka et al. 2005
(H HFS)

Hagelstein et al. 2023
(BjPT + H HFS)

Hagelstein et al. 2023
(BjPT + `H HFS)

Antognini et al. 2013
(`H HFS)

2.25 2.50 2.75
〈A3
�〉?(2) [fm3]

Figure 2: Comparison of our best estimates for the Zemach radius and third Zemach moment of the proton
(red downward-pointing triangles) with determinations based on experimental data, i.e., muonic hydrogen
HFS [2, 20] (crosses), electronic hydrogen HFS [18, 20] (squares), and 𝑒𝑝 scattering [9, 10, 19] (circles).

While our result for 𝑟 𝑝
𝑍

agrees within two combined standard deviations with most of the
data-driven extractions [2, 10, 18–20], we observe a 2.6𝜎 tension with the dispersive analysis of
world 𝑒𝑝-scattering data [9]. We also note that our estimate for 𝑟 𝑝

𝑍
is smaller than almost all of

the experimental determinations. The proton’s third Zemach moment can be extracted from 𝑒𝑝-
scattering experiments in the same way as its Zemach radius, and we also compare to these results
in Fig. 2. Again, our value is comparatively small, but this time in good agreement with both the
𝑧-expansion-based [10] and dispersive analyses [9]. Against the analysis of the A1 𝑒𝑝-scattering
experiment [19], on the other hand, we observe a clear tension of 5.3𝜎 in ⟨𝑟3

𝐸
⟩𝑝(2) .
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In interpreting the aforementioned discrepancies, one must take into account that our results for
the Zemach radii and third Zemach moments are not independent from those for the electromagnetic
radii [16, 17] because they are based on the same lattice data for the form factors and the same
B𝜒PT fits. To quantify this correlation, we estimate the covariance matrix of our model-averaged
results for the different proton radii 𝑟 𝑗 ,

𝐶 𝑗𝑘 =
1

(cdf−1
N (3/4))2

med( [𝑟 𝑗 − med(𝑟 𝑗)] [𝑟𝑘 − med(𝑟𝑘)]), corr 𝑗𝑘 = 𝐶 𝑗𝑘/
√︁
𝐶 𝑗 𝑗𝐶𝑘𝑘 , (10)

where cdf−1
N denotes the inverse cumulative distribution function (CDF) of a Gaussian distribution,

and the median is calculated from the model-averaged (empirical) CDF. For the correlation matrix
of [

√︃
⟨𝑟2

𝐸
⟩𝑝,

√︃
⟨𝑟2

𝑀
⟩𝑝, 𝑟 𝑝

𝑍
, 𝑟 𝑝

𝐹
], we thus obtain

corr =
©­­­­
«

1 0.41294995 0.85702489 0.97214447
0.41294995 1 0.72010978 0.42834371
0.85702489 0.72010978 1 0.79974042
0.97214447 0.42834371 0.79974042 1

ª®®®®
¬
. (11)

Hence, we indeed observe a strong correlation both between
√︃
⟨𝑟2

𝐸
⟩𝑝 and 𝑟 𝑝

𝑍
and between

√︃
⟨𝑟2

𝑀
⟩𝑝

and 𝑟 𝑝
𝑍

, as well as between
√︃
⟨𝑟2

𝐸
⟩𝑝 and 𝑟 𝑝

𝐹
. We note that a large positive correlation between the

proton’s electric and Zemach radii has also been reported in the experimental literature [46, 47].
A selection of the results for 𝑟 𝑝

𝑍
and 𝑟 𝑝

𝐹
from Fig. 2 are plotted against the corresponding

values for
√︃
⟨𝑟2

𝐸
⟩𝑝 and

√︃
⟨𝑟2

𝑀
⟩𝑝 in Fig. 3. This demonstrates that if a particular analysis yields a

larger electric radius, it generally also produces larger Zemach and Friar radii. Approximating the
model-averaged distribution in each two-dimensional projection as a multivariate Gaussian in the
vicinity of our central values, we can draw confidence ellipses as displayed in Fig. 3. They illustrate
again the strong correlation among our lattice results for the different proton radii and show that
these confirm the trends observed in the data-driven evaluations as far as the correlation of the
Zemach and Friar radii with the electric radius is concerned.

We conclude that our small results for
√︃
⟨𝑟2

𝐸
⟩𝑝 and

√︃
⟨𝑟2

𝑀
⟩𝑝 in Refs. [16, 17] naturally imply

small values for 𝑟 𝑝
𝑍

and 𝑟 𝑝
𝐹

. By contrast, dispersive analyses like Ref. [9] arrive at a significantly
larger magnetic radius than the A1-data analyses [3, 35] and our lattice-QCD-based extraction
[16, 17]. This may explain why we observe a larger tension in the Zemach radius (which equally
probes electric and magnetic properties) with Ref. [9] than with Ref. [19], even though the situation
is exactly the opposite for the third Zemach moment / Friar radius (which only probes the electric
properties). For a deeper understanding of the underlying differences, a comparison of the full
𝑄2-dependence of the form factors would be required, rather than merely of the radii.

Our results for the neutron are very well compatible with the 𝑧-expansion-based analysis of
world 𝑒𝑛-scattering data [10], albeit with a more than two times larger error.

6. Conclusions

We have presented our lattice-QCD calculation of the Zemach and Friar radii of the proton
and neutron, which includes the contributions from quark-connected and -disconnected diagrams

7
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Figure 3: Correlation between the different proton radii. The results of this work (red downward-pointing
triangles; shaded ellipses: 1𝜎, 2𝜎, and 3𝜎 confidence regions) are compared with determinations based on
experimental data (cf., Fig. 2) [2, 9, 10, 19, 20]. The dashed black line is calculated with a dipole form for
𝐺𝐸 and 𝐺𝑀 assuming the same dipole mass for both form factors, which is varied along the line.

and presents a full error budget. The overall precision of our results for the proton is sufficient to
make a meaningful comparison to data-driven evaluations. Our final estimates, which are given in
Eqs. (6) to (9), point to small values for the Zemach and Friar radii of the proton, but are consistent
with most of the previous determinations within two standard deviations. While they do not give
rise to an independent puzzle from the lattice perspective, they emphasize that we agree rather well
with the dispersive analysis of Ref. [9] regarding the electric properties of the proton (i.e., the Friar
radius), but to a much lesser degree on its magnetic properties (i.e., the Zemach radius).
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