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Introduction

Ever since the discovery of hadron structure at SLAC, several inclusive and exclusive exper-
imental processes have been discovered that help us with the study of the internal structure of
baryons and mesons. From the theoretical side, factorization theorems [1] are a fundamental tool to
understand processes with a large momentum transfer: They divide the cross section in a convolu-
tion of hard and soft pieces, where the first can be computed in perturbation theory and the second
requires a non-perturbative approach. In this study we focus on the calculation of distribution
amplitudes (DAs), which appear in meson photoproduction 𝛾

∗
𝛾
∗ → 𝑀 and deeply virtual meson

production (DVMP) 𝛾∗p → 𝑀p, and describe the momentum distribution among the quarks of the
meson along the longitudinal direction. The more traditional methods to estimate these quantities
include non-relativistic QCD (NRQCD), Dyson-Schwinger (DS) equations, light-front dynamics,
or light-cone sum rules. The fact that this quantity is defined along the light-cone, see eq. (1),
prevents its direct calculation using lattice QCD (LQCD). In this study we employ the method of
pseudo-distributions [2, 3], which generalizes the definition of DAs and other functions to space-like
separations and provides an algorithm to recover the light-cone physics in a certain limit.

Methodology

The DA of charmonium in light-cone coordinates is usually given in terms of the momentum
fraction 𝑥 carried by the quark [4]

𝜙(𝑥) =
∫

d𝑧−

2𝜋
𝑒
−i(𝑥−1/2) 𝑝+

𝑧
−
𝑀

𝛼 (𝑝, 𝑧), (1)

where the matrix element itself is the Ioffe-time distribution amplitude (ITD),

𝑀
𝛼 (𝑝, 𝑧) = ⟨𝜂c (𝑝) |c(−𝑧/2)𝛾

+
𝛾5𝑊 (−𝑧/2, 𝑧/2)c(𝑧/2) |0⟩

����
𝑧
+
=𝑧

T
=0

, (2)

and ⟨𝜂c | is the pseudoscalar meson in the final state, |0⟩ is the QCD vacuum, 𝑊 is a Wilson line
assuring gauge invariance, 𝑝 is the hadron momentum, and c and c are the quark fields, which are
a distance 𝑧

− apart. Unfortunately, the separation along the light cone, 𝑧2
= 0, prevents a direct

evaluation in Euclidean space. Instead, we use a generalization of the ITD in Euclidean metric
to space-like separations 𝑧

2
> 0 [2, 3]. To connect this quantity, the pseudo-DA (pDA), to the

DA on the light-cone at leading twist we need to take several steps: First, we can separate several
higher-twist contributions via a Lorentz decomposition,

𝑀
𝛼 (𝑝, 𝑧) = 2𝑝𝛼M(𝜈, 𝑧2) + 𝑧

𝛼M′(𝜈, 𝑧2). (3)

Both terms M and M′ are Lorentz scalars depending on the Ioffe time 𝜈 ≡ 𝑝𝑧 and the invariant
interval 𝑧2. The leading-twist contribution appears inM, and we select it choosing 𝑝 = (0, 0, 𝑝3, 𝐸),
𝑧 = (0, 0, 𝑧3, 0) and 𝛼 = 4. Second, the matrix element 𝑀𝛼 renormalizes multiplicatively [5], and
the renormalization factor depends solely on 𝑧. We take advantage of the fact that 𝜈 = 0 is a
fixed point of the ITD to cancel the renormalization factor and avoid its computation entirely. The
quantity [6–8]

𝜙(𝜈, 𝑧2) ≡ M(𝑝, 𝑧)M(0, 0)
M(0, 𝑧)M(𝑝, 0) (4)

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
1
3

The 𝜂𝑐 distribution amplitude Teseo San José et al.

is known as the reduced Ioffe-time pseudo-distribution amplitude (rpITD), it is renormalization
group invariant (RGI) and 𝜙(𝜈 = 0, 𝑧) = 1 even at finite lattice spacings. Third, we take the limit
𝑧

2 → 0 and match to the light-cone DA in the MS-scheme via the relation [9, 10]

𝜙lt(𝜈, 𝑧
2) =

∫ 1

0
d𝑤𝐶 (𝑤, 𝜈, 𝑧𝜇)

∫ 1

0
d𝑥 cos(𝑤𝑥𝜈 − 𝑤𝜈/2)𝜙lt(𝑥, 𝜇) (5)

where the DA now depends on the renormalization scale 𝜇 = 3 GeV, the kernel 𝐶 (𝑤, 𝜈, 𝑧𝜇) takes
care of the divergences appearing when 𝑧

2 → 0, and the integral in 𝑥 corresponds to the Fourier
transform between 𝑥 and 𝜈 spaces. In our study we only require the moments of 𝐶 (𝑤, 𝜈, 𝑧𝜇),
which are plotted in fig. 1. For their expression and more details of the calculation, see [11].
After introducing the lattice regulator we follow these same steps, and upon arriving to eq. (5) we
encounter an inverse problem, with a finite dataset on the left-hand side (lhs) to reconstruct a function
on the right-hand side (rhs). To solve this, we introduce extra information by parameterizing the
DA on the light-cone as

𝜙lt(𝑥, 𝜇) = (1 − 𝑥)𝜆−1/2
𝑥
𝜆−1/2

∞∑︁
𝑛=0

𝑑
(𝜆)
2𝑛 �̃�

(𝜆)
2𝑛 (𝑥), 𝑑

(𝜆)
0 =

4𝜆

𝐵(1/2, 𝜆 + 1/2) (6)

where 𝐵 is a beta function, �̃� (𝜆)
2𝑛 (𝑥) are shifted Gegenbauer polynomials defined in the interval

𝑥 ∈ (0, 1), and the lattice data constraints the coefficients 𝜆 and 𝑑2𝑛. A similar approach has
been applied to parton distribution functions (PDFs) in [12]. Setting 𝜆 = 1.5, it is possible to
recover the conformal expansion of the DA from eq. (6), and one also obtains the asymptotic result
6𝑥(1 − 𝑥) when 𝜇 → ∞. Indeed, we assume that this expansion, which is true at leading twist and
O
(
𝛼𝑠

)
, can also describe non-perturbative data leaving free the coefficient 𝜆. After all, the series of

polynomials form a basis that should be able to describe any smooth function, and even singularities
at the endpoints 𝑥 = 0 and 1. Of course, since in our analysis we truncate the series after the first
term, this forces the endpoints to be zero for 𝜆 > 1/2. Replacing eq. (6) in eq. (5) simplifies the
relation between the fit coefficients and the data,

𝜙lt(𝜈, 𝑧
2) =

∞∑︁
𝑛=0

𝑑
(𝜆)
2𝑛 𝜎

(𝜆)
2𝑛 (𝜈, 𝑧2

𝜇
2), 𝑑

(𝜆)
𝑛 =

𝑑
(𝜆)
𝑛

4𝜆
, (7)

where we use a new set of functions 𝜎2𝑛, plotted in fig. 1. Their main feature is that they peak in
a certain range of Ioffe times and then vanish. This means that, depending on the domain in Ioffe
time of our data, we will be sensitive to more or less of these coefficients (see [11] for more details).

The lattice calculation

We employ the set of 𝑁 𝑓 = 2 CLS ensembles gathered in table 1, which employ the Wilson
gauge action and Wilson quarks with non-perturbative O(𝑎) improvement. The charm-quark mass
was tuned so that 𝑚Ds = 𝑚Ds,phys = 1968 MeV [13], while the light-quark masses yield pions in the
range 190 MeV < 𝑚𝜋 < 440 MeV. We use quark propagators with wall sources diluted in spin,
deflated SAP-GCR to solve the Dirac equation, and a custom version of the DD-HMC algorithm

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
1
3

The 𝜂𝑐 distribution amplitude Teseo San José et al.

Figure 1: LEFT: Moments 𝑐𝑛 (𝜈, 𝑧𝜇) of the matching kernel. RIGHT: Functions 𝜎𝑛 (𝜈, 𝑧𝜇). We choose
𝜆 = 2.7 and 𝑧3 = 5 × 0.0658 fm.

id 𝛽 𝑎 [fm] 𝐿/𝑎 𝑎𝑚𝜋 𝑚𝜋 [MeV] 𝑚𝜋𝐿 𝜅c Measurements

A5 5.2 0.0755(9)(7) 32 0.1265(8) 331 4.0 0.12531 1980
B6 48 0.1073(7) 281 5.2 0.12529 1180

D5* 5.3 0.0658(7)(7) 24 0.1499(1) 449 3.6 0.12724 1500
E5 32 0.1458(3) 437 4.7 0.12724 2000
F6 48 0.1036(3) 311 5.0 0.12713 1200
F7 48 0.0885(3) 265 4.3 0.12713 2000
G8 64 0.0617(3) 185 4.1 0.12710 1790

N6 5.5 0.0486(4)(5) 48 0.0838(2) 340 4.0 0.13026 1900
O7 64 0.0660(1) 268 4.2 0.13022 1640

Table 1: CLS ensembles included in our analysis. From left to right, we find the labels, the bare couplings
and corresponding lattice spacings, the spatial extension (𝑇 = 2𝐿), the pion mass in lattice and physical units,
the value of 𝑚𝜋𝐿, the bare charm-quark mass and the statistics for each ensemble. An asterisk indicates the
ensemble was used only to check for finite-size effects (FSEs) and was not used in the extrapolation to the
continuum.

for the contractions. We form the 𝜂c interpolator solving a 4 × 4 Generalized Eigenvalue Problem
(GEVP) with different Gaussian smearing levels and the bilinear c𝛾5c, while its momentum is set
via partially twisted boundary conditions (PTBCs) applied to the charm quark. We only compute
the quark-connected Wick contraction of eq. (2). We expect a strong Okubo-Zweig-Iizuka (OZI)
suppression of the disconnected piece with a factor 𝛼2

𝑠 (𝜇) ∼ 0.05. Computing the rpITD for all
ensembles of table 1 yields fig. 2, where 𝜙(𝜈, 𝑧2) appears as a function of Ioffe time and the color
code indicates the extension of the Wilson line. We observe the data fall close to a universal line,
with precise data up to 𝜈 ∼ 5. These points are still affected from a variety of artifacts: We need
to take the continuum limit, extrapolate to the physical quark masses, and remove the remaining
higher-twist contamination which includes the target-mass corrections. The latter are proportional

4
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Figure 2: The rpITD for the 𝜂c-meson on all ensembles considered in this analysis.

𝜆 2.73 ± 0.12 ± 0.12 ± 0.06 2.75(12) 2.61(15) 2.62(10)
𝑎1,2 −7.58 ± 0.05 ± 0.59 ± 0.55 −8.12(5) −8.68(13) −6.76(4)
𝑏1,2 0.88 ± 0.07 ± 0.08 ± 0.06 0.89(7) 0.77(10) 0.81(7)
𝑐1,2 −0.042 ± 0.002 ± 0.005 ± 0.001 −0.0428(22) −0.0440(28) −0.0407(24)
𝑑1,2 −2.221 ± 0.015 ± 0.063 ± 0.150 −2.368(15) −2.52(4) −2.000(11)
𝑒1,2 −0.0897 ± 0.0010 ± 0.1590 ± 0.1160 −0.1700(16) −0.321(5) −0.068 48(12)

Table 2: Fit parameters in eq. (8). The first column indicates the parameter; the second column the expected
value, the statistical and the various systematic uncertainties; the third is the result removing the heaviest
pion mass; the fourth keeps only 𝑚𝜋 < 300 MeV and the fifth checks that the results are stable when we only
keep 𝑧3 < 0.5 fm. The coefficients 𝑎1,2, 𝑏1,2, etc., correspond to the auxiliary functions 𝐴1, 𝐵1, etc.

to 𝑧
2
𝑚

2
𝜂c ,phy, which can be sizeable for the 𝜂c-meson. We fit the lattice data 𝜙𝑒 (𝜈, 𝑧

2) to the following
model to separate all these effects from the leading-twist pDA that can be matched to the light-cone
using eq. (7),

𝜙𝑒 (𝜈, 𝑧
2) = 𝜙lt(𝜈, 𝑧

2) + 𝑎

|𝑧 | 𝐴1(𝜈) + 𝑎Λ𝐵1(𝜈) + 𝑧
2
Λ

2
𝐶1(𝜈)

+ 𝑎

|𝑧 |

(
Λ

−1 [𝑚𝜂c − 𝑚𝜂c ,phy]𝐷1(𝜈) + Λ
−2 [𝑚2

𝜋 − 𝑚
2
𝜋,phy]𝐸1(𝜈)

)
.

(8)

The leading lattice artifacts are O(𝑎) because we do not improve the matrix element eq. (3), only
the action. The auxiliary functions 𝐴1, 𝐵1, etc. have a similar form to eq. (7) and have their own
fit parameters (their explicit form appears in [11]). The value of 𝜆 is shared, as it only serves to
specify a basis of polynomials. We render all terms dimensionless using Λ ≡ Λ

(2)
QCD = 330 MeV

[14]. Fitting the data shown in fig. 2 to eq. (8) yields the results displayed in table 2. We are only
sensitive to the first coefficient 𝑑 (𝜆)

0 , such that the DA given in eq. (6) is reduced to

𝜙lt(𝑥, 𝜇) =
4𝜆(1 − 𝑥)𝜆−1/2

𝑥
𝜆−1/2

𝐵(1/2, 1/2 + 𝜆) (9)

with 𝜆 = 2.73(18) adding in quadrature all uncertainties of table 2. Equation (9) appears in fig. 3
both in 𝑥 space and Ioffe-time space. The latter is especially useful to compare to other theoretical

5
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Figure 3: LEFT: The DA in 𝑥 space given by eq. (9) using 𝜆 = 2.73(18) at 𝜇 = 3 GeV. RIGHT: The DA in
Ioffe-time space compared to NRQCD [15] and DS equations [16].

determinations because the DA has to be analytic. In particular, we compare to two alternative
approaches, one using the NRQCD framework [15] and another employing DS equations [16]. We
observe good agreement with the latter, which is also a non-perturbative approach, while NRQCD
differs significantly at larger Ioffe times. Since NRQCD relies in a series expansion and the entire 𝜈
dependence is given by the first quantum and relativistic corrections, which become very sizeable
for large Ioffe times, we think it is important to know the corrections at next order.

Conclusions and outlook

We compute the leading-twist contribution to the DA of the 𝜂c-meson with a set of 𝑁 𝑓 = 2 CLS
ensembles using the method of short-distance factorization. Thanks to the various lattice spacings
and quark masses we can extrapolate to the physical point in the isospin limit. The DA on the
light-cone is parameterized in eq. (9). We explore several sources of systematic uncertainty and
conduct various crosschecks that show that our results (given in table 2) are stable. The method
developed in this work can now be applied to other states, like 𝐽/𝜓, with a more complicated
Lorentz structure and bigger impact in the upcoming EIC experiment.
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