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We present results on the momentum fraction carried by quarks and gluons in the pion and the
kaon. We employ three gauge ensembles generated with 𝑁 𝑓 = 2 + 1 + 1 Wilson twisted-mass
clover-improved fermions with physical quark masses. We perform, for the first time, a continuum
extrapolation directly at the physical pion. We find that the total momentum fraction carried
by quarks is ⟨𝑥⟩𝜋

𝑞,𝑅
= 0.575(79) and ⟨𝑥⟩𝐾

𝑞,𝑅
= 0.683(50) and by gluons ⟨𝑥⟩𝜋

𝑔,𝑅
= 0.402(53)

and ⟨𝑥⟩𝐾
𝑔,𝑅

= 0.422(67) in the pion and in the kaon, respectively, in the MS scheme and at the
renormalization scale of 2 GeV. Having computed both the quark and gluon contributions in the
continuum limit, we verify the momentum sum, finding 0.984(89) for the pion and 1.13(11) for
the kaon.
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1. Introduction

There is a great interest in understanding the inner structure of hadrons both experimentally and
theoretically. For instance, in the case of the proton, after the measurement of the quark intrinsic
spin by the European Muon Collaboration, which found only around half of the total spin [1], there
has been a effort to understand the missing spin. Recent lattice QCD calculations showed that for
the case of the proton not only the valence quarks contribute to the spin, but also the sea quarks and
gluons [2]. The pion and kaon being spin zero have a simpler structure but they are experimentally
challenging. Experimental data is limited to studies from decades ago [3, 4] which are still being
used in global analysis for both the pion [5–9] and kaon [10–17]. New experiments are being
planned at the future Electron-Ion Collider (EIC) and Electron-Ion Collider in China (EIcC), which
aim to measure quark and gluon contributions in the pion and kaon [18–20]. In this work, we present
the first flavor decomposition of the average momentum fraction using three gauge ensembles with
𝑁 𝑓 = 2 + 1 + 1 twisted-mass clover-improved fermions simulated with physical quark masses and
in the continuum limit.

2. Lattice Setup

Three gauge field ensembles generated by the Extended Twisted Mass Collaboration (ETMC)
with 𝑁 𝑓 = 2 + 1 + 1 quarks reproducing physical pion mass, are used in this work [21]. The
parameters of these gauge ensembles are given in Table 1.

Table 1: ETMC ensembles analyzed. 𝑎 is the lattice spacing and 𝐿 (𝑇 = 2𝐿) the lattice spatial (temporal)
extent in fm, and 𝑀𝜋± and 𝑀𝐾± the charged pion and kaon mass, respectively.

Ensemble a [fm] L [fm] 𝑀𝜋± [MeV] 𝑀𝐾± [MeV]
cB211.072.64 (B) 0.0796(1) 5.09 140.40(22) 498.41(11)
cC211.060.80 (C) 0.0682(1) 5.46 136.05(30) 495.27(14)
cD211.054.96 (D) 0.0569(1) 5.46 141.01(22) 494.77(11)

The momentum fraction is extracted from the matrix element of the energy-momentum tensor in
the forward direction given by

⟨ℎ(p) | 𝑇𝑋𝜇𝜈 | ℎ(p)⟩ = 2⟨𝑥⟩𝑋
(
𝑝𝜇𝑝𝜈 − 𝛿𝜇𝜈

𝑝2

4

)
, (1)

where ℎ(p) represents the pion or kaon state, the index 𝑋 = 𝑞, 𝑔 denotes the contributions from
quarks and gluons to the total momentum of the hadron. The energy and momentum tensor for
quarks and gluons in Euclidean space-time is given, respectively, by:

𝑇
𝑞
𝜇𝜈 = − (𝑖)

𝜅𝜇𝜈

4
𝑞

(
𝛾𝜇
↔
𝐷𝜈 +𝛾𝜈

↔
𝐷𝜇 −𝛿𝜇𝜈

1
2
𝛾𝜌
↔
𝐷𝜌

)
𝑞 ,

𝑇
𝑔
𝜇𝜈 = (𝑖)𝜅𝜇𝜈

(
𝐹𝜇𝜌𝐹𝜈𝜌 + 𝐹𝜈𝜌𝐹𝜇𝜌 − 𝛿𝜇𝜈

1
2
𝐹𝜌𝜎 𝐹𝜌𝜎

)
, (2)
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with 𝜅𝜇𝜈 = 𝛿𝜇,4 𝛿𝜈,4, and the symmetrized covariant derivative
↔
𝐷𝜇 =

→
𝐷𝜇 −

←
𝐷𝜇 and 𝐹𝜇𝜈 is the

gluon field-strength tensor.
To compute the matrix elements in Eq.1, ratios of the following three- and two-point functions are
analysed

𝑅𝑋44(𝑡ins, 𝑡s) = −
4
3
𝜔𝑇 (𝑡s, 0)
𝑚ℎ

⟨ℎ(𝑡s, 0) 𝑇𝑋44(𝑡ins) ℎ(0, 0)⟩
⟨ℎ(𝑡s, 0) ℎ(0, 0)⟩

,

𝑅𝑋4𝑘 (𝑡ins, 𝑡s) =
𝜔𝑇 (𝑡s, p)

p2

∑
𝑗 p 𝑗 ⟨ℎ(𝑡s, p) 𝑇𝑋4 𝑗 (𝑡ins) ℎ(0, p)⟩

⟨ℎ(𝑡s, p) ℎ(0, p)⟩
, (3)

where |p| = 2𝜋/𝐿, 𝑡s is the time separation between source and sink and 𝑡ins the time separation
between the source and the operator insertion. The term 𝜔𝑇 (𝑡s, q) in the numerator of Eq. 3. If 𝑡s
and 𝑡ins are large enough, then asymptotically both ratios of Eq. (3) are reduced to ⟨𝑥⟩𝑋.

3. Analysis

The ratios of Eq. 3 for the connected and disconnected contributions are shown in Fig. 1, where
we show the bare ratio 𝑅ℓ44 for the light quark-connected as well as 𝑅ℓ4𝑘 for light quark-disconnected.
For the charged kaon, the light connected contribution is from the 𝑢-quark. The disconnected
contribution shown in Fig. 1, corresponds to the disconnected 𝑢 + 𝑑 quark loop. The errors on
the ratios are computed using a jackknife analysis. Both quark-connected and disconnected ratios
converge to a constant for large values of the 𝑡ins and 𝑡s. Within this so-called plateau region, we
perform simultaneously fits to a constant using data sets for several combinations of 𝑡s and varying
ranges of 𝑡ins. We model-average over these fits, with weights based on the Akaike Information
Criterion [22].
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Figure 1: The bare ratio 𝑅ℓ44 for quark-connected (left) and 𝑅ℓ4𝑘 for quark-disconnected (right) contributions
to ⟨𝑥⟩𝐾

ℓ
versus the 𝑡ins − 𝑡s/2 for the C ensemble. In each case, we display results for several values of 𝑡s,

namely 𝑡s/𝑎 = 30 to 80 for the quark-connected and 𝑡s/𝑎 = 8 to 24 for the quark-disconnected contribution.
The red band shows the model average value from plateau fits for varying combinations of 𝑡s.

In the case of the gluon contribution, we apply four-dimensional stout smearing [23] to the
gauge field used to construct the lattice gluon field-strength tensor. In Fig. 2, we show an example for
the C ensemble for 10 stout smearing steps. As can be seen, there are excited state contributions and
thus we perform both plateau and two-state fits. After renormalization , the results are independent
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Figure 2: The bare ratios for the gluon contribution using the ensemble C. We show data for six values of
the sink-source time separation 𝑡𝑠 using 10 stout-smearing steps. The left panel is for the pion and the right
panel for the kaon. The horizontal band in each plot shows the value after model-averaging over the constant
and two-state fits and varying 𝑡s and 𝑡ins included .

of the stout smearing in the range 5 ≤ 𝑛𝑠𝑡𝑜𝑢𝑡 ≤ 10, and therefore, the final result is obtained by
fitting simultaneously ratios with 5 ≤ 𝑛𝑠𝑡𝑜𝑢𝑡 ≤ 10. We perform a model average of the results
arising from varying the number of 𝑡s we include in the fit and from plateau and two-state fits.

4. Renomalization and Continuum Limit

The calculated quark and gluon average momentum fractions are renormalized nonperturba-
tively by using the RI′/MOM scheme followed by perturbative conversion to MS at the reference
scale of 2 GeV. The quark flavor-singlet and gluon components mix under renormalization according
to: (

⟨𝑥⟩𝑞,R
⟨𝑥⟩𝑔,R

)
=

(
𝑍 𝑠𝑞𝑞 𝑍𝑞𝑔

𝑍𝑔𝑞 𝑍𝑔𝑔

) (
⟨𝑥⟩𝑞
⟨𝑥⟩𝑔

)
.

The non-singlet combinations ⟨𝑥⟩𝑢+𝑑−2𝑠 and ⟨𝑥⟩𝑢+𝑑+𝑠−3𝑐 are also calculated. The renomalized
quantities are given by:

⟨𝑥⟩𝑢+𝑑−2𝑠 = 𝑍𝑞𝑞 (⟨𝑥⟩𝑢 + ⟨𝑥⟩𝑑 − 2⟨𝑥⟩𝑠), (4)
⟨𝑥⟩𝑢+𝑑+𝑠−3𝑐 = 𝑍𝑞𝑞 (⟨𝑥⟩𝑢 + ⟨𝑥⟩𝑑 + ⟨𝑥⟩𝑠 − 3⟨𝑥⟩𝑐), (5)

where 𝑍𝑞𝑞 denotes the nonperturbatively determined non-singlet renormalization factor. The
calculation of all renormalization factors entering our study is described in detail in Ref. [24].

The twisted-mass fermion lattice action at maximal twist exhibits automaticO(𝑎) improvement,
meaning that leading discretization artefacts appear at second order in the lattice spacing. In Fig. 3,
we show the results for the three ensembles for the total quark and gluon contribution and their sum.
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Figure 3: Continuum limit extrapolation for the pion (left panel) and the kaon (right panel). We present our
results for the total quark and gluon contributions, as well as the momentum sum rule. The blue filled circles
are results for the B ensemble [28], the orange upwards triangles for the C ensemble and the green downwards
triangles for the D ensemble. The open symbol is the result after model averaging over the constant and
linear fits.

The final continuum limit value is obtained by model averaging the linear fit in 𝑎2 and constant fits.
The sum rule

⟨𝑥⟩𝑞,𝑅 + ⟨𝑥⟩𝑔,𝑅 = 1, (6)

is satisfied within errors. The results of all renormalized results are given in Table 2 for both the
pion and kaon. For comparison, we also include the momentum faction of the nucleon computed
using only the B ensemble [2]. As can be seen, the gluon contribution for these three hadrons, is
the same within errors. In Fig. 4, we show the momentum fraction for each quark flavor and the
gluon as well as their sum in the continuum limit using the results of Table 2.

In Fig. 5, we show a comparison of our results with those of other groups. We include recent
results from phenomenological analyses [6, 7], from the Dyson Schwinger equations (DSE) [13],
from a calculation using the light-front wave function (LFWF) approach [14] and from lattice
QCD computations [25, 26], limiting ourselves to those which are extrapolated to the continuum
limit. The two other lattice QCD results shown are computed using ensembles simulated with pion
masses larger than physical and then extrapolated to the physical pion mass. Furthermore, they both
considered only a partial sum of disconnected contributions, namely only the quark disconnected
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Figure 4: The quark and gluon momentum fractions for the pion (left panel) and kaon (right panel) using
the numbers in Table 2. Inner bars represent only the connected contributions, while the outer bars show the
total, including disconnected contributions.
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Figure 5: Comparison of the results of this work, with other available data, both from phenomenology and
from lattice QCD. All results are given in the MS scheme at the scale of 𝜇 = 2 GeV. The upper panels show
the results for gluon (left) and quark (right) momentum fractions for the pion, ⟨𝑥⟩𝜋g,R and ⟨𝑥⟩𝜋q,R, respectively.
The lower panels show the corresponding results for the kaon. The red filled squares show the results of
this work with the red band the associated error band. Recent results from phenomenological analyses of
PDFs data are given by open symbols: left green triangle from Ref [6]) and right orange triangle by the JAM
Collaboration [7]. The result based on the LFWF[14] is represented by the down blue triangle, while the
result from the DSE [13] is represented by the black cross, where no error is provided. Recent lattice QCD
results extrapolated to the continuum limit are given by the brown filled circle (RQCD [25]) and the gray
pentagon (MSULat [26]).
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Table 2: Compilation of results for the pion and the kaon in the continuum limit along those for the proton
for the B- ensemble [2]. All quantities are presented at the scale 2 GeV in the MS scheme.

𝜋 𝐾 𝑝 (B-ensemble)

⟨𝑥⟩𝑢,R 0.249(28) 0.269(09) 0.354(30)
⟨𝑥⟩𝑑,R 0.249(28) 0.059(09) 0.188(19)
⟨𝑥⟩𝑠,R 0.036(15) 0.339(11) 0.052(12)
⟨𝑥⟩𝑐,R 0.013(16) 0.028(21) 0.019(09)
⟨𝑥⟩𝑔,R 0.402(53) 0.422(67) 0.427(92)
⟨𝑥⟩𝑞,R 0.575(79) 0.683(50) 0.618(60)
⟨𝑥⟩𝑢+𝑑−2𝑠,R 0.438(18) −0.362(08) − − −
⟨𝑥⟩𝑢+𝑑+𝑠−3𝑐,R 0.521(51) 0.494(36) − − −
⟨𝑥⟩g,R + ⟨𝑥⟩q,R 0.984(89) 1.13(11) 1.04(11)
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Figure 6: Results on 𝛿𝑥𝑔,𝑅 (left) and 𝛿𝑥𝑞,𝑅 (right).

is considered in Ref. [25] but not the gluon contribution, whereas only the gluon is considered in
Ref. [26]. There are cases where all contributions are included, but those are restricted to only one
lattice spacing [28] at physical pion mass or for larger than physical pion masses [27, 29]. Our result
for ⟨𝑥⟩𝜋

𝑔,𝑅
is in agreement with the one from Ref. [26], while ⟨𝑥⟩𝜋

𝑞,𝑅
is consistent with RQCD [25],

that, however, carries a very large error. In the case of the kaon, the only available lattice QCD
data [27] is for one lattice spacing using an ensemble with a heavier-than-physical pion mass and
thus one cannot directly compare to the present work.

For completeness, we calculated the difference between the quark and gluon momentum
fractions in the pion and kaon, 𝛿𝑥𝑞,𝑅 ≡ ⟨𝑥⟩𝐾𝑞,𝑅 − ⟨𝑥⟩𝜋𝑞,𝑅 and 𝛿𝑥𝑔,𝑅 ≡ ⟨𝑥⟩𝐾𝑔,𝑅 − ⟨𝑥⟩𝜋𝑔,𝑅 In Fig. 6, we
show results on 𝛿𝑥𝑞,𝑅 and 𝛿𝑥𝑔,𝑅. We find that 𝛿𝑥𝑔,𝑅 = −0.022(37) and 𝛿𝑥𝑞,𝑅 = 0.102(85), which
suggest that the gluon momentum fraction is the same in the pion and kaon.
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5. Summary and Conclusions

We present the flavor decomposition of the momentum fraction for the pion and kaon in the
continuum limit using three ensembles of 𝑁 𝑓 = 2+1+1 twisted mass fermions at the physical point.
The results presented indicate a similar gluon momentum fraction in the pion and kaon. There is
also agreement with the gluon momentum fraction found in the nucleon for the B ensemble. Given
the mild dependence on the lattice spacing, one may deduce that the gluon momentum in proton in
the continuum limit will remain similar as that in the pion and kaon.

In the future, we aim to reduce the statistical errors both by increasing the number of source
positions and gauge configurations. In addition, the analysis of an ensemble closer to the continuum
limit will help to better control the continuum extrapolation.
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