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1. Introduction

The study of electromagnetic polarizabilities is a long-standing pursuit in hadronic physics,
and its investigation within lattice QCD presents both intriguing opportunities and considerable
challenges. Traditionally, the background field method has been the go-to technique for computing
polarizabilities, providing reliable results for neutral hadrons. This approach has seen widespread
application in various lattice studies [1–3]. However, the situation becomes considerably more
complicated when dealing with charged particles. In this case, the problem is twofold: the quenching
of the external electromagnetic field and the fact that charged hadrons, when placed in an external
field, will experience effects like the formation of Landau levels in a magnetic field. These challenges
have limited the number of lattice QCD calculations for charged hadrons, with much of the focus
remaining on neutral mesons, such as the pion.

In this work, we employ the four-point functions method—an approach that, while not new, has
not received as much attention in the context of polarizabilities. Four-point correlation functions
have been used to study a variety of hadronic properties [4], but their potential for extracting
polarizabilities has only recently been appreciated. To our knowledge, there have been two notable
attempts in the past, one using position-space methods [5] and the other in momentum space [6].

The four-point function method is ideally suited for studying charged hadrons. By directly
incorporating the effects of the hadronic structure in a manner that avoids many of the pitfalls of the
background field approach, this method holds promise for more precise and robust calculations. Our
goal is to present a detailed study of the electric polarizability of the charged kaon, using lattice
QCD four-point functions, and to compare our results with those obtained from other approaches.

2. Charged Kaon

Figure 1: Pictorial representation of the four-point function in Eq.(1) for 𝐾+. Time flows from right to left
and the four-momentum conservation is 𝑝2 + 𝑘2 = 𝑘1 + 𝑝1.

In Ref. [7] a formula for the electric polarizability of the charged pion is derived. For the kaon,
the formula is the same except for the replacement of the pion mass with the kaon mass,

𝛼𝐾𝐸 =
𝛼 𝑟2

𝐸

3𝑚𝐾
+ lim

𝒒→0

2𝛼
𝒒 2

∫ ∞

0
𝑑𝑡

[
𝑄44(𝒒, 𝑡) −𝑄𝑒𝑙𝑎𝑠44 (𝒒, 𝑡)

]
. (1)

Here, 𝛼 = 1/137 represents the fine structure constant. The first term in the equation includes the
charge radius and the kaon mass, which we will refer to as the elastic contribution. The second term
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results from subtracting the elastic contribution𝑄𝑒𝑙𝑎𝑠44 from the total, and we will call this the inelastic
contribution. This formula is applied in discrete Euclidean spacetime, though we retain a continuous
Euclidean time axis for ease of notation. Special kinematics, known as the zero-momentum Breit
frame, are used in the formula to simulate low-energy Compton scattering. The process is illustrated
in Fig. 1. Part of evaluating the four-point function is to evaluate the topologically distinct quark-line
diagrams. These diagrams are shown in Fig. 2. The raw correlation functions can be found in
Ref. [7].

Figure 2: Skeleton diagrams of a four-point function contributing to polarizabilities of a meson: (a)
connected insertion: different flavor, (b) connected insertion: same flavor, (c) connected insertion: same
flavor Z-graph, (d) disconnected insertion: single loop, double current, (e) disconnected insertion: single
loop, (f) disconnected insertion: double loop. In each diagram, flavor permutations are assumed as well as
gluon lines that connect the quark lines. The zero-momentum pion interpolating fields are represented by
vertical bars (wall sources). Time flows from right to left.

3. Simulation details and results

It is worth mentioning that our current results have some limitations. Firstly, we use 99
configurations for our analysis. This explains the comparatively large error bars. We are currently
working towards performing an analysis using 500 configurations. Secondly, as a proof-of-principle
simulation, we use quenched Wilson fermions.

3.1 Raw correlation functions

We present in Fig. 3 the raw normalized four-point functions 𝑄44 at two different values of
momentum 𝒒 and at 𝑚𝜋 = 600𝑀𝑒𝑉 . These plots exhibit several interesting features. First, the point
where 𝑡1 = 𝑡2 behaves regularly in diagram (a) but yields irregular results in diagrams (b) and (c)
for all values of 𝒒. This irregularity corresponds to the contact term discussed in Ref. [7], and we
exclude this point from our analysis. Second, the results around 𝑡1 = 18 in diagrams (b) and (c) are
mirror images of each other, which is due to the two different time orderings of the same diagram.
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In principle, this symmetry could be leveraged to reduce the computational cost of simulations.
However, in this study, we computed all three diagrams separately.

Figure 3: Normalized four-point functions from the connected diagrams as a function of current separation at
𝑚𝜋 = 600𝑀𝑒𝑉 .

3.2 Elastic form factor

The formula for electric polarizability in Eq.(1) includes the charge radius 𝑟𝐸 and the elastic
contribution 𝑄𝑒𝑙𝑎𝑠44 , both of which can be determined from the long-time behavior of the four-point
functions 𝑄44. According to the following equation given in Ref. [7],

𝑄𝑒𝑙𝑎𝑠44 (𝒒, 𝑡) = (𝐸𝐾 + 𝑚𝐾 )2

4𝐸𝐾𝑚𝐾
𝐹2
𝐾 (𝒒2) 𝑒−𝑎 (𝐸𝐾−𝑚𝐾 )𝑡 . (2)

𝑄𝑒𝑙𝑎𝑠44 is expected to follow a single-exponential behavior with a decay rate of 𝐸𝐾 − 𝑚𝐾 . The form
factor 𝐹𝐾 is embedded in the amplitude of this decay. As discussed in Ref. [7], diagrams 𝑎 and 𝑏
display the expected decay, while diagram 𝑐 does not. For the elastic contribution, we can omit

Figure 4: Normalized four-point functions from diagrams 𝑎 and 𝑏 in log plot and their effective mass functions
at different values of 𝒒 and 𝑚𝜋 = 600 MeV. They are plotted as functions of time separation 𝑡 = 𝑡2 − 𝑡1
between the two currents relative to fixed 𝑡1 = 18. The horizontal gridlines in the effective mass are 𝐸𝐾 −𝑚𝐾
using continuum dispersion relation for 𝐸𝐾 with measured 𝑚𝐾 . These functions are used to extract the elastic
contributions 𝑄𝑒𝑙𝑎𝑠44 .
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diagram 𝑐 and concentrate on diagrams 𝑎 and 𝑏, which enhances the form factor analysis by removing
the inelastic ’contamination’ from diagram 𝑐, serving as an optimization in the analysis.

Fig. 4 provides an example of the four-point functions 𝑄𝑎𝑏44 , including only diagrams 𝑎 and 𝑏,
along with their effective mass functions. We focus on the signal region between 𝑡1 and 𝑡3, plotting
them as a function of the time separation 𝑡 = 𝑡2 − 𝑡1 between the two currents. The 𝑡 = 0 point is
excluded from the analysis due to contact terms, as mentioned earlier. There is a region where the
effective mass functions align with the 𝐸𝐾 −𝑚𝐾 gridlines, indicating that𝑄𝑎𝑏44 is primarily governed
by elastic contributions. This agreement is more pronounced at lower momentum values. At larger
times, the signal becomes noisy, particularly at higher momentum.

To address potential deviations from the continuum dispersion relation, we fit the functional
form of 𝑄𝑒𝑙𝑎𝑠44 in Eq.(2), treating 𝐹𝐾 , 𝐸𝐾 as free parameters while keeping 𝑚𝐾 fixed at its measured
value from two-point functions. After the form factor data are obtained, we fit them to the monopole
form,

𝐹𝜋 (𝒒2) = 1
1 + 𝒒2/𝑚2

𝑉

, (3)

which is the well-known vector meson dominance (VMD) commonly considered in pion form factor
studies. We use the monopole form because of the availability of just two momenta. As we move on
with our analysis, we will be working with data for four momenta, at which point we will be using
the z-expansion parametrization [8] for a better fit. The results are illustrated in Fig. 5. Once the

Figure 5: Pion elastic form factors extracted from four-point functions. The blue data points are the measured
values. The green solid line is a fit to the monopole form in Eq. (3). 𝑚𝐾 and 𝑞2 values in lattice units.
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functional form of form factor is determined, the charge radius is obtained by

𝑟2
𝐸 = −6

𝑑𝐹𝐾 (𝒒2)
𝑑𝒒2

���
𝒒2→0

. (4)

3.3 Electric polarizability

After determining the elastic contribution 𝑄𝑒𝑙𝑎𝑠44 , we now focus on the inelastic part of 𝛼𝐸 from
Eq.(1). In Fig. 6, we present the total contribution 𝑄44 (from all three diagrams) and 𝑄𝑒𝑙𝑎𝑠44 as
functions of the current separation 𝑡 = 𝑡2 − 𝑡1, using 𝑚𝜋 = 600 MeV as an example. The graphs for
other pion masses are similar. Although 𝑄𝑒𝑙𝑎𝑠44 is derived from the large-time region, the subtraction
is applied across the entire region based on the functional form in Eq.(2). Most contributions arise
from the small-time region where inelastic effects are more prominent. We observe that 𝑄𝑒𝑙𝑎𝑠44
consistently exceeds 𝑄44, implying a negative inelastic term in the formula. The time integral
corresponds to the negative of the area between the two curves. Notably, the curves include the

Figure 6: Total 𝑄44 and elastic 𝑄𝑒𝑙𝑎𝑠44 at different values of 𝒒 at 𝑚𝜋 = 600 MeV. The area between the curves,
(1/𝑎)

∫
𝑑𝑡
[
𝑄44 (𝒒, 𝑡) −𝑄𝑒𝑙𝑎𝑠44 (𝒒, 𝑡)

]
, is the dimensionless signal contributing to polarizability.

𝑡 = 0 point, which contains unphysical contributions in 𝑄44, as previously mentioned. Typically,
we would exclude this point and start the integral from 𝑡 = 1. However, the area between 𝑡 = 0 and
𝑡 = 1 constitutes the largest portion of the integral. To account for this, we linearly extrapolated the
𝑄44 term back to 𝑡 = 0 using the values at 𝑡 = 1 and 𝑡 = 2. This introduces a systematic effect of
order 𝑂 (𝑎2), as the error itself is of order 𝑂 (𝑎). This effect diminishes as the continuum limit is
approached, with the area shrinking to zero. Including this point in 𝑄𝑒𝑙𝑎𝑠44 using its functional form
poses no issue.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
3
0
9

Electric Polarizability of Charged Kaons from Lattice QCD Four-Point Functions Shayan Nadeem

Figure 7: Kaon mass dependence of electric polarizability of a charged kaon from four-point functions in
lattice QCD. Elastic and inelastic contributions correspond to the two terms in the formula in Eq.(1). Magenta
triangle is the experimental PDG value for the elastic term. Pink star is the ChPT value for the kaon electric
polarizability. The elastic data points are manually shifted to the right for better visibility.

The inelastic term is constructed by multiplying 2𝛼/𝒒,2 by the time integral; this entire term is
a function of momentum. Since 𝛼𝐸 is a static property, we smoothly extrapolate it to 𝒒2 = 0. Due to
the limitation of having only two momentum values, we use a linear fit for this extrapolation. Finally,
we combine the two terms in the formula from Eq.(1) to calculate 𝛼𝐸 in physical units.

To examine the trend at smaller pion masses, we will take the total values for 𝛼𝐸 at four pion
masses and perform a smooth extrapolation to the physical point. Currently, we only display a
connected line between data points. The results are summarized in Fig. 7. At the pion masses studied,
our lattice results reveal a distinct pattern for electric polarizability: the elastic term contributes
positively, while the inelastic term contributes negatively but with a smaller magnitude. This partial
cancellation results in a positive total value. The cancellation appears to persist as we approach the
physical point, though it is less quantitatively conclusive, as indicated by the uncertainty bands from
the extrapolations. This underscores the importance of investigating smaller pion masses in future
simulations. The results in Fig. 7 show a similar trend to the results in Ref. [7] for the pion. It can
be seen that the electric polarizability increases with decreasing pion mass. It also seems that an
extrapolation to the physical point will result in a value higher than the ChPT result, which is what
we see for the pion as well.

3.4 Conclusions

In this study, we have explored an alternative approach to calculating the electric polarizability
of the charged kaon using four-point functions in lattice QCD. By leveraging four-point correlation
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functions, we overcome challenges that arise from electro-quenching and the complexities of charged
hadrons in external electromagnetic fields, as discussed in previous works [5, 6].

Our results highlight the separation of the elastic and inelastic contributions to the kaon’s
electric polarizability. The elastic term contributes positively, while the inelastic term introduces a
smaller negative contribution, leading to a cancellation between the two terms. These findings are
consistent with earlier studies of charged hadrons [9, 10].

The relatively small number of configurations (99) used in this study introduces statistical
uncertainties. We are working towards using a larger configuration set (500) to help reduce these
uncertainties significantly. Moreover, the current simulation utilizes quenched Wilson fermions,
which have known limitations, as evidenced in earlier studies [3, 11]. Future work will involve using
dynamical fermions, which will better reflect the physical quark content and improve the reliability
of the results.

As we move forward, we will also be using data for 4 momenta instead of 2, and apply more
sophisticated fitting methods, such as the z-expansion [8], to enhance the accuracy of our results.
Our analysis also suggests that a more detailed exploration of smaller pion masses will be important
for refining the extrapolation to the physical point, a task that has been undertaken in other works
studying meson polarizabilities [2, 12].
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