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We study the gauge dependence of 22̄ potentials extracted from Nambu-Bethe-Salpeter (NBS)
wave functions. The potentials are obtained using the HAL QCD potential method, with an ex-
tension introduced by Kawanai and Sasaki for self-consistent determination of the charm quark
mass. A systematic comparison is conducted between results obtained in the Coulomb and Lan-
dau gauges. The numerical calculations are performed using 2+1 flavor QCD gauge configurations
with the charm quark treated in the quenched approximation. We find that the central potentials
in both gauges show excellent agreement at short distances but exhibit discrepancies at large dis-
tances. We attribute these discrepancies to insufficient suppression of excited-state contamination
in the Landau gauge, which affects the linear-rising behavior of the potential at large distance.
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1. Motivation

This work presents a detailed investigation of the gauge dependence of 22̄ potentials and charm
quark masses determined via the NBS amplitude method, which originated from the HAL QCD
method [1–3]. While the gauge dependence of these quantities is intrinsically important, previous
studies have predominantly employed the Coulomb gauge [4–13], with one notable exception in
an unpublished work by Hideaki Iida. Their study, conducted in the Landau gauge, suggests that
this gauge choice may influence the long-distance behavior of the central potential, though detailed
results remain unavailable. Such behavior contradicts the expectation that the 22̄ potentials obtained
from the NBS amplitude method in both Coulomb and Landau gauges should converge to the unique
static @@̄ potential obtained from the Wilson loop in the limit <2 → ∞.

Furthermore, the present study extends to investigating diquark properties within quark-diquark
systems, particularly focusing on diquark mass determination. The 22̄ system serves as an ideal sim-
plified model for understanding the more complex quark-diquark system, as it shares fundamental
characteristics with the diquark while maintaining analytical tractability. This approach allows for
the development of necessary formalism and numerical methods before addressing the full com-
plexity of the @@̄ system.

2. Formalism

We review the formalism of the Nambu-Bethe-Salpeter (NBS) amplitude approach, i.e., the
extension of the HAL QCD potential method by Kawanai and Sasaki for calculating the 22̄ potential
with charm quark mass determined self-consistently [4–8, 13].

The equal-time NBS amplitude of the charmonium system in the center-of-momentum (c.m.)
frame, under a specific gauge-fixing condition, is defined as

qΓ,= (r ≡ y − x) ≡ 1
+

∑
�

∑
2

〈0|@̄2 (x + �)Γ@2 (y + �) |Γ, =〉. (1)

Here, + denotes the spatial volume of the system in a finite box, with
∑

� corresponding to the
projection onto zero total momentum states. @2 (G) denotes the Dirac field for the charm quark with
color index 2 = 1, 2, 3, and Γ represents a Dirac W matrix. For this study, we choose Γ = W5 for the
pseudoscalar (PS) state (�% = 0−) and Γ = W8 (8 = 1, 2, 3) for the vector (V) state (�% = 1−). The
state |Γ, =〉, defined in the c.m. frame, denotes the =-th excited eigenstate of the 22̄ system in the Γ

channel. By setting x = 0 without loss of generality, Eq. (1) simplifies to

qΓ,= (r) =
1
+

∑
�

∑
2

〈0|@̄2 (�)Γ@2 (r + �) |Γ, =〉 (2)

This defines the NBS wave function of the 22̄ system.
The NBS wave functions can be extracted from four-point correlators of charm quark fields,

defined as
�Γ (r, C; Csrc) ≡

1
+

∑
�

∑
2

〈
0
��) [@̄2 (�, C)Γ@2 (� + r, C)J †

Γ
(Csrc)

] ��0〉, (3)

where ) denotes time ordering, and the wall source operator for 22̄ at certain time C is given as

JΓ (C) ≡
∑
x′ ,y′

∑
2′
@̄2′ (x′, C)Γ@2′ (y′, C). (4)
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We set the source time to zero without loss of generality and drop the explicit notation of Csrc,
writing �Γ (r, C) instead of �Γ (r, C; Csrc). By inserting the complete set I =

∑
= |Γ, =〉〈Γ, =|, the

correlator can be expressed as a linear combination of NBS wave functions:

�Γ (r, C) =
∑
=

0Γ,=qΓ,= (r)4−�Γ,=C , (5)

where 0Γ,= ≡ 〈Γ, =|J †
Γ
(0) |0〉 and �Γ,= denotes the relativistic energy of the state |Γ, =〉. Contri-

butions from excited states are exponentially suppressed in the large-C limit. For the ground-state
charmonium in the Γ channel, The energy eigenvalue �Γ,0 can be replaced by the rest mass "Γ due
to the system being in the c.m. frame. In what follows, we consider the ground-state NBS wave
function and adopt a simplified notation qΓ (r) ≡ qΓ,0(r) for brevity.

The S-wave projection of the ground-state NBS wave function is approximated by qΓ (r) →
1
48

∑
6∈$ℎ

qΓ (6−1r) on the lattice, corresponding to the �+
1 irreducible representation of the cubic

symmetry group$ℎ. While this projection contains higher partial-wave (; ≥ 4) contributions, such
contamination becomes negligible for compact bound states when the lattice spacing is sufficiently
fine and the spatial volume is large.

The NBS wave functions are assumed to satisfy the stationary Schrödinger equation [2]

�ΓqΓ (r) =
(
 ̂ + +̂

)
qΓ (r), (6)

where �Γ ≡ "Γ − 2<2 represents the ”binding energy” of the charmonium system. The rest mass
"Γ is determined from the two-point correlators, while <2 remains to be determined through the
Kawanai-Sasaki condition [4]. The kinetic energy operator is defined as  ̂ ≡ −∇2

2` with the reduced
mass ` = <2/2, and +̂ denotes the potential operator. The Laplacian operator ∇2 is discretized on
the lattice using the nearest-neighbor finite-difference scheme as ∇2q(x) ' ∑

8=G,H,I

[
q(x + 0e8) +

q(x− 0e8) − 2q(x)
]
/02, where 0 denotes the lattice spacing, and e8 represents the unit vector in the

8-th spatial direction with 8 = G, H, I.
In the leading order of the derivative expansion, the potential operator +̂ takes the form

+̂ ' +0(r) ++S(r)s1 · s2 +$ (∇), (7)

where +0(r) is the (spin-independent) central potential, and +S(r) denotes the spin-dependent po-
tential for the spin-spin interaction. s1 and s2 represent the spin operators for the anti-charm quark
(2̄) and the charm quark (2), respectively. The tensor potential vanishes under the S-wave projection.

The spin operator s1 · s2 in the PS and V channels can be substituted by its eigenvalues −3/4
and 1/4, respectively Consequently, Eq. (6) simplifies to

�PSqPS(r) =
(
−∇2

2`
++0(r) −

3
4
+S(r)

)
qPS(r),

�VqV(r) =
(
−∇2

2`
++0(r) +

1
4
+S(r)

)
qV(r).

(8)

From the above equations, we can derive explicit expressions for +0(r) and +S(r):

+0(r) =
1

4<2

[
3
∇2qV(r)
qV(r)

+ ∇2qPS(r)
qPS(r)

]
+ �ave, (9)

+S(r) =
1
<2

[∇2qV(r)
qV(r)

− ∇2qPS(r)
qPS(r)

]
+ Δ�, (10)
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where �ave is defined as 1
4 (3"V + "PS) − 2<2, and Δ� ≡ "V − "PS representing the hyperfine

mass splitting between the ground states of the PS and V channels.
In the quark model, the spin-dependent potential +S(r) originates from the color-magnetic in-

teraction (spin-color interaction). This potential is proportional to the delta function, indicating that
+S(r) is characterized by an extremely short-range behavior. Based on this observation, Kawanai
and Sasaki proposed a condition, known as the Kawanai-Sasaki condition:

lim
A→∞

+S(r) = 0. (11)

By combining Eq. (11) with Eq. (10), we obtain

<2 = − lim
A→∞

�KS(r), (12)

where we introduce the Kawanai-Sasaki function �KS(r) defined by

�KS(r) =
1

"V − "PS

[
∇2qV(r)
qV(r)

− ∇2qPS(r)
qPS(r)

]
. (13)

3. Numerical results

3.1 Lattice Setup

We use the 2 + 1 flavor QCD gauge configurations on an !3 × ) = 323 × 64 lattice generated
by PACS-CS Collaboration [14], which employ the RG improved Iwasaki gauge action at V = 1.90
and the non-perturbatively O(a)-improved Wilson quark action with 2SW = 1.715 at (^ud, ^s) =

(0.13781, 0.13640). This parameter set corresponds to the lattice spacing 0 = 0.0907(14) fm
(or 0−1 = 2.17(53) GeV), the lattice spatial size !0 = 2.902(42) fm and the pion mass <c '
155.7 MeV. Gauge configurations are fixed to both the Coulomb gauge and the Landau gauge. The
charm quark is introduced by the quenched approximation using the relativistic heavy quark (RHQ)
action with the parameters in Ref.[15].

We calculate the two-point and four-point correlators of the 22̄ system using quark propagators
generated from a wall source and a point sink with the periodic boundary condition imposed on
the temporal and the spatial directions. Statistical data are binned with size ;bin = 11. Statistical
precision is enhanced in several ways: (i) 64 source points in the temporal direction are utilized
through translational symmetry, and (ii) the propagators in both forward and backward directions
are used through time reversal and charge conjugation symmetries.

3.2 Charmonium spectroscopy from two-point correlators

The effective masses of charmonium calculated from the quenched lattice QCD simulation
are shown in Fig. 1, where results in both Coulomb and Landau gauges are presented for the PS
(corresponds to [2) and V (corresponds to �/k) channels. The effective mass is defined as

"Γ (C + 0
2 ) = ln

�Γ (C)
�Γ (C + 0)

, (14)
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Figure 1: Effective mass plots of charmonium in pseudoscalar (PS, left) and vector (V, right) channels in
Coulomb gauge (red) and Landau gauge (blue). The solid lines represent the masses extracted from single-
cosh fits to the two-point correlators in Coulomb gauge.

where �Γ (C) is the two-point correlator obtained by taking r = 0 and Csrc = 0 in the four-point
correlator �Γ (r, C; Csrc) defined in Eq. (3),

�Γ (C) =
1
+

∑
�

∑
2

〈
0
��) [@̄2 (�, C)Γ@2 (�, C)J †

Γ
(0)

] ��0〉. (15)

The solid lines represent the masses extracted from single-cosh fits to the two-point correlators in
Coulomb gauge. As expected from the gauge independence of charmonium masses, the effective
masses converge to the same value. However, in both PS and V channels, the plateaus appear at
smaller C in the Coulomb gauge compared to the Landau gauge, indicating that the wall source
operators in the Coulomb gauge have better overlap with the ground states.

A clear plateau is observed in the range 24.5 ≤ C/0 ≤ 28.5 for the Coulomb gauge, while
the points beyond C/0 = 29.5 show boundary artifacts. To avoid these artifacts and account for
the periodic boundary condition in the temporal direction, we fit the charmonium masses using a
single-cosh form, obtaining "PS = 2.9729(16) GeV and "V = 3.0745(19) GeV.

3.3 Ground-state NBS wave functions from four-point correlators

In the analysis of four-point correlators, we restrict our data to C/0 ≤ 29 to avoid the boundary
artifacts. The figures in this section display results as functions of the interquark distance A ≡ |r|.
Fig. 2 shows the normalized four-point correlators defined by

�̌Γ (r, C) = �Γ (r, C)/�Γ (0, C). (16)

The correlators in the Coulomb gauge exhibit quick convergence with respect to time. In contrast,
the Landau gauge correlators show slower convergence, particularly in the long-range region, where
they show plateau-like behavior. This behavior is consistent with our observations from the effective
mass plots (Fig. 1), where the plateaus appear at smaller C for the Coulomb gauge compared to
the Landau gauge. Within the spatial region A ® 0.65 fm, the correlators achieve approximate
convergence at C/0 = 29. Similar behavior is observed in the V channel.

Hereafter, unless otherwise specified, we consider the four-point correlators at C/0 = 29 to be
dominated by the ground state contribution and interpret them as the NBS wave functions. The

5
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Figure 2: The normalized four-point correlation
functions �̌Γ (r, C) in the PS channel at fixed time
C = 0, 4, 9, 14, 19, 24 and 29, shown for Coulomb
gauge (left) and Landau gauge (right). �̌Γ (r, C) is
plotted against A ≡ |r|.
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Figure 3: The normalized NBS wave functions
in Coulomb gauge (blue) and Landau gauge (red),
shown in PS (left) and V (right) channels. The
NBS wave functions are normalized by q̌Γ (A) =

qΓ (A)/qΓ (0).

comparison of the normalized ground-state NBS wave function in Coulomb gauge and Landau
gauge is shown in Fig. 3. The NBS wave functions are wider in Landau gauge than in Coulomb
gauge both in PS and V channels. A similar tendency is also reported for the quark-diquark NBS
wave function for the nucleon in Ref. [16].

3.4 Charm quark masses and 22̄ potentials

The charm quark masses are determined by the Kawanai-Sasaki condition Eq. (12). Kawanai-
Sasaki functions �KS(r) for different gauges are shown in Fig. 4. We fit the Kawanai-Sasaki func-
tions using a two-Gaussian parametrization defined as

5 (A) ≡
2∑

==1
0= exp(−a=A2) + �, (17)

where 0=, a= (= = 1, 2) and � are the fit parameters. Here � is responsible for the constant behavior
at the long distance, so the charm quark mass is obtained as<2 = −�. The fit results are also shown
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Figure 4: Kawanai-Sasaki function for Coulomb gauge (left) and Landau gauge (right). The red curves
represent fits using the two-Gaussian functional form given in Eq. (17). The horizontal dashed lines indicate
the asymptotic value �, which corresponds to the negative charm quark mass −<2.

in Fig. 4 denoted by red curves, through which we obtain <2 = 1932(8) MeV for Coulomb gauge
and smaller <2 = 1522(5) MeV for Landau gauge.
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The potentials are determined through the HAL QCD method, incorporating the calculated
charmonium masses, charm quark masses, and ground-state NBS wave functions. Fig. 5 presents
individual plots of the central potentials+0(r) in both Coulomb and Landau gauges. Fig. 6 illustrates
gauge dependence of the central potentials +0(r) (with Landau gauge results vertically offset for
clarity) and the spin-dependent potentials +S(r).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

r [fm]

−1.5

−1.2

−0.9

−0.6

−0.3

0.0

0.3

V
0
(r

)
[G

e
V

]

Coulomb (t/a = 29)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

r [fm]

−1.5

−1.2

−0.9

−0.6

−0.3

0.0

0.3

V
0
(r

)
[G

e
V

]

Landau (t/a = 29)

Figure 5: The central potential +0 (A) for charmonium in Coulomb gauge (left) and Landau gauge (right).

The central potential +0(r) in the Coulomb gauge (Fig. 5, left panel) exhibits Cornell-type
behavior throughout the entire spatial region. In contrast, +0(r) in the Landau gauge (Fig. 5, right
panel) demonstrates Coulomb-like behavior at short distances but deviates from the expected linear-
rising behavior at large distances. The superposition of data from both gauges (Fig. 6, left panel)
enables a direct comparison of their behaviors. The potentials agree well in the region A ® 0.5 fm,
beyond which their difference progressively increases. The deviation becomes significant beyond
A ∼ 0.6 fm, coinciding with the spatial region (A ¦ 0.65 fm) where the four-point correlators show
substantial excited-state contamination. This correspondence suggests that the absence of linear-
rising behavior at large distances in the Landau gauge potential stems from insufficient ground-state
dominance in the four-point correlators.
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Figure 6: The central potential +0 (A) (left) and the spin-dependent potential +S (A) (right) for 22̄ system in
Coulomb gauge (blue) and Landau gauge (red). The central potential +0 (A) in Landau gauge is vertically
shifted for direct comparison.

The spin-dependent potentials +S(r) (Fig. 6, right panel) can be characterized as vertically
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shifted �KS(r) with a scaling factor of 1/<2. These potentials are spatially localized within the
region of A ® 0.4 fm. The spatial extent of these potentials remains consistent between both
Coulomb and Landau gauges. Stronger +S(r) is observed in the Landau gauge compared to that
in the Coulomb gauge.

3.5 Comments on the results

If we assume that the central potentials +0(r) in both Coulomb and Landau gauges agree, the
observed behaviors of charm quark masses, equal-time NBS wave functions, and spin-dependent
potentials can be understood through non-relativistic perturbation theory. In this framework, the
Hamiltonian in Eq. (6) is decomposed into the unperturbed term �0 = −∇2/(2`) + +0(r) and the
perturbation term +S(r)s1 · s2.

The NBS wave functions obtained in this work exhibit broader spatial distributions in the Lan-
dau gauge than in the Coulomb gauge (Fig. 3). This can be explained, at the leading order of
perturbation theory, by the smaller charm quark mass <2 in the Landau gauge compared to that in
the Coulomb gauge. At next-to-leading order, reproducing the gauge-invariant hyperfine mass split-
ting "V − "PS with broader wave functions in the Landau gauge requires stronger spin-dependent
potential +S(r), as confirmed by our calculations (Fig. 6).

4. Summary

We investigated the gauge dependence of 22̄ potentials and charm quark masses from the NBS
amplitude method with the Kawanai-Sasaki prescription. Our calculations were performed in both
Coulomb and Landau gauges using 2+1 flavor QCD configurations. The central potentials obtained
in both gauges show good agreement at short distances (A ® 0.5 fm), while exhibiting significant
differences at larger distances. In the Landau gauge, we observe that the expected linear-rising
behavior of the central potential is suppressed at large distance, which we attribute to insufficient
ground-state dominance in the four-point correlators. Our analysis reveals three consistent features
in the Landau gauge results: a broader NBS wave function, a smaller charm quark mass, and a
stronger spin-dependent potential compared to the Coulomb gauge. These characteristics are mu-
tually consistent within the framework of non-relativistic perturbation theory.
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