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The axialvector diquark is studied by using 2+1 flavor Lattice QCD. Being a two-quark object,
diquark has a non-neutral color charge. Hence the two-point correlators of diquark fields do not
have a particle pole due to the color confinement of QCD, and it is not straightforward to study
the diquark mass by lattice QCD by using an exponential fit of a temporal two-point correlator.
In order to avoid this difficulty, our strategy is to regard the diquark mass as a mass parameter of
an effective quark-diquark model which is constructed by using an extended HAL QCD method
based on equal-time quark-diquark Nambu-Bethe-Salpeter (NBS) wave functions. We attempt
to calculate the axial-vector diquark mass and the quark-diquark potentials between a charm
quark and an axial-vector diquark in the Σ𝑐 baryon. Lattice QCD Monte Carlo calculation is
performed by using the 2+1 flavor QCD gauge configurations generated on 323 × 64 lattice by
PACS-CS Collaboration which corresponds to the pion mass of about 700 MeV. As a result, a
quark-diquark central potential of Cornell-type and a short-ranged spin-dependent potential are
obtained. However, from a quantitative point of view, the gound state convergence of the NBS
wave functions are not sufficient so that we obtain a larger string tension and a smaller axial-vector
diquark mass than we have expected phenomenologically.
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1. Introduction

The singly charmed baryons, Λ𝑐 and Σ+
𝑐 , consist of one up quark, one down quark and one

charm quark in the quark model picture. They have different iso-spin quantum numbers: Λ𝑐 is an
iso-scalar whereas Σ𝑐 is an iso-vector. This difference arises from the distinct quantum numbers of
the ud clusters in Λ𝑐 and Σ𝑐. The quantum numbers of the ud cluster in Λ𝑐 are 𝐽𝑃 = 0+, 𝐼 = 0 and
color 3̄, while those in Σ𝑐 are 𝐽𝑃 = 1+, 𝐼 = 1 and color 3̄. The ud cluster in Λ𝑐 is referred to as the
scalar (good) diquark, while that in Σ𝑐 is called the axial-vector (bad) diquark. The mass difference
between Λ𝑐 and Σ𝑐, i.e. 𝑚Λ𝑐

< 𝑚Σ𝑐
, can be attributed to the mass difference of these ud clusters.

In fact, the scalar diquark is expected to be lighter than the axial-vector diquark, as suggested by the
color-magnetic interaction and the instanton-induced interaction in the quark model, which favor
the scalar diquark.

Importance of diquarks extends beyond this charmed baryon example. Diquarks are believed
to play significant roles in various QCD phenomena [1]. However, studying diquark properties
experimentally is challenging due to QCD color confinement. As a result, most known diquark
properties remain qualitative and involve uncontrollable uncertainties, since they are inferred not
from direct experiments but from phenomenological arguments based on effective models. One
may wonder whether lattice QCD, as a first-principle approach, can provide an alternative means to
study the diquarks. However, the standard lattice QCD methods cannot directly probe diquarks due
to color confinement. Because two-point correlators lack a particle pole in momentum space, it is
impossible to extract a diquark mass using the conventional exponential fit to temporal two-point
correlators.

Many efforts have been made to study diquark masses in lattice QCD, with notable works
classified into two main approaches: (i) Refs. [2–4] and (ii) Refs. [5–8]. In approach (i), Landau
gauge fixing is employed to compute the diquark two-point correlators, after which the standard
hadron mass extraction method is applied to these gauge-fixed correlators. While their results
align with naive expectations based on phenomenological arguments, further discussion is needed
regarding their consistency with color confinement. In approach (ii), a static quark is introduced
to neutralize the diquark color charge, and the energy of the total system is measured as the
diquark mass. However, the interaction energy between the diquark and the static quark remains
unsubtracted, leading to an uncertainty of 𝑂 (ΛQCD).

Recently, another method is proposed in Ref. [9], where, to avoid the difficulty related to the
color confinement, the scalar diquark mass is computed as a mass parameter of the quark-diquark
model which is constructed by an extension of the HAL QCD potential method [10, 11].

The aim of our study is to investigate the axial-vector diquark using a similar method. Specifi-
cally, by applying an extended HAL QCD potential approach to describe the Σ𝑐 baryon as a bound
state of a charm quark and an axial-vector diquark, we aim to determine both the axial-vector
diquark mass and the quark-diquark potential.

2. Formalism

We begin by recalling that, since the axial-vector diquark has the non-neutral color charge
(3̄), two-point correlators of diquark fields do not possess a particle-pole in the momentum space
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due to the color confinement of QCD, which makes it impossible to use a single-exponential fit
in order to extract the diquark mass from the temporal two-point correlators. (See Sec. 60.6.3 in
Ref. [12].) We would like to avoid this problem in order to obtain the diquark mass from the lattice
QCD. Our strategy is to regard the diquark mass as a mass parameter of an effective quark-diquark
model which is constructed by HAL QCD potential method by using the equal-time quark-diquark
Nambu-Bethe-Salpeter (NBS) wave functions generated by lattice QCD.

To follow the strategy, we consider the equal-time quark-diquark NBS wave function for Σ++
𝑐

in the center of mass frame in Rarita-Schwinger form in the Coulomb gauge as

𝜓𝑖𝛼 (®𝑥 − ®𝑦; 𝐽, 𝑀) ≡ ⟨0|𝐷𝑎𝑖 (®𝑥)𝑞𝑎𝛼 (®𝑦) |Σ++
𝑐 (𝐽, 𝑀)⟩, (1)

where |0⟩ denotes the QCD vacuum and |Σ++
𝑐 (𝐽, 𝑀)⟩ denotes the ground state for the even parity

Σ++
𝑐 baryon in the rest frame with 𝐽 and 𝑀 being the total angular momentum and the magnetic

quantum number. In this paper, we restrict ourselves to the case with 𝐽 = 1/2 and 3/2. 𝑞𝑎𝛼 (𝑦)
denotes the Dirac spinor field for the charm quark with the color index 𝑎 = 1, 2, 3 and the Dirac index
𝛼 = 1, 2 which is restricted to the upper components in the Dirac non-relativistic representation.
𝐷𝑎𝑖 (𝑥) denotes the composite axial-vector diquark field with 𝑖 = 1, 2, 3 being the Lorentz index
restricted to the spatial subspace, which is defined as

𝐷𝑎𝑖 (𝑥) ≡ 𝜖𝑎𝑏𝑐 𝑢
𝑇
𝑏 (𝑥)𝐶𝛾𝑖𝑢𝑐 (𝑥), (2)

where 𝑢(𝑥) denotes the u quark field and 𝐶 ≡ 𝛾4𝛾2 denotes the charge conjugation matrix.
The equal-time NBS wave functions are related to the quark-diquark four-point correlator in

the positive 𝑡 region as

𝐶𝑖𝛼 (®𝑥, ®𝑦, 𝑡; J) ≡ ⟨0|𝑇 [𝐷𝑎𝑖 (®𝑥, 𝑡)𝑞𝑎𝛼 (®𝑦, 𝑡) · J (𝑡 = 0)] |0⟩ (3)
=

∑︁
𝑛

⟨0|𝐷𝑎𝑖 (®𝑥)𝑞𝑎𝛼 (®𝑦) |𝑛⟩ · 𝑒−𝐸𝑛𝑡 ⟨𝑛|J |0⟩,

where |𝑛⟩ denotes the 𝑛-th eigenstate of the Hamiltonian and 𝐸𝑛 denotes the eigenenergy. J denotes
the source operator. In this paper, we restrict ourselves to the wall source operators defined by

J𝐽,𝑀 ≡
∑︁
®𝑥, ®𝑦,®𝑧

𝑞𝑎𝛼 (®𝑥) · 𝜖𝑎𝑏𝑐𝑢̄𝑏 (®𝑦)𝐶𝛾𝑖𝑢̄𝑇𝑐 (®𝑧) · (1, 𝑖; 1/2, 𝛼 |𝐽, 𝑀), (4)

where the last factor in the r.h.s. denotes the Clebsch-Gordan coefficients ( 𝑗1 = 1, 𝑚1 = 𝑖; 𝑗2 =

1/2, 𝑚2 = 𝛼 |𝐽, 𝑀) associated with the decomposition 1 ⊗ 1/2 = 1/2 ⊕ 3/2. Hence, in the large 𝑡

limit, the ground-state NBS wave functions for Σ𝑐 baryon in the spin 𝐽 channels are obtained as

𝜓𝑖𝛼 (®𝑟 ≡ ®𝑥 − ®𝑦; 𝐽, 𝑀) ∝ 𝐶𝑖𝛼 (®𝑥, ®𝑦, 𝑡; J𝐽,𝑀 ). (5)

We demand that the quark-diquark NBS wave function satisfy the Schrödinger equation as(
𝐻̂0 + 𝑉̂

)
𝜓(®𝑟; 𝐽, 𝑀) =

(
𝑀𝐽 − 𝑚𝑞 − 𝑚𝐷

)
𝜓(®𝑟; 𝐽, 𝑀), (6)

where 𝐻̂0 ≡ −∇2/(2𝜇) denotes the kinetic operator with 𝜇 ≡ 1
1/𝑚𝑞+1/𝑚𝐷

being the reduced mass.
𝑚𝑞 and 𝑚𝐷 denote the charm quark mass and the axial-vector diquark mass, respectively. For the
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time being, we proceed our argument treating 𝑚𝑞 and 𝑚𝐷 as unknown parameters, which will be
determined later. Note that E𝐽 ≡ 𝑀𝐽 −𝑚𝑞 −𝑚𝐷 denotes the “binding energy” of this system with
𝑀𝐽 being the mass of the ground state Σ++

𝑐 baryon of total angular momentum 𝐽. 𝑉̂ denotes the
quark-diquark potential, which is truncated as

𝑉̂ ≃ 𝑉0(®𝑟) +𝑉s(®𝑟) s𝑞 · s𝐷 + · · · , (7)

where 𝑉0(®𝑟) and 𝑉s(®𝑟) denote the central and the spin-dependent potential, respectively, with s𝑞
and s𝐷 being the spin operators for the charm quark and the axial-vector diquark, respectively. By
using s𝐷 · s𝑞 = −1 for 𝐽 = 1/2 and s𝐷 · s𝑞 = +1/2 for 𝐽 = 3/2, the Schrödinger equation Eq. (6)
splits into 𝐽 = 1/2 and 3/2 channels as(

𝐻̂0 +𝑉0(®𝑟) −𝑉𝑠 (®𝑟)
)
𝜓1/2(®𝑟) = (𝑀1/2 − 𝑚𝑞 − 𝑚𝐷)𝜓1/2(®𝑟) (8)(

𝐻̂0 +𝑉0(®𝑟) + (1/2)𝑉𝑠 (®𝑟)
)
𝜓3/2(®𝑟) = (𝑀3/2 − 𝑚𝑞 − 𝑚𝐷)𝜓3/2(®𝑟),

where we introduce a short-hand notation 𝜓𝐽 (®𝑟) ≡ 𝜓𝑖𝛼 (®𝑟; 𝐽, 𝑀) for notational simplicity. These
equations are solved for 𝑉0(®𝑟) and 𝑉s(®𝑟) as

𝑉0(®𝑟) =
1
3

(
2𝑀3/2 + 𝑀1/2

)
− 𝑚𝑞 − 𝑚𝐷 + 1

2𝜇

(
2
3
∇2𝜓3/2(®𝑟)
𝜓3/2(®𝑟)

+ 1
3
∇2𝜓1/2(®𝑟)
𝜓1/2(®𝑟)

)
(9)

𝑉s(®𝑟) =
2
3

(
𝑀3/2 − 𝑀1/2

)
− 1

3𝜇

(
∇2𝜓3/2(®𝑟)
𝜓3/2(®𝑟)

−
∇2𝜓1/2(®𝑟)
𝜓1/2(®𝑟)

)
.

These relations express 𝑉0(®𝑟) and 𝑉s(®𝑟) by using 𝜓𝐽 (®𝑟), 𝑀𝐽 , 𝑚𝑞 and 𝑚𝐷 as inputs, where we note
that 𝑚𝑞 and 𝑚𝐷 are treated as unknown mass parameters which should not be determined by the
standard method of the exponential fit.

Kawanai and Sasaki encountered the similar problem in 𝑐𝑐 sector, where they proposed a
prescription to determine the charm quark mass in a self-consistent manner with HAL QCD
method [13]. In their approach, they require that the spin-dependent potential should vanish at long
distance. Following their prescription, we impose the condition as

𝑉s(®𝑟) → 0 as 𝑟 → ∞, (10)

which leads us to
𝜇 = − lim

𝑟→∞
𝐹KS(®𝑟) (11)

where we introduce Kawanai-Sasaki function 𝐹KS(®𝑟) for later convenience as

𝐹KS(®𝑟) ≡
1

2(𝑀3/2 − 𝑀1/2)

(
∇2𝜓3/2(®𝑟)
𝜓3/2(®𝑟)

−
∇2𝜓1/2(®𝑟)
𝜓1/2(®𝑟)

)
. (12)

The reduced mass 𝜇 in Eq. (11) together with the charm quark mass 𝑚𝑞 obtained by using the
Kawanai-Sasaki prescription in the 𝑐𝑐 sector, the axial-vector diquark mass is obtained as

𝑚𝐷 =
1

1/𝜇 − 1/𝑚𝑐
. (13)
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3. Numerical results

3.1 Lattice QCD setup

We employ the 2+1 flavor QCD gauge configurations on 323 × 64 lattice generated by PACS-
CS Collaboration [14]. These gauge configurations are generated by employing the RG improved
Iwasaki gauge action at 𝛽 = 1.90 and the non-perturbatively 𝑂 (𝑎)-improved Wilson quark (clover)
action at 𝜅ud = 0.13700 and 𝜅s = 0.13640 with 𝐶SW = 1.715. This parameter set corresponds to the
lattice spacing 𝑎 = 0.0907(13) fm (𝑎−1 = 2176(31) MeV), the spatial extent 𝐿 = 32𝑎 ≃ 2.90 fm.
The charm quark is introduced by the quenched approximation by employing the relativistic heavy
quark (RHQ) action, for which we use the parameters given in Ref. [15]. Two-point and four-point
correlators are calculated by using the quark propagators which are obtained with the wall source
after the Coulomb gauge fixing is applied to the gauge configurations. Statistics is improved by
using 64 source points by temporally shifting the gauge configurations. The time-reversal and the
charge conjugation symmetries are also used to double the statistics. Statistical errors are estimated
with the Jackknife prescription employing the bin size of 20 configurations. Some reference hadron
masses obtained by this setup are given as follows: 𝑚𝑁 ≃ 1583 MeV, 𝑚𝜋 ≃ 702 MeV, 𝑚𝜂𝑐 ≃ 3025
MeV, 𝑚𝐽/𝜓 ≃ 3144 MeV, 𝑚

Λ
1/2+
𝑐

≃ 2690 MeV, 𝑚
Σ

1/2+
𝑐

≃ 2777 MeV and 𝑚
Σ

3/2+
𝑐

≃ 2859 MeV.

3.2 Results

The results of four-point correlators are shown in Figure 1, where the normalized four-point
correlator 𝐶̃ (®𝑟, 𝑡) ≡ 𝐶 (®𝑟, 𝑡)/𝐶 (®0, 𝑡) is plotted against 𝑟 for 𝑡/𝑎 = 6, 10, 14, 18, 22. We see that the
convergence is quicker in the short distance region, while it is slower in the long distance region.
If we restrict ourselves to the spatial region 𝑟/𝑎 ≲ 7, rough convergence is achieved at 𝑡/𝑎 = 18.
(For 𝑟/𝑎 ≳ 7, the convergence becomes gradually worse and the error bar becomes larger.) In what
follows, we accept the 4-point correlators at 𝑡/𝑎 = 18 as roughly converged NBS wave functions,
and proceed our calculations.

Figure 1: Normalized four-point correlators 𝐶̃ (®𝑟, 𝑡) ≡ 𝐶 (®𝑟, 𝑡)/𝐶 (®0, 𝑡) for 𝐽 = 1/2 (left) and 𝐽 = 3/2 (right).

Figure 2 shows the plot of Kawanai-Sasaki function 𝐹𝐾𝑆 (𝑟) against 𝑟 for 𝑡/𝑎 = 18. The
purple curve denotes the result of the 2-Gaussian fit employing the functional form: 𝑓 (𝑟) ≡
𝐴 exp

(
−𝐵𝑟2) +𝐶 exp

(
−𝐷𝑟2) +𝐸, where 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 are used as fit parameters. Since the long

distance limit of 𝐹KS(𝑟) is obtained from the constant part of the fit function, we obtain the reduced
mass: 𝜇 = − lim𝑟→∞ 𝐹KS(𝑟) = −𝐸 ≃ 600 MeV. By applying the Kawanai-Sasaki prescription to
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Figure 2: Kawanai Sasaki function 𝐹KS (𝑟) for 𝑡/𝑎 = 18.

the 𝑐𝑐 sector, we obtain the charm quark mass 𝑚𝑞 ≃ 1950 MeV. By using Eq. (13), we obtain the
axial-vector diquark mass 𝑚𝐷 ≃ 867 MeV, which is significantly smaller than the scalar diquark
mass 𝑚𝑆𝐷 ≃ 1273 MeV obtained in Ref. [9], where the same gauge configurations with the same
pion mass are employed. The main reasons for this underestimate seem to be the following two:
(i) ground-state convergence of the four-point correlators are not sufficient at long distance, which
results in an uncertainty in the evaluation of the constant part of 𝐹KS(𝑟). (ii) Ambiguity in the
charm quark mass. In Ref. [9], significantly smaller charm quark mass 𝑚𝑞 ≃ 1686 MeV is used
than our charm quark mass 𝑚𝑞 ≃ 1950 MeV. One reason for this discrepancy is that Ref. [9] uses the
odd parity 𝑐𝑐 spectrum to determine the charm quark mass instead of Kawanai-Sasaki prescription.
Another reason is that fit of this 𝑐𝑐 central potential is technically involved. In order to perform a
quantitative fit in the whole spatial region, the simple Cornell-type functional form is not enough,
and at least log(𝑟) term has to be included [9]. In addition, at short distance, the violation of the
rotational symmetry is severe.

Figure 3 shows the quark-diquark potentials obtained from Eq. (9) with 𝑚𝑞 ≃ 1950 MeV and
𝑚𝐷 ≃ 867 MeV. We see that the spin-dependent potential 𝑉s(𝑟) is short ranged and that the quark-
diquark central potential𝑉0(𝑟) is of Cornell-type: 𝑉Cornell(𝑟) ≡ −𝐴/𝑟 +𝜎𝑟 +const. For comparison,
𝑐𝑐 potential is added in Figure 3. These two central potentials are fitted with 𝑉Cornell(𝑟), which
leads to 𝐴 ≃ 86 MeV fm and

√
𝜎 ≃ 565 MeV for quark-diquark sector, and 𝐴 ≃ 103 MeV fm and√

𝜎 ≃ 459 MeV for 𝑐𝑐 sector. We see that, at long distance, the quark-diquark central potential is
a bit steeper than the 𝑐𝑐 central potential, which may be an artifact caused by the underestimate of
the reduced mass 𝜇 through the overall factor in Eq. (9).

For quantitative calculation of the axial-vector diquark mass, the most important thing is to
improve the ground-state convergence of the quark-diquark four-point correlator. For this purpose,
we plan to use the time-dependent HAL QCD method [16] and the variational method to improve
the source operators in the near future.

4. Conclusion

We have studied the axial-vector diquark mass and the quark-diquark potentials between an
axial-vector diquark and a charm quark by using 2+1 flavor lattice QCD.

6
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Figure 3: The spin dependent quark-diquark potential 𝑉s (𝑟) (left) and the central quark-diquark potential
𝑉0 (𝑟) together with the central 𝑐𝑐 potential (right).

Since the axial-vector diquark has non-neutral color charge (3̄), the two-point correlator does
not have a particle-pole in the momentum space due to the color confinement of QCD, so that
the standard method to calculate the hadron mass by an exponential fit of the temporal two-point
correlator is not usable to obtain the diquark mass. In this paper, to avoid this difficulty, we
have resorted to the Kawanai-Sasaki extension of the HAL QCD potential method, where the
diquark mass and quark-diquark potentials are obtained simultaneously by demanding that the
spin-dependent quark-diquark potential should vanish in the long distance limit.

Numerical calculations have been performed by using the 2+1 flavor QCD gauge configurations
generated on 323 × 64 lattice by PACS-CS Collaboration employing the RG-improved Iwasaki
gauge action at 𝛽 = 1.90 and the non-perturbatively 𝑂 (𝑎)-improved Wilson quark (clover) action
at 𝜅ud = 1.3700 and 𝜅s = 1.3640 with 𝐶SW = 1.715. The charm quark has been incorporated with
the quenched approximation by using the relativistic heavy quark (RHQ) action. The setup lead to
the lattice spacing 𝑎−1 = 2176(31) MeV (𝑎 = 0.0907(13) fm) and the pion mass 𝑚𝜋 ≃ 702 MeV.

By using the charm quark mass 𝑚𝑞 ≃ 1950 MeV which was obtained by applying the Kawanai-
Sasaki extension of the HAL QCD method to the 𝑐𝑐 sector, we have obtained the axial-vector diquark
mass 𝑚𝐷 ≃ 867 MeV, which is significantly smaller than the scalar diquark mass 𝑚𝑆𝐷 ≃ 1273
MeV obtained by a similar method with exactly the same gauge configurations in Ref. [9]. The
underestimate of the axial-vector diquark mass has seemed to be mainly due to the insufficient
ground-state convergence of the quark-diquark four-point correlators in the long spatial distance
region.

We have also obtained the quark-diquark potentials between an axial-vector diquark and a
charm quark. We have obtained the spin-dependent potential 𝑉s(𝑟) which is of short-ranged and
the central potential 𝑉0(𝑟) which is of Cornell-type. However, we have seen that the long distance
behavior of 𝑉0(𝑟) is steeper than that of the central 𝑐𝑐 potential, which has seemed to be due to the
underestimate of the axial-vector diquark mass.

In the future, we will try to improve the ground-state convergence of the quark-diquark four-
point correlators by using the time-dependent HAL QCD method. We will also try to improve the
source operators by using the variational method. These improvements are important in making
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a precise comparison of the axial-vector diquark and the scalar diquark. We are interested in the
quark mass dependence of our results, because the calculations in this paper have been carried out
by employing the gauge configurations which correspond to rather heavy pion mass.
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