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We propose a new method to determine the quark mass by using bilinear operators of the flowed
quark field defined within the gradient-flow formalism. This method enables the quark mass
determination through a comparison of perturbative calculations with lattice data. The gauge-
invariant nature of the observable should allow clear control over perturbative errors. At the same
time, the gradient flow suppresses the noise in the lattice measurements of the observable, which
simply consists of one-point functions. Concerning the perturbative input in this framework, we
study the mass dependence of the flowed quark condensate ⟨�̄�(𝑡, 𝑥)𝜒(𝑡, 𝑥)⟩ at the two-loop level.
For this purpose, we develop a novel approach for expanding massive gradient-flow integrals in
the limit of small and large (𝑚2𝑡). We also present a fully numerical result which includes the full
mass dependence.
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1. Introduction

Quark masses are fundamental parameters in QCD, and their accurate knowledge is essential
for precision physics. For instance, uncertainties in the heavy-quark MS masses contribute to
theoretical errors in the corresponding Yukawa couplings to the Higgs field. Their determination is
crucial for testing the mechanism of electroweak symmetry breaking. The precision of heavy-quark
masses also plays an important role in flavor physics.

Heavy-quark (𝑏, 𝑐) masses have already been determined by many lattice investigations and we
refer to Ref. [1] for an overview of the available results. The main tools to relate the lattice to the
customary modified minimal subtraction

(
MS

)
results used in these studies are the regularization-

independent momentum subtraction (RI-MOM) scheme [2], its variant regularization-independent
symmetric momentum subtraction (RI-SMOM) scheme [3], the quark current (or current-like)
correlator method [4], or the minimal renormalon-subtracted (MRS) scheme [5].

In these proceedings, we propose an alternative way to determine the heavy-quark mass on the
lattice based on the gradient-flow formalism [6–8]. Its potential to extract 𝛼𝑠 (𝑀2

𝑍
) from lattice data

has recently been explored in Refs. [9–11]. For the purpose of the heavy-quark masses, we consider
the following ratio of flowed quark condensates:

𝑆(𝑡, 𝑚1, 𝑚2) ≡
⟨�̄�1(𝑡, 𝑥)𝜒1(𝑡, 𝑥)⟩

⟨�̄�2(𝑡, 𝑥)
←→
/𝐷 𝜒2(𝑡, 𝑥)⟩

, (1)

where 𝜒𝑖 (𝑡, 𝑥) and �̄�𝑖 (𝑡, 𝑥) denote the flowed fermion fields defined by the flow equations [6–8]

𝜕𝑡 𝜒𝑖 (𝑡, 𝑥) = (𝐷𝜇𝐷𝜇 − 𝛼0𝜕𝜇𝐵𝜇 (𝑡, 𝑥))𝜒𝑖 (𝑡, 𝑥),

𝜕𝑡 �̄�𝑖 (𝑡, 𝑥) = �̄�𝑖 (𝑡, 𝑥) (
←−
𝐷 𝜇

←−
𝐷 𝜇 + 𝛼0𝜕𝜇𝐵𝜇 (𝑡, 𝑥)),

𝜕𝑡𝐵𝜇 (𝑡, 𝑥) = 𝐷𝜈𝐺𝜈𝜇 (𝑡, 𝑥) + 𝛼0𝐷𝜇𝜕𝜈𝐵𝜈 (𝑡, 𝑥), (2)

and the boundary conditions 𝜒𝑖 (𝑡 = 0, 𝑥) = 𝜓𝑖 (𝑥), �̄�𝑖 (𝑡 = 0, 𝑥) = �̄�𝑖 (𝑥), 𝐵𝜇 (𝑡 = 0, 𝑥) = 𝐴𝜇 (𝑥).
𝛼0 is a gauge fixing parameter which cancels in physical quantities; throughout our calculation, we
choose 𝛼0 = 1. The renormalized mass of the quark field 𝜓𝑖 in the MS scheme is denoted by 𝑚𝑖 .
Even though both numerator and denominator in Eq. (1) are separately ultraviolet divergent, the
ratio is finite [12] because the divergences only affect the wave function renormalization factor [8].
Thus, the continuum limit in a lattice determination of 𝑆(𝑡, 𝑚1, 𝑚2) exists. On the other hand, one
can calculate 𝑆(𝑡, 𝑚1, 𝑚2) in perturbation theory, where the result is expressed as a function of 𝑡,
𝛼𝑠, 𝑚1, and 𝑚2. By matching the perturbative and the lattice results, one should thus be able to
determine the MS mass(es).

The minimal uncertainty achievable within perturbation theory for an observable is deter-
mined by nonperturbative effects. Since 𝑆(𝑡, 𝑚1, 𝑚2) of Eq. (1) is a gauge invariant quantity, the
leading non-perturbative contributions are given by the dimension-four condensates such as the
gluon condensate ⟨𝐹𝑎

𝜇𝜈𝐹
𝑎
𝜇𝜈⟩, because gauge and Lorentz invariance prohibit (parametrically larger)

dimension-two condensates. This argument does not apply to gauge-dependent methods such as
the RI-(S)MOM scheme. Other advantages of our proposal are related to the fact that 𝑆(𝑡, 𝑚1, 𝑚2)
is given by one-point functions, and the fact that the noise in its lattice determination is suppressed
by the gradient flow.
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The perturbative result for 𝑆(𝑡, 𝑚, 𝑚) is known at next-to-next-to-leading order QCD in the
limit of a small quark mass 𝑚: Concerning the numerator in Eq. (1), it vanishes in the strictly
massless limit. The linear mass term, on the other hand, was calculated at O(𝛼𝑠) in Ref. [12]1 and
at O(𝛼2

𝑠) in Ref. [13]. The massless limit of the denominator of 𝑆(𝑡, 𝑚, 𝑚) was calculated at O(𝛼𝑠)
in Ref. [12] and at O(𝛼2

𝑠) in Refs. [13, 14].
However, the size of a dimensionless combination 𝑚2𝑡 can span a wide range in the heavy-

quark cases. Let us impose 𝑎2 ≪ 8𝑡 ≪ 𝐿2 and 8𝑡 ≪ Λ−2
QCD for the range of the flow time 𝑡, where

𝑎−1 = 4 GeV is assumed as a reference and ΛQCD ∼ 0.3 GeV. The first condition is necessary for
reasonable lattice simulations of Eq. (1), and the second one is imposed from perturbativity. Then,
0.1 ≪ 8𝑚2

𝑐𝑡 ≪ 20 in the charm-quark case and 1.0 ≪ 8𝑚2
𝑏𝑡 ≪ 200 in the bottom-quark case.

Therefore, the known results, which are valid for 𝑚2𝑡 ≪ 1, are not always sufficient.
In this paper, we investigate the mass dependence of the numerator of Eq. (1), i.e., the quark

condensate ⟨�̄� 𝑓 𝜒 𝑓 ⟩ with 𝑚 𝑓 = 𝑚, at O(𝛼𝑠) in perturbation theory, as a first step toward the mass
determination in this framework. We present the first two terms of the small-𝑚2𝑡 expansion, and
the first three terms of the large-𝑚2𝑡 expansion. Additionally, we present the full mass dependence,
which is valid for a wide range of 𝑚2𝑡, based on a numerical computation.

2. Perturbative computation

For the foundations of the perturbative approach to the QCD gradient flow we refer to Refs. [13,
15]. In the computation of ⟨�̄�(𝑡, 𝑥)𝜒(𝑡, 𝑥)⟩ at O(𝛼𝑠), we find eight scalar integrals. Examples
include ∫ 𝑡

0
d𝑠

∫ 𝑠

0
d𝑠′

∫
𝑝,𝑘

𝑚𝑝2

𝑘2(𝑝2 + 𝑚2)
𝑒−(2𝑡−𝑠+𝑠

′ ) 𝑝2−(𝑠+𝑠′ )𝑘2−(𝑠−𝑠′ ) (𝑘−𝑝)2 ,∫ 𝑡

0
d𝑠

∫
𝑝,𝑘

𝑚

𝑘2(𝑝2 + 𝑚2)
𝑒−(2𝑡−𝑠) 𝑝

2−𝑠𝑘2−𝑠 (𝑘−𝑝)2 ,∫ 𝑡

0
d𝑠

∫ 𝑡

0
d𝑠′

∫
𝑝,𝑘

𝑚(𝑝 − 𝑘)2
𝑘2((𝑝 − 𝑘)2 + 𝑚2)

𝑒−(2𝑡−𝑠−𝑠
′ ) 𝑝2−(𝑠+𝑠′ )𝑘2−(𝑠+𝑠′ ) (𝑘−𝑝)2 , (3)

where
∫
𝑝,𝑘
≡
∫ d𝑑 𝑝
(2𝜋 )𝑑

d𝑑𝑘
(2𝜋 )𝑑 with 𝑑 = 4 − 2𝜖 and 𝑚 is the bare mass. Flow-time integrals appear in

addition to the loop-momentum integrals.
We evaluate these integrals in an expansion in either 𝑚2𝑡 or 1/(𝑚2𝑡). The standard technique

to expand loop integrals under a certain hierarchy is known as “expansion by regions” [16]. Its
application to the gradient flow formalism has been described in Ref. [17]. It was pointed out
though that, in the large-𝑚2𝑡 limit, this method is not straightforwardly applicable, because the
flow-time integration extends over hard and soft regions simultaneously. In the present study, we
pursue a different strategy which does not suffer from this problem. Given an integral 𝐼 (𝑚2, 𝑡), we
perform the Laplace transform

𝐼 (𝑣, 𝑡) ≡
∫ ∞

0
d(𝑚2) (𝑚2)−𝑣−1𝐼 (𝑚2, 𝑡). (4)

1To be more precise, it was presented in the arXiv version v2 of Ref. [12].
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In the present case, 𝐼 (𝑣, 𝑡) ∝ 𝑡𝑣−𝑑+5/2 as seen from dimensional analysis. The inverse transform is
given by

𝐼 (𝑚2, 𝑡) = 1
2𝜋i

∫ i∞

−i∞
d𝑣𝐼 (𝑣, 𝑡) (𝑚2)𝑣 . (5)

For 𝑚2𝑡 ≪ 1, we close the integration contour of the inverse transform in the right half of the
𝑣-plane, considering (𝑚2𝑡)𝑣 = 𝑒𝑣 log (𝑚2𝑡 ) → 0 as 𝑣 → +∞. We then obtain the small-(𝑚2𝑡)
expansion by

𝐼 (𝑚2, 𝑡; 𝑑) = −
∑︁
𝑣0>0

Res[𝐼 (𝑣, 𝑡; 𝑑) (𝑚2)𝑣] |𝑣=𝑣0 , (6)

where 𝑣0 denotes positive singularities of 𝐼 (𝑣, 𝑡). For 𝑚2𝑡 ≫ 1, in turn, we obtain the large-(𝑚2𝑡)
expansion by

𝐼 (𝑚2, 𝑡; 𝑑) =
∑︁
𝑣0<0

Res[𝐼 (𝑣, 𝑡; 𝑑) (𝑚2)𝑣] |𝑣=𝑣0 , (7)

where 𝑣0 denotes negative singularities of 𝐼 (𝑣, 𝑡). To obtain these expansions, we need to calculate
the singularities of the integrand in Eq. (5). This approach is analogous to the ideas found in
Refs. [18, 19]. Further details will be explained in a future publication.

We obtain

⟨[ �̄�(𝑡, 𝑥)𝜒(𝑡, 𝑥)]𝑅⟩

= − 𝑁𝑐

8𝜋2
𝑚

𝑡

×
{
1 + 0.759581𝐶𝐹𝛼𝑠 (𝜇2)

+ 𝑚2𝑡
[
2 log 2 + 2𝛾𝐸 + 2 log (𝑚2𝑡) + 𝐶𝐹𝛼𝑠 (𝜇2) (2.3334 − 2.16804 log (𝑚2/𝜇2)
+ log (𝑚2𝑡) (2.22817 − 0.95493 log (𝑚2/𝜇2))

]
+ O((𝑚2𝑡)2)

}
, (8)

and

⟨[ �̄�(𝑡, 𝑥)𝜒(𝑡, 𝑥)]𝑅⟩

= − 𝑁𝑐

16𝜋2𝑡2𝑚

×
{
1 + 𝐶𝐹𝛼𝑠 (𝜇2)

4𝜋
(−2 − 3𝛾𝐸 − 9 log 2 + 9 log 3 − 3 log (𝑚2𝑡) + 6 log (𝑚2/𝜇2))

+ 1
𝑚2𝑡

[
−1 + 𝐶𝐹𝛼𝑠 (𝜇2)

16𝜋
(22 + 21𝛾𝐸 + 63 log 2 − 51 log 3 + 21 log (𝑚2𝑡) − 48 log (𝑚2/𝜇2))

]
+ 1
(𝑚2𝑡)2

[
3
2
+ 𝐶𝐹𝛼𝑠 (𝜇2)

64𝜋
(−3(68 + 57𝛾𝐸) + 513 log 2 + 381 log 3

− 171 log (𝑚2𝑡) + 432 log (𝑚2/𝜇2))
]

+ O( 1
(𝑚2𝑡)3

)
}
. (9)
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Figure 1: 𝑆(𝑡, 𝑚, 0) as a function of the flow time 𝑡 for the bottom-quark case (𝑚 = 𝑚𝑏) (left) and the
charm-quark case (𝑚 = 𝑚𝑐) (right). The gray line shows the O(𝛼0

𝑠 )-result with full mass dependence, and
the black line shows the O(𝛼𝑠)-result with full mass dependence obtained by our numerical study. The
small-(𝑚2𝑡) expansion and the large-(𝑚2𝑡) expansion to O(𝛼𝑠) are also shown. (The large-(𝑚2𝑡) expansion
is not relevant to the charm quark case.)

Here we give the finite result by renormalizing the flowed field as [ �̄�(𝑡, 𝑥)𝜒(𝑡, 𝑥)]𝑅 ≡ 𝑍𝜒 �̄�(𝑡, 𝑥)𝜒(𝑡, 𝑥),
in the MS scheme, where 𝑍𝜒 = 1 + 𝛼𝑠 (𝜇2 )

4𝜋
6𝐶𝐹

2𝜖 + O(𝛼
2
𝑠) [8]. We also renormalize the bare mass as

𝑚 = 𝑍MS
𝑚 𝑚 with 𝑍MS

𝑚 = 1− 𝛼𝑠

4𝜋
6𝐶𝐹

2𝜖 + O(𝛼
2
𝑠). In the above results, 𝑚 = 𝑚(𝜇2). All the O(𝛼0

𝑠) terms
were calculated in Ref. [17].2 The next-to-leading term in 𝑚2𝑡 at O(𝛼𝑠) of Eq. (8) is new, whereas
in Eq. (9), all the O(𝛼𝑠) terms are new.

Besides these expansions, we numerically evaluate the scalar integrals using ftint [20]. In
this calculation, we do not need to assume large or small 𝑚2𝑡 and can obtain the 𝑚2𝑡-dependence
of ⟨[ �̄�(𝑡, 𝑥)𝜒(𝑡, 𝑥)]𝑅⟩ in a wide range.

Using these results, we show the perturbative result of 𝑆(𝑡, 𝑚, 0) in Fig. 1 as a function of the
flow time 𝑡. For the denominator of 𝑆(𝑡, 𝑚, 0), we use the known massless result to O(𝛼1

𝑠). In these
figures, we express our result in terms of 𝑚(𝑚) and 𝛼𝑠 (𝜇𝑡 ), where 𝜇𝑡 =

1√
2𝑡𝑒𝛾𝐸

[14]. The running
coupling is evaluated for four (five) active quark flavors in the case of the charm (bottom) quark.
As input parameters, we adopt 𝛼𝑠 (𝑀2

𝑍
) = 0.1179, 𝑚𝑏 (𝑚𝑏) = 4.18 GeV and 𝑚𝑐 (𝑚𝑐) = 1.27 GeV.

The figures indicate the validity of the small- and large-𝑚2𝑡 expansions and provide a convincing
verification of our expansion method as well, by the agreement of these approximations with the
numerical results.

Assuming that the corresponding lattice data are available, one can perform a mass determi-
nation at the level of the precision of O(𝛼𝑠) with this perturbative result.

3. Summary and outlook

The gradient-flow formalism has proven useful already in many different contexts. In this
contribution, we proposed a new method to determine heavy-quark masses by utilizing quark
bilinear operators defined in the gradient-flow formalism. Eq. (1) is manifestly gauge invariant and
simply a combination of one-point functions defined in the gradient flow. These features have the
potential to contribute to a precise determination of the quark masses.

To perform the mass determination in this framework, one needs a perturbative result to match
with lattice data. We calculated the quark condensate ⟨�̄�(𝑡, 𝑥)𝜒(𝑡, 𝑥)⟩ at O(𝛼𝑠), keeping its quark

2Typos in the published version of Ref. [17] are corrected in the latest arXiv version.
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mass dependence in an expansion in either 𝑚2𝑡 or 1/(𝑚2𝑡), and by a numerical computation valid
for a wide range of 𝑚2𝑡.

While the first few terms of the small- and large-𝑚2𝑡 expansions were given here, we will
extend these expansions further and present them in a future paper. We will also study the
mass dependence of ⟨�̄�(𝑡, 𝑥)

←→
/𝐷 𝜒(𝑡, 𝑥)⟩. Furthermore, one may study other observables such as

1 − ⟨�̄�1(𝑡, 𝑥)
←→
/𝐷 𝜒1(𝑡, 𝑥)⟩/⟨�̄�2(𝑡, 𝑥)

←→
/𝐷 𝜒2(𝑡, 𝑥)⟩, where 𝜒1 is a heavy and 𝜒2 is a massless quark.

This observable exhibits the heavy-quark mass dependence of O(𝑚2) for small 𝑚2𝑡 and is therefore
expected to be highly sensitive to the quark mass, while, for instance, 𝑆(𝑡, 𝑚, 0) and 𝑆(𝑡, 𝑚, 𝑚)
exhibit the O(𝑚1) dependence.

Although the determination of heavy-quark masses motivated us to study the mass dependence
for a wide range of 𝑚2𝑡, this framework should be applicable to the determination of light-quark
masses as well.

For a precise determination, it is crucial to calculate higher orders in 𝛼𝑠. A perturbative
calculation at O(𝛼2

𝑠) with mass dependence might be feasible. It is also theoretically important to
address the structure of the small-flow-time expansion for these observables, as understanding this
structure can help reduce or properly account for theoretical uncertainties. Lastly, the precision that
can be achieved on the lattice in practice is crucial and remains to be investigated.
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