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We present preliminary results for the Renormalization Group (RG) running of the complete basis
of Δ𝐹 = 2 four-fermion operators in QCD with 𝑁 𝑓 = 3 dynamical massless flavours. We use
O(a)-improved Wilson fermions in a mixed action setup, with chirally rotated Schrödinger functional
(𝜒SF) boundary conditions for the valence quarks and Schrödinger functional (SF) boundary
conditions for the sea quarks. The RG evolution operators are evaluated non-perturbatively via the
matrix step-scaling functions (matrix SSF) using a SF coupling from the perturbative region down
to ∼ 4GeV and a Gradient Flow (GF) coupling from ∼ 4GeV down to ∼ 250MeV. The perturbative
running is computed through a novel approach that extends the usual computations in the literature
relying on consequences of the Poincaré-Dulac theorem.
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1. Four-quark operators for Δ𝐹 = 2 transitions

The Δ𝐹 = 2 transitions, among flavour physics processes, provide some of the most stringent
constraints on New Physics (NP) that can be searched in particle accelerators. The existence of new
particles can be tested, in fact, looking for their possible effects on low-energy processes. The most
general Δ𝐹 = 2 weak effective Hamiltonian can be constructed in terms of a complete set of parity
even (PE) and parity odd (PO) 4-quark operators, viz.

PE : 𝑄±
𝑘 ∈

{
O±

[𝑉𝑉+𝐴𝐴] , O
±
[𝑉𝑉−𝐴𝐴] , O

±
[𝑆𝑆−𝑃𝑃 ] , O

±
[𝑆𝑆+𝑃𝑃 ] , 2O±

[𝑇𝑇 ] .
}
,

PO : Q±
𝑘 ∈

{
O±

[𝑉𝐴+𝐴𝑉 ] , O
±
[𝑉𝐴−𝐴𝑉 ] , O

±
[𝑃𝑆−𝑆𝑃] , O

±
[𝑃𝑆+𝑆𝑃 ] , −2O±

[𝑇𝑇̃ ]

}
,

(1)

where we understand O±
[Γ1Γ2 ] := 1

2
[ (
𝜓̄1Γ1𝜓2

) (
𝜓̄3Γ2𝜓4

)
±

(
𝜓̄1Γ1𝜓4

) (
𝜓̄3Γ2𝜓2

) ]
.

When considering Wilson-fermions, chiral symmetry is broken by the regularisation, this
results in a complicated mixing of the PE operators under renormalisation, while the PO ones still
renormalise as in chirally preserving regularizations, namely [1]

[Q1]𝑅 = Z11Q1,

[
Q2

Q3

]
𝑅

=

[
Z22 Z23

Z32 Z33

] [
Q2

Q3

]
,

[
Q4

Q5

]
𝑅

=

[
Z44 Z45

Z54 Z55

] [
Q4

Q5

]
. (2)

Using the four-quark operators, the renormalised effective Hamiltonian can be expressed as

Heff =
𝐺𝐹√

2

∑︁
𝑖

𝑉 𝑖𝐶𝐾𝑀𝐶𝑖 (𝜇)𝑂𝑖 (𝜇) , (3)

the coefficients 𝐶𝑖 (𝜇) are the Wilson coefficients, whose non-perturbative evaluation is shown in
this work.

2. Perturbative running for 𝑁f = 3 QCD

In this work we show the procedure followed to evaluate the coefficients𝐶𝑖 whose renormalization
is encoded in evolution operators that we will call Û(𝜇). The usual derivation of such operators can
be found in [2], but it is not well defined for 𝑁f = 3. The problem has been solved as suggested in
[3, 4]: the Poincaré-Dulac theorem guarantees the existence of a basis transformation

Q̄′(𝑥) = S(𝑔)Q̄(𝑥) , S(𝑔) =
(
1 +

∞∑︁
𝑘=1

H2𝑘𝑔
2𝑘

)
SD (4)

that puts the matrix A(𝑔) := 𝜸(𝑔)/𝛽(𝑔) in the so-called canonical form, i.e. Acan(𝑔) =
1
𝑔

(
𝚲 + 𝑔2N2

)
. Here 𝚲 is the diagonal matrix of eigenvalues, N2 is an upper-diagonal matrix,

the matrix coefficients H2𝑘 can be obtained recursively, as outlined in ref. [4] and the matrix
SD is the one that diagonalises 𝜸(𝑔)/𝛽(𝑔). In this operator basis, the evolution operator is
given by Ûcan(𝜇) = 𝑔(𝜇)−𝚲𝑔(𝜇)−N and returning to the original operator basis, we finally get
Û(𝜇) = S−1

D Ûcan(𝜇)S(𝜇).
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Figure 1: Continuum extrapolation of the matrix element
[
𝚺̃(𝑢, 𝑎/𝐿)

]
55 in the SF region. The extrapolated

continuum values [𝝈(𝑢)]55 at every coupling, along with their uncertainties, are depicted as a vertical error
bar at 𝑎/𝐿 = 0.

3. Non-perturbative running

The non-perturbative part of the operator running is obtained as explained in [5] considering
the step-scaling functions (SSFs)

𝝈(𝑢) := U(𝜇/2, 𝜇)
����
𝑔̄2 (𝜇)=𝑢

= lim
𝑎→0

𝚺
(
𝑔2

0, 𝑎/𝐿
)����
𝑔̄2 (1/𝐿)=𝑢

(5)

where 𝚺
(
𝑔2

0, 𝑎/𝐿
)

is the discretised step-scaling function that can be obtained from the renormalisa-
tion matrices as explained in [6]. The continuum extrapolation on 𝚺(𝑢, 𝑎/𝐿) has been performed
in two coupling regions, namely SF and GF. In the SF region we analysed data corresponding
to the seven couplings 𝑢SF ∈ {1.1844, 1.2656, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120} , and to
𝐿/𝑎 = 6, 8, 12 (also 𝐿/𝑎 = 16 for 𝑢 = 2.0120 ) using the ansatz[

𝚺
(
𝑢𝑛,

𝑎

𝐿

)]
𝑖 𝑗
= [𝝈(𝑢𝑛)]𝑖 𝑗 +

( 𝑎
𝐿

)2 2∑︁
𝑚=0

[
𝝆𝑚

]
𝑖 𝑗
𝑢𝑚𝑛 , (6)

with 𝑛 = 1, . . . , 7. Moreover, the same global fit has been performed also excluding the 𝐿/𝑎 =

6 data to test the goodness of the latter. The continuum extrapolation in the GF coupling
region has been performed simultaneously on data corresponding to the seven couplings 𝑢GF ∈
{2.1257, 2.3900, 2.7359, 3.2029, 3.8643, 4.4901, 5.3013} and to 𝐿/𝑎 = 8, 12, 16 using the
same ansatz in equation (6). The fit parameters have been found minimising the 𝜒2 function;
an example of fit for an SSF matrix element can be found in fig. 1. Obtained the continuum
extrapolations at the different couplings available, a functional dependence for 𝝈(𝑢) is obtained
fitting the latter with two separate fits in the SF and GF regions:

𝝈SF(𝑢) = 1 + r1𝑢 + r2𝑢
2 + r3𝑢

3 + r4𝑢
4 , 𝝈GF(𝑢) = R0 + R1𝑢 + R2𝑢

2 , (7)

where the coefficients r1 and r2 are perturbatively defined

r1 = 𝜸0 ln 2 , r2 = 𝜸1 ln 2 + 𝑏0𝜸0 ln2 2 + 1
2
(
𝜸0

)2 ln2 2 , (8)

3
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Figure 2: Example of step-scaling function fits. The solid points represent the continuum extrapolations
of the step-scaling function in the SF region, while the hollow points represent the extrapolations in the GF
region. As can be seen, the fit functions obtained in the GF and SF regions connect at the switching scale
(grey dashed line) when expressed as functions of the renormalization scale.

provided that the matrix 𝜸1 is evaluated in the SF scheme, this has been done as suggested in [2]. A
series of 𝑁 squared-couplings 𝑢1 . . . 𝑢N is then generated through the coupling step-scaling function
[7], i.e. evaluating 𝑢𝑛 = 𝜎−1(𝑢𝑛−1), in order to compute non-perturbatively the quantity

U(𝜇had ≡ 𝜇1, 𝜇pt ≡ 𝜇𝑁 ) = 𝝈(𝜇1) · · ·𝝈(𝜇𝑁 ) , 𝝈(𝜇) = 𝝈(𝑢(𝜇)). (9)

4. Matching between SF and GF schemes

The results of the fits for the step-scaling functions provide an important test for the reliability
of our data, since the step-scaling functions 𝜎(𝜇) should be continuous; therefore, we expect the fits
performed in the SF and GF regions to connect at the switching scale. This expectation has generally
been met, both when considering the data with 𝐿/𝑎 = 6 and when excluding them. An example of a
step-scaling function fit, represented as a function of the variable 𝜇, can be seen in fig. 2.

5. Results

Using the factorisation properties of the evolution operators [2], we get the non perturbative
determination for the one-scale RG evolution operator as function of the coupling:

Û(𝜇) = S−1
D 𝑢(𝜇pt)−𝚲/2𝑢(𝜇pt)−N2/2

(
1 + 𝑢(𝜇pt)H2 + 𝑢2(𝜇pt)H4 + 𝑢3(𝜇pt)H6

)
SDU(𝜇pt, 𝜇) (10)

and 𝜇 is related to 𝑢 in the SF region through the relation [7]

𝜇

Λ
= (𝑏0𝑢)

𝑏1
2𝑏2

0 exp
(

1
2𝑏0𝑢

)
exp

[∫ √
𝑢

0
d𝑥

(
1

𝛽(𝑥) +
1

𝑏0𝑥3 − 𝑏1

𝑏2
0𝑥

)]
, (11)

where Λ is computed in the SF scheme in [8]. In the GF region, 𝜇 is computed using [9] the
parametrisation

𝛽GF = −𝑢3/2/(𝑝0 + 𝑝1𝑢 + 𝑝2𝑢
2) , (12)

with 𝑝0 = 16.63 ± 0.61, 𝑝1 = −0.05 ± 0.20, 𝑝2 = 0.008 ± 0.016.
We associated two kinds of uncertainties to the running that we computed:

4
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Figure 3: Non-perturbative running 𝑈̂11 (𝜇) (red and green points, 𝑁 = 9) compared to the NLO prediction
(black dashed curve). The red points refer to fits evaluated excluding the 𝐿/𝑎 = 6 data, while the green ones
are obtained taking into account 𝐿/𝑎 = 6 data too. The curves in blue are built evolving non-perturbatively
the ±(3/3)SF runnings and quantify the systematic error.

• statistical error computed propagating the error on 𝝈(𝑢) in the formula (9),

• systematic error due to the lack of knowledge of the NNLO matrix 𝜸2.

The systematic error has been evaluated as follows. Having no theoretical hint on the entity of 𝜸2, we
only consider two guesstimates: 𝜸L

2 = −𝜸1/4, 𝜸R
2 = 𝜸1/4 , whose rough choice will be enlightened

after the results for the running are shown. Using the guesses for 𝜸2 we evaluated guesstimates of
the matrices HL/R

4 , HL/R
6 and consequently the guessed perturbative RG evolution ÛL/R(𝑢pt) that

we will address as ∓(3/3)SF. We were then able to evaluate the guessed non-perturbative running
as defined in (10), where we imposed the matching at the same scale used for the (2/3)SF results.
Eventually, we defined the systematic error as the difference between the non-perturbative running
(2/3)SF and the guessed runnings ∓(3/3)SF.

The number of steps 𝑁 = 9 resulted in limited statistical uncertainties and negligible systematic
ones, therefore we opted to produce plots for 𝑁 = 9. The latter can be found in fig.s (3), (4) and (5),
where the non-perturbative running points are compared to the perturbative (2/3)SF running and
both statistical and systematic uncertainties are separately displayed.

6. Conclusions

In this work, we provided a non-perturbative renormalization of the four-fermion operators
introduced in eq. (1) investigating the RG running and mixing of the operator basis in a 𝑁f = 3 QCD
between a low-energy scale 𝜇had ∼ O(250)MeV and a high-energy scale 𝜇pt ∼ O(103)GeV, where
we used a GF coupling between the hadronic scale and ∼ 4GeV and a SF coupling afterwards. We
included the NLO anomalous dimension matrix 𝜸1 in the computation for the perturbative part of
the evolution operator Ũ(𝜇) and generalized its definition.

Our analysis introduced two kinds of uncertainties: statistical and systematic. The statistical
uncertainties have been evaluated through the bootstrap analysis of the simulated data and have
been propagated in the various computations. The systematic uncertainties have been introduced to
estimate the possible effect on our results that may be introduced by the unknown NNLO anomalous

5
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Figure 4: Non-perturbative running for the matrix elements 2|3 of the evolution operator Û(𝜇) (green and
red points, 𝑁 = 9). The results are compared to the NLO prediction (black curve). The curves in blue are
built evolving non-perturbatively the ±(3/3)SF runnings and quantify the systematic error.
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Figure 5: Non-perturbative running for the matrix elements 4|5 of the evolution operator Û(𝜇) (green and
red points, 𝑁 = 9). The results are compared to the NLO prediction (black curve). The curves in blue are
built evolving non-perturbatively the ±(3/3)SF runnings and quantify the systematic error.
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dimension matrix 𝜸2, they can be made negligible if the matching scale is large enough and, as for
the current knowledge, we can give only guesses of these errors.

We represented the non-vanishing matrix elements of Û in fig.s 3, 4 and 5, where it is possible
to notice that the points corresponding to the non-perturbative evaluations approach the perturbative
running with the same slope and distinguish from the perturbation theory at the lower energy scales.

The results presented highlight the limitations (at least for the renormalisation scheme considered)
of perturbation theory at scales around 𝑂 (1) GeV, as evidenced by the behaviour of the matrix
elements 𝑈̂22, 𝑈̂32, and 𝑈̂45. The non-perturbative approaches employed here are shown to be
essential for the reliable renormalization of the FFO, particularly at low-energy scales. Future efforts
may aim to further reduce systematic uncertainties and explore higher-order corrections to enhance
the precision of the renormalization group analysis.
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