
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
8
4

Deflation and polynomial preconditioning in the
application of the overlap operator at nonzero
chemical potential

Gustavo Ramirez-Hidalgo𝑎,∗ and Jacob Finkenrath𝑏

𝑎Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH,
Wilhelm-Johnen-Straße 52428 Jülich, Germany

𝑏Department of Theoretical Physics, European Organization for Nuclear Research, CERN,
CH-1211 Geneva 23, Switzerland

E-mail: g.ramirez.hidalgo@fz-juelich.de, j.finkenrath@cern.ch

When solving linear systems with the overlap operator at nonzero chemical potential 𝜇 in lattice
QCD one needs, at every iteration of the iterative solver, to apply the sign function evaluated on a
non-Hermitian operator𝑄𝜇 times a vector, i.e., sign(𝑄𝜇)𝑣. In this work we describe how deflation
and (the more recently proposed) polynomial preconditioning can be applied to this problem, in
particular in the context of lattice QCD. Furthermore, we describe how both methods can be
combined, we compare them in numerical experiments and explore whether there might be any
synergy between both that can be exploited.

The 41st International Symposium on Lattice Field Theory (LATTICE2024)
28 July - 3 August 2024
Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:g.ramirez.hidalgo@fz-juelich.de
mailto:j.finkenrath@cern.ch
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
2
8
4

Deflation and preconditioning for overlap at nonzero chemical potential Gustavo Ramirez-Hidalgo

1. Introduction

The overlap discretization in lattice Quantum Chromodynamics (QCD) allows the simulation
of QCD on the lattice with the attractive feature of having a lattice version of chiral symmetry [1].
Chiral symmetry is relevant for some physical observables such as hadron spectra in the presence of
magnetic fields. The realization of chirality on the lattice is done via the Ginsparg-Wilson relation
[2]; Neuberger has provided in [3] a construction of the overlap Dirac operator, that fulfills the
Ginsparg-Wilson relation.

A nonzero chemical potential in lattice QCD can be employed to describe various physical
objects in different areas of physics, e.g., in cosmology for descriptions of the early universe or
in high energy physics for studying heavy-ion collisions [4]. Neuberger’s overlap operator can be
equipped with a nonzero chemical potential, leading to the necessity of evaluating the sign function
on a non-Hermitian operator [5].

Our focus in this work is on stressing on what are, still, computationally expensive and
problematic components in solving linear systems with the overlap operator, in particular at a
nonzero chemical potential. In doing so, we describe a recently proposed method (polynomial
preconditioning) for accelerating the evaluation of the sign function times a vector, its use in the
context of lattice QCD, and we analyze how this compares to LR deflation, and moreover whether
there is any synergy between polynomial preconditioning and deflation that can be exploited.

The contents of this work are distributed as follows. In sect. 2, we list some of the most
relevant recent algorithmic advances in the solution of linear systems with the overlap operator
𝐷𝑁 . In particular, in sect. 2.4 we go deeply into the recently proposed algorithm of polynomial
preconditioning for the action of the inverse square root of a matrix on a vector. Then, in sect. 3
we describe how one can combine deflation and polynomial preconditioning for this sign function
problem. Furthermore, we briefly explain, in sect. 4, how we have implemented and analyzed, via
numerical experiments, the interplay of deflation and polynomial preconditioning. Finally, with
all of the previous algorithmic pieces in place, we give some motivation on how a proper overlap
solver should look like on modern heterogeneous supercomputing architectures and comment on
some future work in sect. 5.

2. Some algorithms for solving linear systems with overlap fermions

The linear systems emerging in lattice QCD simulations with the overlap discretization take
the form [1]:

𝐷𝑜𝑣 (𝜇)𝑥 = 𝑏, (1)

where the overlap operator at nonzero chemical potential can be written as 𝐷𝑜𝑣 (𝜇) = 𝜌𝐼 +
Γ5sign

(
𝑄𝜇

)
, with 𝑄𝜇 := Γ5𝐷𝑊 (𝑚𝑊 , 𝜇). Here, the matrix 𝐷𝑊 (𝑚𝑊 , 𝜇) is the usual Wilson-

Dirac operator at nonzero mass 𝑚𝑊 , and nonzero chemical potential 𝜇. The value of 𝑚𝑊 is tuned
for improving the locality of the theory, with 𝑚𝑊 ≈ 1.4 set for optimality in general. The nonzero
chemical potential is realized via the rescaling of the gauge links in the time direction with expo-
nential factors 𝑒𝜇 and 𝑒−𝜇 on +𝑇 and −𝑇 , respectively [5]. Having a nonzero chemical potential
renders 𝑄𝜇 non-Hermitian; we note that 𝑄𝐻

𝜇 = 𝑄−𝜇. Our interest here is on 𝜇 ≠ 0.
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There are many studies on new algorithmic improvements for solving the linear system in eq.
1, e.g., [6–8], with associated convergence analyzes that permit one to relax the accuracy up to
which certain components of the computation need to be attained.

We describe now what we believe are the main algorithms needed for setting up a fast solver
for linear systems with the overlap operator, i.e., eq. 1. We start with a brief description of
preconditioning at the outermost level of the solver for eq. 1. Then we explain how deflation and
polynomial preconditioning can be applied in the inner part of the linear solve, namely, in the
application of the sign function on a vector sign(𝑄𝜇)𝑣. In sect. 4 we analyze the interplay of
deflation and polynomial preconditioning.

2.1 Preconditioning with multigrid

When solving the linear system in eq. 1, due to 𝑄𝜇 being non-Hermitian, one can use for
example the GMRES algorithm [9]. “Traditional" iterative methods, e.g., Gauss-Seidel, GMRES,
etc. [10], they all suffer from critical slowing down, that is, the convergence rate worsens as the
condition number increases (which usually happens when one drives one or more parameters in the
physical system to their continuum values). To alleviate this, one can use multigrid methods [11].
In particular, aggregation based algebraic multigrid [12, 13] has been very successful in lattice
QCD [14–21]. In [22], FGMRES (the flexible variant of GMRES [10]) is employed for solving eq.
1 (with 𝜇 = 0), and the preconditioner is the application of 𝐷−1

𝑊
(𝑚𝑝𝑟𝑒𝑐) up to a certain tolerance 𝜖 .

By tuning 𝑚𝑝𝑟𝑒𝑐, critical slowing down is then considerably reduced, but of course it is offloaded
to the application of 𝐷−1

𝑊
(𝑚𝑝𝑟𝑒𝑐). Then, by using multigrid in the evaluation of 𝐷−1

𝑊
(𝑚𝑝𝑟𝑒𝑐) times

a vector, the authors in [22] find that critical slowing down is dramatically reduced for this problem.
Furthermore, they find that 𝜖 = 10−1 is an approximately optimal value from a total execution time
point of view.

But once this problem in the outer solver is “fixed", one has to turn to a very expensive piece
of the computation, namely the evaluation of sign(𝑄𝜇)𝑣, and figure out ways of reducing the cost
of that operation. We now discuss two algorithms for precisely that purpose, whether one of them
is better than the other and their possible interplay.

2.2 The Arnoldi method for 𝑓 (𝐴)𝑣

A simple yet robust method for computing the application of a function of a matrix times
a vector, in the non-Hermitian case, is the Arnoldi method. As the algorithms described in the
following sections all rely on the Arnoldi method, it is worth briefly explaining this technique before
diving into the less simple deflation and polynomial preconditioning.

The Arnoldi method consists of the following steps. First, one runs 𝑘 steps of the Arnoldi
iteration [10] with 𝑣

∥𝑣 ∥2
as the first Arnoldi vector, obtaining with this the Arnoldi vectors𝑉𝑘 ∈ C𝑛×𝑘

and the Hessenberg matrix 𝐻𝑘+1 ∈ C(𝑘+1)×𝑘 fulfilling 𝐴𝑉𝑘 = 𝑉𝑘+1𝐻𝑘+1. The eigenvalues of 𝐻𝑘

serve as approximations to part of the spectrum of 𝐴. A second and last step is to use 𝑉𝑘 and 𝐻𝑘 to
build an approximation to 𝑓 (𝐴)𝑣, 𝑓 (𝐴)𝑣 ≈ 𝑉𝑘 𝑓 (𝐻𝑘)𝑉𝐻

𝑘
𝑣, which consists of a “lifting” of 𝑓 (𝐻𝑘)

from the small subspace up to the large subspace, i.e., that where 𝐴 acts.

3
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2.3 Deflating the sign function

As introduced in [23], one can deflate LR (left-right) eigenmodes when applying 𝑓 (𝐴)𝑣,
for some function 𝑓 (e.g., sign) and some matrix 𝐴 ∈ C𝑛×𝑛. The motivation behind this is the
following. Let us assume that 𝐴 is nonsingular, therefore it admits an eigendecomposition of the
form 𝐴 = 𝑋Λ𝑋−1. We call 𝑋 the right eigenvectors, as we can write the previous expression in the
form 𝐴𝑋 = 𝑋Λ → 𝐴𝑅 = 𝑅Λ. Furthermore, by rewriting it as 𝑋−1𝐴 = Λ𝑋−1, we then call 𝑋−1 the
left eigenvectors, due to the notation 𝑋−1𝐴 = Λ𝑋−1 → 𝐿𝐻𝐴 = Λ𝐿𝐻 → 𝐴𝐻𝐿 = 𝐿Λ𝐻 . Finally,
one can then write the eigendecomposition of 𝐴 as 𝐴 = 𝑅Λ𝐿𝐻 .

One can then furthermore write this as a summation of rank-1 updates: 𝐴 =
∑𝑛

𝑖=1 𝑟𝑖𝜆𝑖𝑙
ℎ
𝑖
. Let

us now deflate the LR eigenmode for 𝑖 = 1. To do so, we have to apply the projector 𝜋1 = 𝐼 − 𝑟1𝑙
𝐻
1

from the right: 𝐴𝜋𝑖 = 𝑟1𝜆1𝑙
ℎ
1 (𝐼 − 𝑟1𝑙

𝐻
1 ) +∑𝑛

𝑖=2 𝑟𝑖𝜆𝑖𝑙
ℎ
𝑖
(𝐼 − 𝑟1𝑙

𝐻
1 ). The first term vanishes thanks to

𝐿𝐻𝑅 = 𝑋−1𝑋 = 𝐼, and in the second term 𝑙𝐻
𝑖
𝑟1 is zero due to the same connection between 𝐿𝐻

and 𝑅. We are then left with 𝐴𝜋𝑖 =
∑𝑛

𝑖=2 𝑟𝑖𝜆𝑖𝑙
ℎ
𝑖
. Therefore, in general:

Π𝑚 = 𝐼 − 𝑅𝑚𝐿
𝐻
𝑚 ⇒ 𝐴Π𝑚 =

𝑛∑︁
𝑖=𝑚+1

𝑟𝑖𝜆𝑖𝑙
ℎ
𝑖 . (2)

These relations are used in [23] to deflate LR eigenmodes in 𝑓 (𝐴)𝑣:

𝑓 (𝐴)𝑣 = 𝑓 (𝐴)𝑅𝑚𝐿
𝐻
𝑚𝑣 + 𝑓 (𝐴)Π𝑚𝑣 = 𝑓 (𝐴)𝑅𝑚𝐿

𝐻
𝑚𝑣 + 𝑓 (𝐴)𝑣⊖ = 𝑅𝑚 𝑓 (Λ𝑚)𝐿𝐻

𝑚𝑣 + 𝑓 (𝐴)𝑣⊖, (3)

with: 𝐴𝑅𝑚 = 𝑅𝑚Λ𝑚, 𝐿
𝐻
𝑚𝐴 = Λ𝑚𝐿

𝐻
𝑚 , 𝑣⊖ = Π𝑚𝑣 = 𝑣−𝑅𝑚𝐿

𝐻
𝑚𝑣. One then uses the Arnoldi method

presented in sect. 2.2 on the deflated term 𝑓 (𝐴)𝑣⊖. The “direct” term in eq. 3 reads 𝑅𝑚 𝑓 (Λ𝑚)𝐿𝐻
𝑚𝑣.

Can we do something similar with the SVD instead of the eigendecomposition? Take the
SVD of 𝐴 to be 𝐴 = 𝑈Σ𝑉𝐻 =

∑𝑛
𝑖=1 𝑢𝑖𝜎𝑖𝑣

𝐻
𝑖

= 𝑈𝑚Σ𝑚𝑉
𝐻
𝑚 +∑𝑛

𝑖=𝑚+1 𝑢𝑖𝜎𝑖𝑣
𝐻
𝑖

. We can multiply from
the right with Π𝑚 = 𝐼 − 𝑉𝑚𝑉

𝐻
𝑚 to remove the first 𝑚 singular modes: 𝐴Π𝑚 =

∑𝑛
𝑖=𝑚+1 𝑢𝑖𝜎𝑖𝑣

𝐻
𝑖

.
This looks just like the deflated expression in eq. 2. Let us furthermore use this in 𝑓 (𝐴)𝑣:
𝑓 (𝐴)𝑣 = 𝑓 (𝐴)𝑉𝑚𝑉

𝐻
𝑚 𝑣+ 𝑓 (𝐴)Π𝑚𝑣. The second term can be evaluated again via the Arnoldi method.

The first term, though, does not seem to be able to be written in closed form as in the LR deflation
case. To see this, write 𝐴𝑉𝑚𝑉

𝐻
𝑚 = 𝑈𝑚Σ𝑚𝑉

𝐻
𝑚 ⇒ 𝐴2𝑉𝑚𝑉

𝐻
𝑚 = 𝐴𝑈𝑚Σ𝑚𝑉

𝐻
𝑚 = 𝑈Σ𝑉𝐻𝑈𝑚Σ𝑚𝑉

𝐻
𝑚 .

The problem with not being able to do SVD deflation is rooted in the fact that the connection
between 𝑉 and 𝑈 is via 𝐴 and not direct, as it was in the case in the LR eigendecomposition where
𝑅𝐿𝐻 = 𝐿𝐻𝑅 = 𝐼. Therefore, we cannot write the “direct” term in the SVD case in a closed form,
e.g., via an evaluation of 𝑓 (Σ𝑚).

By means of LR deflation with 64 deflation vectors, the authors in [23] accomplish a reduction
of 4× in the size of the Krylov subspace needed for the evaluation of the sign function times a vector,
for a lattice of size 44, to attain a relative error of 10−10. In order to do this deflation, though, one
has to first compute the 𝑚 smallest LR eigenmodes which is, as we will explain later in this work,
a very expensive task in the particular case of the sign function in lattice QCD.

2.4 Preconditioning the sign function with a polynomial

It has been recently proposed [24] to use polynomial preconditioning for the action of the
square root and the inverse square root of a matrix times a vector. We focus on the inverse square
root case here. For doing this preconditioning, one constructs first a polynomial 𝑞(𝐴) such that

4
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𝑞(𝐴) ≈ 𝐴−1/2. To construct such a polynomial, one can first run an Arnoldi process1 that builds
𝑝(𝐴) ≈ 𝐴−1 [25], and then use the coefficients of 𝑝(𝐴) and via divided differences compute the
coefficients for 𝑞(𝐴); this is one of the approaches followed in [24] to build 𝑞(𝐴).

From [24], polynomial preconditioning for the specific problem 𝑓 (𝐴)𝑣 = 𝐴−1/2𝑣 looks like:

𝐴−1/2𝑣 =

(
(𝑞(𝐴))2 𝐴

)−1/2
𝑞(𝐴)𝑣. Now, our interest here is on describing this method for lattice

QCD, where we write sign(𝑄𝜇)𝑣 = 𝑄𝜇

(
𝑄2

𝜇

)−1/2
𝑣. Then, preconditioning this problem:

sign(𝑄𝜇)𝑣 = 𝑄𝜇

(
𝑄2

𝜇

)−1/2
𝑣 = 𝑄𝜇

((
𝑞

(
𝑄2

𝜇

))2
𝑄2

𝜇

)−1/2
𝑞

(
𝑄2

𝜇

)
𝑣. (4)

Note how we need to build a polynomial in 𝑄2
𝜇 such that 𝑞(𝑄2

𝜇) ≈
(
𝑄2

𝜇

)−1/2
. One then applies

the Arnoldi method on the preconditioned problem. The insertion of the polynomial in eq. 4
corresponds to left preconditioning. One can also define right preconditioning. Whether one
uses left or right preconditioning will depend on considerations such as computational effort and
stopping criterium. We prefer left preconditioning here, as it allows one to compute convergence
checks more cheaply and simply in general.

Polynomial preconditioning for the evaluation of the sign function on a matrix times a vector
has been introduced in [24] and successfully used to drastically reduce the size of the Krylov
subspace needed when using the Arnoldi method, with this reducing the dot products and memory
footprint and furthermore the total execution time.

3. Combining deflation and preconditioning for the sign function

Now, let us further LR-deflate the preconditioned problem. But we have to be careful at this
point: we want to deflate the inverse square root part only, and not the whole sign function appli-

cation. So, let us first introduce: invsqrt(𝑄𝜇)𝑣 :=
((
𝑞

(
𝑄2

𝜇

))2
𝑄2

𝜇

)−1/2
𝑞

(
𝑄2

𝜇

)
𝑣 ⇒ sign(𝑄𝜇)𝑣 =

𝑄𝜇invsqrt(Q𝜇)𝑣. Now we can focus on the inverse square root part: 𝑐 := 𝑞

(
𝑄2

𝜇

)
𝑣, 𝑊 :=(

𝑞

(
𝑄2

𝜇

))2
𝑄2

𝜇 ⇒ invsqrt(Q𝜇)𝑣 = 𝑊−1/2𝑐, sign(𝑄𝜇) = 𝑄𝜇𝑊
−1/2𝑐. The procedure is then: we

apply LR deflation to the problem 𝑊−1/2𝑐, then we multiply from the left by 𝑄𝜇, and that gives us
the wanted result sign(𝑄𝜇)𝑣, like this:

sign(𝑄𝜇)𝑣 = 𝑄𝜇𝑅𝑚Λ
−1/2
𝑚 𝐿𝐻

𝑚𝑐 +𝑄𝜇𝑊
−1/2𝑐⊖, (5)

where: 𝑐 = 𝑞

(
𝑄2

𝜇

)
𝑣, 𝑊𝑅𝑚 = 𝑅𝑚Λ𝑚, 𝐿

𝐻
𝑚𝑊 = Λ𝑚𝐿

𝐻
𝑚 , 𝑐⊖ = 𝑐 − 𝑅𝑚𝐿

𝐻
𝑚𝑐. One then needs to run

the Arnoldi method on the preconditioned and deflated term 𝑊−1/2𝑐⊖.

4. Numerical experiments

In our computations, we use a Dirac matrix for a grid with dimensions 64×323 coming from
a physically relevant ensemble provided by the lattice QCD group at the University of Regensburg

1We do not refer here to the Arnoldi method presented in sect. 2.2, but rather to the underlying Arnoldi iteration used
for obtaining 𝑉𝑘 and 𝐻𝑘+1.
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via the Collaborative Research Centre SFB-TRR55, with parameters 𝑚0 = −0.332159624413 and
𝑐𝑠𝑤 = 1.9192 [26], and 𝑚𝜋 = 0.2946 GeV. We have set 𝑚𝑊 = −1.4 and 𝜇 = 0.3, which are
physically relevant values, for our nonzero chemical potential sign function computations.

All of our implementations have been made available on GitHub2. In there, we have im-
plemented the method described in sect. 3, i.e., deflation on top of polynomial preconditioning.
The computation of the LR eigenmodes is done via SLEPc [27]. Due to having to make use of a
two-sided eigensolver, as we need LR eigenmodes, we are limited by SLEPc to the Krylov-Schur
solver [28]. A perhaps better way of doing the LR extraction would be to call an eigensolver that
allows for preconditioning, e.g., Jacobi Davidson or Generalized Davidson. As those precondi-
tioned eigensolvers do not allow for two-sided solves in SLEPc, one then needs to pass the operator

𝑊 =

(
𝑞

(
𝑄2

𝜇

))2
𝑄2

𝜇 to compute the right eigenvectors, and then do a second solve with 𝑊𝐻 for the
left eigenvectors. Furthermore, those preconditioned eigensolvers rely on a correction equation,
with the preconditioner being applied during the approximate solution of this equation. The cor-
rection equation is of a shifted form, therefore one has to provide a preconditioner that allows for
shifts; one way to alleviate this in the case of a polynomial preconditioner would be to make use of
the shift-invariance property of the Arnoldi relation built when constructing a Krylov subspace via
the Arnoldi iteration [10]. To simplify our implementation, we have opted for using the two-sided
Krylov-Schur solver provided by SLEPc. In using that eigensolver, one has to provide 𝑊 and 𝑊𝐻 .
To build a function that applies 𝑊𝐻 on a vector, we have made use of the fact that 𝑄𝐻

𝜇 = 𝑄−𝜇, and

then 𝑊𝐻 =

(
𝑞

(
𝑄2

−𝜇

))2
𝑄2

−𝜇, where 𝑞 indicates that one has to also conjugate the coefficients of
the polynomial.

We start then by making some observations regarding the computation of LR eigenmodes. To
this purpose, we list in tab. 1 some values related to the extraction of the smallest 20 LR eigenmodes
of𝑊 for various degrees of the polynomial, where subsp. size is the maximum size of the subspace,
restarts is how many times the eigensolver needed to restart to reach convergence up to 10−10, and
time is the execution time taken by the eigensolver to converge. We have not presented there the
results for the unpreconditioned case, i.e., 𝑑 = 0, because the Krylov subspace needed is too large
in our particular case and we did not manage to converge to the desired 20 LR eigenmodes in a
reasonable amount of time. On the other hand, in tab. 2 we present the time taken to solve the
problem at hand, i.e., sign(𝑄𝜇)𝑣, via polynomial preconditioning. Considering the small times
displayed in tab. 2, we can already note how the non-deflated preconditioned method might not
really benefit from deflation, mainly due to the costly eigensolving times. Perhaps if the addition of
deflation considerably reduces the time taken to apply sign(𝑄𝜇)𝑣, and we have to do many solves of
the form in eq. 1, then we would benefit from deflation. Or, if we can speedup the eigensolving time
via, e.g., preconditioned eigensolvers, then we might see a benefit, as long as the Krylov subspace
needed to obtain sign(𝑄𝜇)𝑣 is considerably reduced when using deflation.

We have run numerical experiments where we make use of deflation on top of polynomial
preconditioning. Then, we see that deflation with 256 LR eigenmodes leads to no reduction in
the size of the Krylov subspace needed by the preconditioned solver. To try and understand this,

we have plotted the spectra until 0.02 of the matrices 𝑊 =

(
𝑞

(
𝑄2

𝜇

))2
𝑄2

𝜇 for various values of

2See https://github.com/Gustavroot/sign_function_LQCD_with_polyprec.
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Table 1: cost of computing the 20 smallest LR eigenmodes of the operator
(
𝑞

(
𝑄2

𝜇

))2
𝑄2

𝜇 for various values

of the degree 𝑑 of the polynomial 𝑞
(
𝑄2

𝜇

)
. Running on 64 nodes of the JUWELS Cluster, with 48 MPI

processes per node. The time is in seconds, and subsp. size and restarts indicate the maximum size of the
subspace in the Krylov-Schur method and the number of restarts until convergence, respectively.

𝑑 subsp. size restarts time (s)

128 50 4 59.69
64 50 10 68.26
32 50 21 73.47
16 100 16 86.01
8 100 40 142.00
4 200 41 393.27

Table 2: cost of computing sign(𝑄𝜇)𝑣 via polynomial preconditioning, without deflation. Running on 64
nodes of the JUWELS Cluster, with 48 MPI processes per node. The times are in seconds, and 𝑑 the degree
of the polynomial. The column polyn. time is the time needed to construct the polynomial and solve time the
time taken to compute sign(𝑄𝜇)𝑣 up to a relative error of 10−9.

𝑑 polyn. time solve time total time

32 0.11 24.97 25.08
64 0.30 14.56 14.86
128 0.95 12.42 13.37

the polynomial degree 𝑑, see fig. 1. For small 𝑑, there are still many small eigenvalues, hence
one might need to deflate many LR small eigenmodes to see any benefit. On the other hand, for
larger 𝑑 the spectra might have already been scattered enough such that the wrapping Arnoldi
method manages to interpolate the spectrum of 𝑊 well enough. The previous explanation might
be partially incorrect, though, in the sense that the part of the spectrum of the preconditioned
system 𝑊 that needs to be deflated is not that corresponding to the smallest eigenvalues, but the
spectrum might get reshaped due to preconditioning such that the Arnoldi method has a harder
time interpolating a different part of the spectrum. This will require further exploration in future
work. For now, we conclude that non-deflated polynomial preconditioning is a simpler and cheaper
method for computing sign(𝑄𝜇)𝑣, compared to either deflation alone or preconditioning plus
deflation. Moreover, polynomial preconditioning with a large 𝑑 will exhibit almost perfect strong
scaling, assuming that the Dirac operator itself does as well, and also thanks to the drastic reduction
in the size of the Krylov subspace, which also keeps the evaluation of 𝐻−1/2

𝑘
at a very low cost3.

5. Outlook: a solver for overlap fermions on modern architectures

The linear system in eq. 1 can be solved via iterative refinement [29], where one can for
example use GMRES in half precision as a preconditioner of FGMRES in double precision. In

3The cost of computing 𝐻
−1/2
𝑘

grows as O(𝑘3), hence it is good to keep the size of the Krylov subspace small to
avoid the computation of this kernel becoming a significant part of the total execution time.
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Figure 1: smallest part of the spectrum of the matrix 𝑊 =

(
𝑞

(
𝑄2

𝜇

))2
𝑄2

𝜇 for various degrees 𝑑 of the
polynomial. The polynomial has collapsed the imaginary part of the eigenvalues of 𝑄2

𝜇, rendering the
smallest eigenvalues of 𝑊 virtually real.

doing so, one then has to apply sign(𝑄𝜇)𝑣 very few times in double precision (thanks to the
multigrid preconditioning briefly outlined in sect. 2.1), and most of its applications would then
be in the lower precision, e.g., half precision. Then, if using polynomial preconditioning for the
evaluation of sign(𝑄𝜇)𝑣, we would construct the polynomial in double precision once and then cast
it down to the lower precision. With this algorithmic arrangement, one would then spend most of
the time applying the polynomial 𝑞(𝑄2

𝜇) in, e.g., half precision, as well as applying the multigrid
preconditioner also in a reduced precision. Such solver is very well suited for running on modern
GPUs, and our aim in future work is to implement such a mixed precision solver within the QUDA
[30] library.

Furthermore, an important next step is to build a computationally efficient implementation that
compares the recently proposed approach, for evaluating sign(𝑄𝜇)𝑣 via polynomial preconditinoing,
to the one that makes use of a rational approximation (see, e.g., [6]).
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